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Abstract. We introduce the notion of (G,Γ)-crossed action on a tensor
category, where (G,Γ) is a matched pair of finite groups. A tensor
category is called a (G,Γ)-crossed tensor category if it is endowed with a
(G,Γ)-crossed action. We show that every (G,Γ)-crossed tensor category

C gives rise to a tensor category C(G,Γ) that fits into an exact sequence of
tensor categories RepG −→ C(G,Γ) −→ C. We also define the notion of
a (G,Γ)-braiding in a (G,Γ)-crossed tensor category, which is connected
with certain set-theoretical solutions of the QYBE. This extends the
notion of G-crossed braided tensor category due to Turaev. We show
that if C is a (G,Γ)-crossed tensor category equipped with a (G,Γ)-

braiding, then the tensor category C(G,Γ) is a braided tensor category in
a canonical way.

1. Introduction

Besides from their inherent algebraic appeal, monoidal and tensor cat-
egories are relevant structures in many areas of mathematics and mathe-
matical physics. The endeavour around the far-reaching problem of their
classification has seen a considerable outgrowth in the last decades. Wide-
spread examples of tensor categories are provided by Hopf algebras and its
generalizations by means of its representation theory.

The main goal of this paper is to present a construction of a class of
tensor categories that generalizes and puts into a unified perspective certain
renowned classes of examples.

The input for this construction consists of a matched pair of finite groups
(G.Γ) plus a tensor category C endowed with a Γ-grading and an action of
G by autoequivalences (which are not necessarily tensor functors):

C =
⊕
s∈Γ
Cs, ρ : Gop → Aut(C),
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that are related to each other in an appropriate sense. For reasons that
might well become apparent in the sequel, we call such a data a (G,Γ)-
crossed action on C. We say that C is a (G,Γ)-crossed tensor category, if it
is endowed with a (G,Γ)-crossed action. See Definition 4.1.

Recall that a matched pair of groups is a collection (G,Γ), where G and
Γ are groups endowed with mutual actions by permutations

Γ
▹←− Γ×G ◃−→ G

satisfying the following conditions:

(1.1) s ◃ gh = (s ◃ g)((s ▹ g) ◃ h), st ▹ g = (s ▹ (t ◃ g))(t ▹ g),

for all s, t ∈ Γ, g, h ∈ G.

The requirements in our definition of a (G,Γ)-crossed tensor category are
that, for all g ∈ G, s ∈ Γ,

ρg(Cs) = Cs▹g,
and the existence of natural isomorphisms

γgX,Y : ρg(X ⊗ Y )→ ρs◃g(X)⊗ ρg(Y ), X ∈ C, Y ∈ Cs,

subject to certain rather natural compatibility conditions.

From a (G,Γ)-crossed tensor category C we produce a new tensor category

that we denote C(G,Γ). The tensor product in C(G,Γ) is built from the tensor
product of C and the natural isomorphisms γ. This is done in Theorem 5.1.

The main tool in the proof of Theorem 5.1 is the notion of a Hopf monad,
introduced in [2], [3]. This notion and some of its main features are recalled
in Subsection 2.3. It turns out that the data underlying a (G,Γ)-crossed
tensor category C give rise to a monad T on C in such a way that the
category CT of T -modules in C identifies with C(G,Γ). We show that, with
respect to a suitable comonoidal structure arising from the (G,Γ)-crossed

action on C, T is in fact a Hopf monad, which allows to conclude that C(G,Γ)
is a tensor category.

We have that C(G,Γ) is a finite tensor category if and only if the neutral
homogeneous component D = Ce of the associated Γ-grading is a finite tensor
category. On the other side, C(G,Γ) is a fusion category if and only if D is
a fusion category and the characteristic of k does not divide the order of G
(Proposition 6.2).

We show that, like in the case of an equivariantization under a group
action by tensor autoequivalences, the category C(G,Γ) fits into an exact
sequence

RepG −→ C(G,Γ) −→ C,
in the sense of the definition given in [4]. See Theorem 6.1. However, this is
not an equivariantization exact sequence, unless the action ◃ : Γ×G −→ G
is (essentially) trivial. Dually, the category C(G,Γ) is not a Γ-graded tensor
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category, unless the action ▹ : Γ × G −→ Γ is (essentially) trivial. See
Propositions 6.3 and 6.8.

LetG be a group. Motivated by his developements in Homotopy Quantum
Field Theory, Turaev introduced the notion of G-crossed braided categories
[22], which serve as a tool in the construction of invariants of 3-dimensional
G-manifolds. Müger showed in [19] (see also [13]) that G-crossed braided
categories arise from the so-called Galois extensions of braided tensor cate-
gories.

As it turns out, the G-crossed categories underlying G-crossed braided
categories of Turaev yield examples of crossed actions of a matched pair.
Indeed, the right adjoint action ◃ : G × G −→ G and the trivial action
▹ : G×G −→ G make (G,G) into a matched pair of groups. The conditions
in Definition 4.1 of a (G,G)-crossed action on a tensor category C boil down
in this case to the conditions defining a G-crossed tensor category C.

Let C be a (G,Γ)-crossed tensor category. We define in this paper a
(G,Γ)-braiding in C as a triple (c, φ, ψ), where φ,ψ : Γ → G are group
homomorphisms and c is a collection of natural isomorphisms

cX,Y : X ⊗ Y → ρt
−1◃φ(s−1)(Y )⊗ ρψ(t)(X), X ∈ Cs, Y ∈ Ct,

satisfying certain compatibility conditions. See Definition 7.1.

Recall that a set-theoretical solution of the Quantum Yang-Baxter Equa-
tion is an invertible map r : X ×X → X ×X, where X is a set, satisfying
the condition r12r13r23 = r23r13r12, as maps X × X × X → X × X × X.
A theory of set-theoretical solutions of the QYBE was developed in [11],
[14], [23]. Our definition of a (G,Γ)-braiding is related to the set-theoretical
solutions of the QYBE equation on the set Γ studied in [14], corresponding
to appropriate actions of the group Γ on itself. We discuss this relation in
Subsection 7.1.

We show that a (G,Γ)-braiding in C gives rise to a braiding in C(G,Γ), thus
providing examples of braided tensor categories. See Theorem 7.5.

In the case where C is a G-graded tensor category, regarded as before
as (G,G)-crossed tensor category, a G-braiding c in C is the same thing as
a (G,G)-braiding (c, φ, ψ), where ψ = idG : G → G is the identity group
homomorphism and φ is the trivial group homomorphism (Proposition 8.2).

Matched pairs of groups are the main ingredients in the origin of one of
the first classes of examples of non-commutative and non-cocommutative
Hopf algebras discovered by G. I. Kac in the late 60’s [12] (see also [16],
[17], [21]). These Hopf algebras are most commonly called abelian bicrossed
products or abelian extensions; they are characterized by the attribute of
fitting into an exact sequence of Hopf algebras

(1.2) k −→ kΓ −→ H −→ kG −→ k,
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where G and Γ are finite groups which, a fortiori, form a matched pair
(G,Γ). This class of Hopf algebras, as well as its generalizations in different
contexts, has been intensively studied in the literature.

We show that the representation category of an abelian extension of finite
dimensional Hopf algebras fits into our construction. More precisely, we use
the cohomological data determining an abelian exact sequence as in (1.2)
to provide the tensor category C(Γ) of finite dimensional Γ-graded vector
spaces with a (G,Γ)-crossed action, such that the outcoming tensor cate-

gory C(G,Γ) is strictly equivalent to the tensor category of finite dimensional
representations of H.

Along this paper k will be an algebraically closed field. Our discussion
focuses on the framework of tensor categories over k. Several pertinent
definitions and facts about tensor categories are recalled in Subsection 2.2.
We refer the reader to [1], [6], for a detailed treatment of the subject.

The contents of the paper are organized as follows. In Section 2 we
overview the distinct concepts and basic facts on the main structures enter-
ing into the picture: matched pairs of groups, tensor categories and their
module categories, Hopf monads on tensor categories and their relation with
the notion of exact sequences of tensor categories. In Section 3 we discuss
the main ingredients in our construction, namely, group actions on k-linear
abelian categories and the related equivariantization process on one side,
and group gradings on tensor categories on the other side. In Section 4
we define crossed actions of matched pairs on tensor categories. In Section
5 we present the main construction of the paper, that is, we prove here
that every crossed action gives rise to a tensor category. The main general
properties of this tensor category are studied in Section 6. In Section 7 we
introduce (G,Γ)-crossed braidings and prove that a (G,Γ)-crossed tensor
category equipped with a (G,Γ)-crossed braiding gives rise to a braided ten-
sor category. In Section 8 we give examples of the main constructions from
G-crossed categories and abelian extensions of Hopf algebras.

Acknowledgement. This paper was partly written during a research stay
in the University of Hamburg. The author thanks the Humboldt Foundation,
C. Schweigert and the Mathematics Department of U. Hamburg for the kind
hospitality.

2. Preliminaries

2.1. Matched pairs of groups. A matched pair of groups is characterized
by the existence of a group H endowed with an exact factorization into sub-
groups isomorphic to G and Γ, respectively. That is, H is a group containing
subgroups G̃ ∼= G and Γ̃ ∼= Γ, such that

H = G̃ Γ̃, Γ̃ ∩ G̃ = {e}.
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In fact, if (G,Γ) is a matched pair, then there is a group structure, denoted
G on Γ in the cartesian product G× Γ, defined by

(g, s)(h, t) = (g(s◃ h), (s▹ h)t),

for all g, h ∈ G, s, t ∈ Γ. Conversely, given such a group H, we may identify
G and Γ with subgroups of H. In this way the actions ▹ : Γ×G → Γ and
◃ : Γ×G→ G are determined by the relations

sg = (s ◃ g)(s ▹ g),

for all g ∈ G, s ∈ Γ.

Let (G,Γ) be a matched pair of groups. Relations (1.1) imply that s ◃
e = e and e ▹ g = e, for all s ∈ Γ, g ∈ G.

Using relations (1.1) it is also not difficult to show that the following
conditions are equivalent:

(i) The action ▹: Γ×G −→ Γ is trivial.
(ii) The action ◃: Γ×G −→ G is by group automorphisms.

If these conditions hold, then the group G on Γ coincides with the semidirect
product Go Γ.

Similarly, the conditions

(i’) The action ◃: Γ×G −→ G is trivial.
(ii’) The action ▹: Γ×G −→ Γ is by group automorphisms.

are equivalent and, if they hold, then the group G on Γ coincides with the
semidirect product Gn Γ.

2.2. Tensor categories. Let C be a monoidal category. Recall that a right
dual of an object Y ∈ C is an object, denoted Y ∗, endowed with morphisms
eY : Y ∗ ⊗ Y → 1 and cY : 1→ Y ⊗ Y ∗ such that the compositions

Y
cY ⊗id−→ Y ⊗ Y ∗ ⊗ Y id⊗eY−→ Y, Y ∗ id⊗cY−→ Y ∗ ⊗ Y ⊗ Y ∗ eY ⊗id−→ Y ∗

coincide, respectively, with idY and idY ∗ . A left dual ∗Y of Y is an object of
C endowed with morphisms e′Y : Y ⊗ ∗Y → 1 and c′Y : 1→ ∗Y ⊗ Y subject
to similar conditions. Provided it exists, a right (respectively, left) dual of
an object Y ∈ C is unique up to a unique isomorphism. The category C is
called rigid if every object of C has right and left duals. See [1, Section 2.1].

A tensor category over k is a k-linear abelian rigid monoidal category C
such that the tensor product ⊗ : C × C → C is k-bilinear and the following
conditions are satisfied:

• C is locally finite, that is, every object of C has finite length and Hom
spaces are finite dimensional.
• The unit object 1 ∈ C is simple.

Note that since k is algebraically closed, then an object X of C is simple if
and only if it is scalar, that is, if and only if End(X) ∼= k.

If C is a tensor category over k, then the functor ⊗ : C × C → C is exact
in both variables.
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A tensor subcategory of a tensor category C is a full subcategory D of C
which is closed under the operations of taking tensor products, subobjects
and dual objects (so in particular 1 ∈ D). A tensor subcategory is itself a
tensor category with tensor product inherited from that of C.

A finite tensor category over k is a tensor category C over k which satisfies
either of the following equivalent conditions:

• C has enough projective objects and finitely many simple objects.
• C has a projective generator, that is, an object P ∈ C such that the
functor HomC(P,−) is faithful exact.
• C is equivalent as a k-linear category to the category of finite dimen-
sional representations of a finite dimensional k-algebra.

A fusion category over k is a semisimple finite tensor category over k.
Let G be a finite group. The category of finite dimensional representations

of G over k will be denoted by RepG. This is a finite tensor category over
k; it is a fusion category if and only if the characteristic of k does not divide
the order of G.

All tensor categories in this paper will be assumed to be strict.

Let C,D be tensor categories over k. A k-linear exact strong monoidal
functor F : C → D will be called a tensor functor. Such functor is automat-
ically faithful.

A braided tensor category over k is a tensor category C endowed with a
braiding, that is, a natural isomorphism σ : ⊗ → ⊗op satisfying the following
hexagon conditions:

σX,Y⊗Z = (idY ⊗σX,Z) (σX,Y ⊗ idZ), σX⊗Y,Z = (σX,Z ⊗ idY ) (idX ⊗σY,Z),

for all X,Y, Z ∈ C.

A (left) module category over a tensor category C is a locally finite k-linear
abelian category M endowed with a bifunctor ⊗ : C ×M → M, which is
k-bilinear and exact, and satisfies natural associativity and unit conditions.

A module categoryM is called indecomposable if it is not equivalent to a
direct sum of two nonzero module categories. It is called exact if for every
projective object P ∈ C and for every object M ∈M, P⊗M is a projective
object ofM. See [10].

It follows from [10, Proposition 2.1] that every tensor category C is an
exact indecomposable module category over any tensor subcategory D with
respect to the action D × C → C given by the tensor product of C.

As a consequence of this fact, we obtain that a finite tensor category C is
a fusion category if and only if its unit object 1 is projective.

2.3. Hopf monads on tensor categories. Let C be a tensor category
over k. Recall that a monad on C is an endofunctor T of C endowed with
natural transformations µ : T 2 → T and η : idC → T called, respectively,
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the multiplication and unit of T such that

(2.1) µXT (µX) = µXµT (X), µXηT (X) = idT (X) = µXT (ηX),

for all objects X ∈ C.

The monad T is a bimonad if it is a comonoidal endofunctor of C such
that the product µ and the unit η are comonoidal transformations. That is,
if the comonoidal structure of T is given by natural transformations

T2(X,Y ) : T (X ⊗ Y )→ T (X)⊗ T (Y ),

X, Y ∈ C and T0 : T (1)→ 1, then, for all objects X,Y ∈ C, we have

T2(X,Y )µX⊗Y = (µX ⊗ µY )T2(T (X), T (Y ))T (T2(X,Y )),(2.2)

T0µ1 = T0T (T0), T2(X,Y )ηX⊗Y = ηX ⊗ ηY , T0η1 = id1 .(2.3)

A bimonad T is called a Hopf monad provided that the fusion operators
H l : T (idC ⊗T ) → T ⊗ T and Hr : T (T ⊗ idC) → T ⊗ T defined, for every
X,Y ∈ C, by

H l
X,Y := (idT (X)⊗µY )T2(X,T (Y )) : T (X ⊗ T (Y ))→ T (X)⊗ T (Y ),

Hr
X,Y := (µX ⊗ idT (Y ))T2(T (X), Y ) : T (T (X)⊗ Y )→ T (X)⊗ T (Y ),

are isomorphisms.

Let T be a k-linear right exact Hopf monad on C. Then the category CT
of T -modules in C is a tensor category over k.

Recall that the objects of CT are pairs (X, r), where X is an object of C
and r : T (X)→ X is a morphism in C, such that

rT (r) = rµX , rηX = idX .

If (X, r), (X ′, r′) ∈ CT , a morphism f : (X, r) → (X ′, r′) is a morphism
f : X → X ′ in C such that fr = r′T (f).

The tensor product of two objects (X, r), (X ′, r′) ∈ CT is defined by

(2.4) (X, r)⊗ (X ′, r′) = (X ⊗X ′, (r ⊗ r′)T2(X,X ′)),

and the unit object of CT is (1, T0). See [2], [3], [4, Proposition 2.3].

Moreover, in this situation, the forgetful functor F : CT → C, F (X, r) =
X, is a strict tensor functor. The functor F is dominant if and only if the
Hopf monad T is faithful.

A quasitriangular Hopf monad on a tensor category C is a Hopf monad T
equipped with an R-matrix R, that is, R is a ∗-invertible natural transfor-
mation

RX,Y : X ⊗ Y → T (Y )⊗ T (X), X, Y ∈ C,
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satisfying the following conditions, for all objects X,Y, Z ∈ C:

(µX ⊗ µY )RTX,TY T2(X,Y ) = (µX ⊗ µY )T2(TY, TX)T (RX,Y ),
(2.5)

(idTZ ⊗T2(X,Y ))RX⊗Y,Z = (µZ ⊗ idTX⊗TY )(RX,TZ ⊗ idTY )(idX ⊗RY,Z),
(2.6)

(T2(Y, Z)⊗ idTX)RX,Y⊗Z = (idTY⊗TZ ⊗µX)(idTY ⊗RTX,Z)(RX,Y ⊗ idZ).
(2.7)

The ∗-invertibility of R means that the natural morphisms

R#
(X,r),(Y,s) = (s⊗ r)RX,Y : X ⊗ Y → Y ⊗X,

are isomorphisms, for all objects (X, r), (Y, s) ∈ CT . See [2, Subsection 8.2].
In view of [2, Theorem 8.5], if T is a quasitriangular Hopf monad on C,

then CT is a braided tensor category with braiding σ(X,r),(Y,s) : (X, r) ⊗
(Y, s)→ (Y, s)⊗ (X, r), defined in the form σ(X,r),(Y,s) = (s⊗ r)RX,Y .

2.4. Exact sequences of tensor categories. Let C, C′′ be tensor cate-
gories over k. A tensor functor F : C → C′′ is called normal if every object
X of C, there exists a subobject X0 ⊂ X such that F (X0) is the largest
trivial subobject of F (X).

If the functor F has a right adjoint R, then F is normal if and only if
R(1) is a trivial object of C [4, Proposition 3.5].

For a tensor functor F : C → C′′, let KerF denote the tensor subcategory
F−1(⟨1⟩) ⊆ C of objects X of C such that F (X) is a trivial object of C′′.

Let C′, C, C′′ be tensor categories over k. An exact sequence of tensor
categories is a sequence of tensor functors

(2.8) C′
f // C F // C′′

such that the tensor functor F is dominant and normal and the tensor
functor f is a full embedding whose essential image is KerF . See [4].

The induced Hopf algebra H of the exact sequence (2.8) is defined as the
coend of the fiber functor ωF = HomC′′(1, Ff) : C′ → Veck. There is an
equivalence of tensor categories C′ ≃ comod-H. See [4, Subsection 3.3].

By [4, Theorem 5.8] exact sequences (2.8) with finite dimensional induced
Hopf algebra H are classified by normal faithful right exact k-linear Hopf
monads T on C′′, such that the Hopf monad of the restriction of T to the
trivial subcategory of C′′ is isomorphic to H. Recall that a k-linear right
exact Hopf monad T on a tensor category C′′ is called normal if T (1) is a
trivial object of C′′.
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3. Group actions and group gradings on k-linear and tensor
categories

In this section we discuss some facts on group actions and group gradings
on k-linear and tensor categories that will be used later on.

3.1. Group actions on k-linear abelian categories. Let G be a group
and let C be a k-linear abelian category.

Let G be the strict monoidal category whose objects are the elements of
G and morphisms are identities, with tensor product defined as the multi-
plication in G and unit object e ∈ G. Let also Aut C be the strict monoidal
category whose objects are k-linear autoequivalences of C, morphisms are
natural transformations, with tensor product defined by composition of end-
ofunctors and natural transformations and unit object idC .

Consider the strict monoidal category Gop obtained from G by reversing
the tensor product. That is, the underlying category of Gop is G, while the
tensor product in Gop is defined by g ⊗ h = hg, g, h ∈ G.

By a right action of G on C by k-linear autoequivalences we shall under-
stand a monoidal functor ρ : Gop → Aut C. That is, for every g ∈ G, we
have a k-linear functor ρg : C → C and natural isomorphisms

ρg,h2 : ρgρh → ρhg, g, h ∈ G,
and ρ0 : idC → ρe, satisfying

(ρba,c2 )X (ρa,b2 )ρc(X) = (ρa,cb2 )X ρ
a((ρb,c2 )X),(3.1)

(ρa,e2 )Xρ
a(ρ0X) = idρa(X) = (ρe,a2 )X(ρ0)ρa(X),(3.2)

for all X ∈ C, a, b, c ∈ G.

3.2. Equivariantization. Let ρ : Gop → Aut C be a right action of G on
C by k-linear autoequivalences. A G-equivariant object is a pair (X, r),
where X is an object of C and r = (rg)g∈G is a collection of isomorphisms
rg : ρgX → X, g ∈ G, satisfying

(3.3) rgρg(rh) = rhg(ρg,h2 )X , ∀g, h ∈ G, reρ0X = idX .

A G-equivariant morphism f : (X, r)→ (Y, r′) is a morphism f : X → Y in
C such that frg = r′gρg(f), for all g ∈ G.

The category of G-equivariant objects and morphisms is a k-linear abelian
category, denoted CG, called the equivariantization of C under the action ρ.

Suppose that G is a finite group. Let T ρ : C → C be the endofunctor
of C defined by T ρ =

⊕
g∈G ρ

g. Then T ρ is a k-linear exact monad on

C with multiplication µ : T ρ2 =
⊕

g,h∈G ρ
gρh →

⊕
g∈G ρ

g = T ρ, given

componentwise by the isomorphisms ρg,h2 : ρgρh → ρhg, and unit η = ρ0 :
idC → ρe → T ρ.

Since the unit η of T ρ is a monomorphism, then T ρ is a faithful endofunc-
tor of C [4, Lemma 2.1].
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Extending the terminology of [4], we shall call T ρ the monad of the group
action ρ. (Note however, that the group actions considered loc. cit. are by
tensor autoequivalences on tensor categories.)

The canonical isomorphisms

HomC(
⊕
g∈G

ρg(X), X) ∼=
∏
g∈G

HomC(ρ
g(X), X),

X ∈ C, induce an equivalence of categories over C between the category CT ρ

of T ρ-modules in C and the equivariantization CG. See [4, Subsection 5.3].

Remark 3.1. Suppose that C is a tensor category. Assume in addition that
the action of G is given by tensor autoequivalences of C, that is, the end-

ofunctor ρg is a tensor functor, for all g ∈ G, and ρg,h2 : ρgρh → ρhg,
ρ0 : idC → ρe are natural isomorphisms of monoidal functors.

Then T ρ is Hopf monad on C with comonoidal structure

T2(X,Y ) :
⊕
g∈G

ρg(X ⊗ Y )→
⊕
g,g′∈G

ρg(X)⊗ ρg(Y ),

and T0 :
⊕

g∈G ρ
g(1) → 1, given componentwise by the monoidal structure

ρg2 : ρg ◦ ⊗ → ρg ⊗ ρg and ρg0 : ρg(1)→ 1 of the functors ρg, g ∈ G.
Thus the equivariantization CG is a tensor category with tensor product

defined by the formula

(3.4) (X, r)⊗ (X ′, r′) = (X ⊗X ′, (r ⊗ r′)(ρ2)X,X′).

In addition, if C is a finite tensor category, then so is CG. If C is a fusion
category and the characteristic of k does not divide the order of G, then CG
is also a fusion category.

Furthermore, T ρ is a normal cocommutative Hopf monad on C and the
forgetful functor F : CG → C gives rise to a central exact sequence of tensor
categories

(3.5) RepG −→ CG −→ C.
See [4, Corollary 2.22], [5, Example 2.5].

3.3. Group gradings on tensor categories. Let G be a group and let C
be a tensor category over k. Let

(3.6) C =
⊕
g∈G
Cg,

be a G-grading on C. That is, for every g ∈ G, Cg is a full subcategory of C
and the following conditions hold:

• For every object X of C we have a decomposition X ∼=
⊕

g∈GXg,
where Xg ∈ Cg, for all g ∈ G.
• For all X ∈ Cg, Y ∈ Ch, g ̸= h ∈ G, we have HomC(X,Y ) = 0.
• Cg ⊗ Ch ⊆ Cgh, for all g, h ∈ G.

The subcategories Cg, g ∈ G, are called the homogeneous components of
the grading. A G-grading (3.6) is called faithful if Cg ̸= 0, for all g ∈ G.



CROSSED ACTIONS OF MATCHED PAIRS 11

Let C =
⊕

g∈G Cg and D =
⊕

g∈GDg be G-graded k-linear abelian cate-

gories. A functor F : C → D will be called a G-graded functor if F (Cg) ⊆ Dg,
for all g ∈ G.

Lemma 3.2. Let F : C → D be a G-graded functor between G-graded k-
linear abelian categories categories C, D. Suppose F is dominant. Then, for
all g ∈ G, F induces by restriction a dominant functor F : Cg → Dg.

Proof. Let g ∈ G and let Y be any object of Dg. Since F is dominant,
there exists X ∈ C such that Y is a subobject of F (X). Let X ∼=

⊕
h∈GXh

be decomposition of X into a direct sum of homogeneous objects Xh ∈ Ch.
Since F is a G-graded functor, F (X) ∼=

⊕
h∈G F (Xh) is a decomposition of

F (X) into a direct sum of homogeneous objects F (Xh) ∈ Dh. Then Y must
be a subobject of F (Xg), because HomD(Y, F (Xh)) = 0, for all h ̸= g. This
proves the lemma. �
Remark 3.3. Let C be a G-graded tensor category. Since the unit object 1 is
simple, then it is isomorphic to an object of Ce. Without loss of generality,
we shall assume that 1 belongs to Ce.

Suppose Y ∈ Cg is a nonzero homogeneous object. Let Y ∗ and ∗Y be,
respectively, a right and a left dual of Y (see Subsection 2.2). Then Y ∗ and
∗Y are isomorphic to objects of Cg−1 . In fact, suppose that h ̸= g−1 ∈ G
and let X ∈ Ch. We have an isomorphism

HomC(X,Y
∗) = HomC(X, 1⊗ Y ∗) ∼= HomC(X ⊗ Y, 1),

by [1, Lemma 2.1.6]. Hence HomC(X,Y
∗) = 0 because X ⊗ Y ∈ Chg and

hg ̸= e. Similarly one can see that HomC(X,
∗ Y ) = 0. Therefore we shall

also assume without loss of generality that that the duals of an object of Cg
have been chosen so that they belong to Cg−1.

Proposition 3.4. Let C be a G-graded tensor category. Then the neutral
homogeneous component D = Ce is a tensor subcategory of C. Besides,
every homogeneous component Cg, g ∈ G, is an indecomposable exact left
(and right) module category with the action given by the tensor product of
C.

Proof. In view of Remark 3.3, D contains the unit object and is closed under
the operations of taking duals. This implies that D is a tensor subcategory
of C.

Let now g ∈ G. By the definition of a G-grading we have D ⊗ Cg ⊆ Cg,
and Cg ⊗D ⊆ Cg. Therefore Cg is both a left and right module subcategory
of C over the tensor subcategory D. Since C is an exact module category
over D, then so is Cg.

It remains to prove the indecomposability of Cg. We may assume that
Cg ̸= 0. Let X,Y be any nonzero objects of Cg. Again in view of Remark
3.3, we get that Z = Y ∗ ⊗X ∈ D.

Observe that the functor − ⊗ X : C → C is faithful exact. Then, since
by rigidity HomC(1, Y ⊗ Y ∗) ̸= 0, we obtain that HomC(X,Y ⊗ Z) =
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HomC(X,Y ⊗ Y ∗ ⊗ X) ̸= 0. This implies that Cg is indecomposable as a
right module category over D. Indecomposability as a left module category
is shown similarly. This finishes the proof of the proposition. �
Corollary 3.5. Suppose G is a finite group. Let C be a G-graded tensor
category with neutral homogeneous component D. Then C is a finite tensor
category (respectively, a fusion category) if and only if so is D.
Proof. Any tensor subcategory of a finite tensor category (respectively, of
a fusion category) is itself a finite tensor category (respectively, a fusion
category). Then we only need to show the ’if’ direction.

Suppose first that D is a finite tensor category. Let P ∈ D be a projective
generator, that is P is an object of D such that the functor HomD(P,−) is
faithful exact. Since the group G is finite, it will be enough to show that
every homogeneous component is a finite k-linear abelian category.

Let g ∈ G such that Cg ̸= 0. Note that since C is a tensor category, then
Cg is locally finite (that is, it has finite dimensional hom spaces and every
object has finite length). Therefore it will be enough to show that Cg has a
projective generator. Let X0 ∈ Cg be any nonzero object.

By exactness of the left D-module category Cg, P ⊗ X0 is a projective
object of Cg. Hence the functor HomCg(P ⊗X0,−) = HomC(P ⊗X0, X) is
exact. In addition, using the rigidity of C, we get for all X ∈ Cg a natural
isomorphism

HomC(P ⊗X0, X) ∼= HomC(P,X ⊗X∗
0 ) = HomD(P,X ⊗X∗

0 ).

Since both functors HomD(P,−) and −⊗X∗
0 are faithful, then HomCg(P ⊗

X0,−) is faithful. Hence P ⊗ X0 is a projective generator of Cg. Thus we
obtain that C is a finite tensor category.

Suppose next that D is a fusion category. In particular it is a finite tensor
category and hence so is C, by the previous part. Since C is an exact module
category over D, then C is semisimple (see [10, Example 3.3]). Hence C is
also a fusion category, as claimed. �
Remark 3.6. Suppose k is of characteristic zero. Let C be a fusion category
over k. Group gradings on C were classified in [9].

By [8, Proposition 2.9], C admits a faithful G-grading if and only if
its Drinfeld center Z(C) contains a Tannakian subcategory E such that
E ∼= RepG as symmetric categories and E is contained in the kernel of
the forgetful functor U : Z(C)→ C.

Observe that endowing C with a G-grading is equivalent to providing a
map ∂ : Irr(C) → G such that ∂(Z) = ∂(X)∂(Y ), for all simple objects X,
Y and Z of C such that HomC(Z,X ⊗ Y ) ̸= 0.

The grading corresponding to a Tannakian subcategory E ∼= RepG of the
center of C is defined as follows. Let X be an object of C and let (V, σ) ∈ E .
Then U(V, σ) = V is a trivial object of C and thus it is equipped with a
trivial half-brading τX,V : X ⊗ V → V ⊗X. Composing with the braiding
σ this gives an isomorphism τX,V σV,X : V ⊗X → V ⊗X.
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Let X be a simple object of C. Using that σ is a braiding, we obtain in
this way a natural automorphism of tensor functors U |E → U |E . This is the
same as an element g ∈ G, since U |E is a fiber functor on E . This defines a
map ∂ : Irr(C)→ G, which is seen to be G-grading using the hexagon axiom
for the braiding of the center.

It follows from [7, Proposition 8.20] that if C is a fusion category endowed
with a faithful G-grading, then FPdim C = |G|FPdimD.

4. (G,Γ)-crossed actions on tensor categories

Let C be a tensor category over k and let (G,Γ) be a matched pair of
groups.

Definition 4.1. A (G,Γ)-crossed action on the tensor category C consists
of the following data:

• A Γ-grading on C: C =
⊕

s∈Γ Cs.
• A right action of G on C by k-linear autoequivalences ρ : Gop →
Aut(C) such that

(4.1) ρg(Cs) = Cs▹g, ∀g ∈ G, s ∈ Γ,

• A collection of natural isomorphisms γ = (γg)g∈G:

(4.2) γgX,Y : ρg(X ⊗ Y )→ ρt◃g(X)⊗ ρg(Y ), X ∈ C, t ∈ Γ, Y ∈ Ct,

• A collection of isomorphisms γg0 : ρg(1)→ 1, g ∈ G.
These data are subject to the commutativity of the following diagrams:

(a) For all g ∈ G, X ∈ C, s, t ∈ Γ, Y ∈ Cs, Z ∈ Ct,

ρg(X ⊗ Y ⊗ Z)
γgX⊗Y,Z //

γgX,Y⊗Z

��

ρt◃g(X ⊗ Y )⊗ ρg(Z)

γt◃gX,Y ⊗idρg(Z)

��
ρst◃g(X)⊗ ρg(Y ⊗ Z)

idρst◃g(X) ⊗γ
g
Y,Z

// ρs◃(t◃g)(X)⊗ ρt◃g(Y )⊗ ρg(Z)

(b) For all g ∈ G, X ∈ C,

ρg(X)⊗ ρg(1)

idρg(X) ⊗γ
g
0 ''OO

OOO
OOO

OOO
OOO

O
ρg(X)

γgX,1oo

=

��

γg1,X // ρg(1)⊗ ρg(X)

γg0⊗idρg(X)wwooo
ooo

ooo
ooo

ooo

ρg(X)
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(c) For all g, h ∈ G, X ∈ C, s ∈ Γ, Y ∈ Cs,

ρgρh(X ⊗ Y )

ρg(γhX,Y )

��

ρ2
g,h
X⊗Y // ρhg(X ⊗ Y )

γhgX,Y

��
ρs◃hg(X)⊗ ρhg(Y )

ρg(ρs◃h(X)⊗ ρh(Y ))
γg
ρs◃h(X),ρh(Y )

// ρ(s▹h)◃gρs◃h(X)⊗ ρgρh(Y )

ρ2
(s▹h)◃g,s◃h
X ⊗ρ2g,hY

OO

(d) For all g, h ∈ G,

ρgρh(1)

ρg(γh0 )

��

(ρg,h2 )1 // ρhg(1)

γhg0

��
ρg(1)

γg0

// 1

(e) For all X ∈ C, s ∈ Γ, Y ∈ Cs,

X ⊗ Y

ρ0X⊗ρ0Y
''OO

OOO
OOO

OOO
OOO

OO

ρ0X⊗Y // ρe(X ⊗ Y )

γeX,Y

��
ρe(X)⊗ ρe(Y )

1

=

%%KK
KKK

KKK
KKK

KKK
KK

ρ01 // ρe(X ⊗ Y )

γe0

��
1

We shall say that C is a (G,Γ)-crossed tensor category if it is endowed
with a (G,Γ)-crossed action.

Remark 4.2. Recall that s◃e = e, for all s ∈ Γ. Thus conditions (a) and (b)
in the definition of a (G,Γ)-crossed tensor category imply that ρe : C → C
is a monoidal functor with monoidal structure γeX,Y : ρe(X ⊗Y )→ ρe(X)⊗
ρe(Y ), X,Y ∈ C, and γe0 : ρe(1)→ 1.

Commutativity of the diagrams in condition (e) amounts to the require-
ment that the natural isomorphism ρ0 : idC → ρe is a monoidal isomorphism.

Remark 4.3. Suppose that G and Γ are groups endowed with mutual actions

by permutations Γ
▹←− Γ × G

◃−→ G. Let C =
⊕

s∈Γ Cs be a Γ-graded
tensor category over k and let ρ : Gop → Aut(C) be a right action of G on
C by k-linear autoequivalences satisfying (4.1), and such that there exists
a collection of natural isomorphisms γ = (γg)g∈G as in (4.2), satisfying
condition (c).
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Lemma 4.4. Assume that the Γ-grading on C is faithful and that the action
ρ : Gop → Aut(C) is faithful, that is, ρg ∼= ρe if and only if g = e. Then the
actions ▹, ◃ make (G,Γ) into a matched pair of groups.

Note that the faithfulness of ρ holds for instance if the action▹ : Γ×G −→
Γ is faithful: in fact, if g ∈ G is such that ρg ∼= ρe then, since the Γ-grading
is faithful, we get from (4.1) that s▹ g = s, for all s ∈ Γ. Hence g = e.

Proof. Let s, t ∈ Γ, g ∈ G. For all objects X ∈ Ct, Y ∈ Cs, we have
X ⊗ Y ∈ Cts. Then, by (4.1), ρg(X ⊗ Y ) ∈ Cts▹g. On the other hand, under
the isomorphism γg,

ρg(X ⊗ Y ) ∼= ρs◃g(X)⊗ ρg(Y ) ∈ Ct▹(s◃g) ⊗ Cs▹g ⊆ C(t▹(s◃g))(s▹g).

Since, by assumption, the Γ-grading on C is faithful, we may take X and Y
to be nonzero objects. Hence we obtain

ts▹ g = (t▹ (s◃ g))(s▹ g), for all s, t ∈ Γ, g ∈ G.

Let now g, h ∈ G, s ∈ Γ, and let X,Y be objects of C such that Y ∈
Cs and Y ̸= 0. The right hand side of (c) defines a natural isomorphism
ρgρh(X ⊗ Y ) → ρs◃hg(X)⊗ ρhg(Y ). On the other hand, the left hand side
of (c) defines a natural isomorphism

ρgρh(X ⊗ Y )→ ρ(s◃h)((s▹h)◃g)(X)⊗ ρhg(Y ).

Since the tensor product of C is a faithful functor in each variable, we get a
natural isomorphism ρs◃hg ∼= ρ(s◃h)((s▹h)◃g). Because of faithfulness of the
action ρ, we obtain

s◃ hg = (s◃ h)((s▹ h)◃ g),

for all s ∈ Γ, g, h ∈ G. Therefore (G,Γ) is matched pair of groups, as
claimed. �

5. The category C(G,Γ)

Let C be a (G,Γ)-crossed tensor category. Since the group G acts on C by
k-linear autoequivalences, we may consider the equivariantization CG, which
is a k-linear abelian category.

Let (X, r) be an equivariant object. That is, rg : ρg(X)→ X are isomor-
phisms, for all g ∈ G, satisfying the relations (3.3). Let X ∼=

⊕
s∈ΓXs be a

decomposition of X as a direct sum of homogeneous objects Xs ∈ Cs, s ∈ Γ.
Condition (4.1) implies that, for all g ∈ G, s ∈ Γ, rg induces by restriction

an isomorphism rgs : ρg(Xs)→ Xs▹g.

Theorem 5.1. Let C be a (G,Γ)-crossed tensor category. Then the equiv-
ariantization of C under the action ρ is a tensor category over k with tensor
product defined as follows:

(5.1) (X, r)⊗ (Y, r′) = (X ⊗ Y, r̃),
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and unit object (1, (ρg1)g∈G), where, for all g ∈ G, r̃g is defined as the com-
position⊕
s∈Γ

ρg(X⊗Ys)
⊕sγgX,Ys−→

⊕
s∈Γ

ρs◃g(X)⊗ρg(Ys)
⊕srs◃g⊗r′gs−→

⊕
s∈Γ

X⊗Ys▹g = X⊗Y,

for Y = ⊕s∈ΓYs, Ys ∈ Cs.

Observe that the action of G on C is not necessarily by tensor autoequiva-
lences. Therefore the equivariantization CG is not a tensor category with the
tensor product defined by formula (3.4). The tensor category in Theorem

5.1 will be indicated by C(G,Γ) to emphasize this distinction.

Proof. Consider the endofunctor T =
⊕

g∈G ρ
g of C defined by the action of

G. Then T is a k-linear exact faithful endofunctor of C. Moreover, T is a
monad on C with multiplication µ : T 2 → T and unit η : idC → T induced,

respectively, by the morphisms ρg,h2 , g, h ∈ G, and ρe. See Subsection 3.2.
The natural isomorphisms

γgX,Y : ρg(X ⊗ Y )→ ρs◃g(X)⊗ ρg(Y ), g ∈ G, X ∈ C, Y ∈ Cs,

induce canonically a natural transformation

T2(X,Y ) : T (X⊗Y ) =
⊕
g∈G

ρg(X⊗Y )→
⊕
g,h∈G

ρg(X)⊗ρh(Y ) = T (X)⊗T (Y ),

X, Y ∈ C. Similarly, the morphisms γg0 : ρg(1)→ 1 induce a morphism

T0 : T (1) =
⊕
g∈G

ρg(1)→ 1.

Conditions (a) and (b) in Definition 4.1 imply that T is a comonoidal end-
ofunctor of C with comonoidal structure given by T2 and T0. Conditions
(c), (d) and (e) imply that µ : T 2 → T and η : idC → T are comonoidal
transformations, that is, they satisfy the relations (2.2) and (2.3). Hence T
is a bimonad on C.

We claim that T is a Hopf monad on C. This will entail that C(G,Γ) is a
tensor category with the prescribed structure since, by the definition of the
tensor product of C(G,Γ) given in (5.1), it coincides with the one given by
formula (2.4) for the tensor product in the category CT of T -modules in C.

According to the results in [3, Section 2], to establish the claim it will be
enough to show that the fusion operators H l and Hr of T are isomorphisms.
Recall that H l and Hr are defined, respectively, by

H l
X,Y = (idT (X)⊗µY )T2(X,T (Y )) : T (X ⊗ T (Y ))→ T (X)⊗ T (Y ),

Hr
X,Y = (µX ⊗ idT (Y ))T2(T (X), Y ) : T (T (X)⊗ Y )→ T (X)⊗ T (Y ).
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Let X be any object of C. For every homogenous object Y ∈ Cs, s ∈ Γ,
the operator

Hr
X,Y :

⊕
g,h∈G

ρg(ρh(X)⊗ Y )→
⊕
g,h∈G

ρg(X)⊗ ρh(Y ),

is given componentwise by the composition of isomorphisms

(ρs◃g,h2 ⊗ idρg(Y )) γ
g
ρh(X),Y

: ρg(ρh(X)⊗ Y )→ ρh(s◃g)(X)⊗ ρg(Y ).

Since the map G × G → G × G, (g, h) 7→ (h(s ◃ g), g), is bijective for any
s ∈ Γ, then Hr

X,Y is an isomorphism. Therefore Hr
X,Y is an isomorphism for

all Y ∈ C.

Similarly, if X is any object of C and Y ∈ Cs is a homogeneous object,
s ∈ Γ, then

H l
X,Y :

⊕
g,h∈G

ρg(X ⊗ ρh(Y ))→
⊕
g,h∈G

ρg(X)⊗ ρh(Y ),

is given componentwise by the composition of isomorphisms

(idρ(s▹h)◃g(X)⊗ρ
g,h
2 ) γg

X,ρh(Y )
: ρg(X ⊗ ρh(Y ))→ ρ(s▹h)◃g(X)⊗ ρhg(Y ).

We conclude as before that H l
X,Y is an isomorphism for all Y ∈ C. Indeed, to

see that for each s ∈ Γ the map G×G→ G×G, (g, h) 7→ ((s▹h)◃g, hg), is
bijective, we argue as follows: the composition of this map with the bijection
idG×(s◃−) : G×G→ G×G gives the map (g, h) 7→ ((s▹ h)◃ g, s◃ hg).
Using the compatibility condition in (1.1), the last map is bijective with
inverse (u, v) 7→ ((s ▹ (s−1 ◃ vu−1))−1 ◃ u, s−1 ◃ vu−1). Therefore T is a

Hopf monad, and thus C(G,Γ) = CT is a tensor category, as claimed. �

6. Main properties

In this section we study the structure of the tensor category C(G,Γ) arising
from a (G,Γ)-crossed tensor category for a general matched pair of finite
groups (G,Γ).

Theorem 6.1. Let C be a (G,Γ)-crossed tensor category and let C(G,Γ) be the
category defined by Theorem 5.1. Then the forgetful functor F : C(G,Γ) → C,
F (X, r) = X, gives rise to a perfect exact sequence of tensor categories

(6.1) RepG −→ C(G,Γ) F−→ C,

with induced Hopf algebra H ∼= kG.

Proof. By construction, C(G,Γ) = CT , where T =
⊕

g∈G ρ
g is the Hopf monad

associated to the (G,Γ)-crossed tensor category structure on C. Moreover,

the functor F : C(G,Γ) → C coincides with the forgetful functor CT → C.
Since T is a faithful exact endofunctor of C, then the functor F : C(G,Γ) → C
is a dominant tensor functor [4, Lemma 2.1 and Proposition 2.2]. The left
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exactness of T implies that the functor F has an exact left adjoint; then F
is a perfect tensor functor.

Furthermore, the isomorphisms γg0 , g ∈ G, induce an isomorphism T (1) =⊕
g∈G ρ

g(1) ∼= 1G. Hence T (1) is a trivial object of C, and therefore T is

a normal Hopf monad on C. In view of [4, Theorem 4.8], the functor F
induces an exact sequence of tensor categories

comod-H −→ C(G,Γ) F−→ C,
where H is the induced Hopf algebra of T , that is, H is the induced Hopf
algebra of the restriction of T to the trivial subcategory of C [4, Remark
5.5]. As in the proof of [4, Theorem 5.21], the restriction of T to the trivial
subcategory ⟨1⟩ of C is isomorphic to the Hopf monad of the trivial action of
G on ⟨1⟩ and therefore H ∼= kG. Thus we obtain the perfect exact sequence
(6.1). This finishes the proof of the theorem. �

We shall denote Supp C ⊆ Γ the support of C, that is,
Supp C = {s ∈ Γ| Cs ̸= 0}.

Since the functor ⊗ is faithful in each variable, Supp C is a subgroup of Γ.
Moreover, relation (4.1) implies that Supp C is stable under the action ▹ of
G on Γ.

Proposition 6.2. Let C be a (G,Γ)-crossed fusion category and let D = Ce
be the neutral component of C with respect to the associated Γ-grading. Then
we have:

(i) The category C(G,Γ) is a finite tensor category if and only if D is a
finite tensor category.

(ii) The category C(G,Γ) is a fusion category if and only if D is a fusion
category and the characteristic of k does not divide the order of G.
If this is the case, then we have

FPdim C(G,Γ) = |G|| Supp C|FPdimD.

Proof. (i) Assume that C(G,Γ) is a finite tensor category. Since the forgetful

functor C(G,Γ) → C is a dominant tensor functor, then C is a finite tensor
category and therefore so is D.

Assume, on the other direction, that D is a finite tensor category. By
Corollary 3.5, C is a finite tensor category. By construction C(G,Γ) ∼= CT ,
where T is a faithful exact k-linear Hopf monad on C. Then it follows from
[18, Lemma 3.5] that C(G,Γ) is a finite tensor category as well.

(ii) Assume that D is a fusion category and the characteristic of k does
not divide the order of G. By Corollary 3.5, C is also a fusion category. In
addition kG is a cosemisimple Hopf algebra and therefore RepG = comod-kG

is a fusion category too. It follows from [4, Corollary 4.16] that C(G,Γ) is a
fusion category.

Conversely, assume that C(G,Γ) is a fusion category. Then, by part (i), C is
a finite tensor category. Consider the forgetful functor F : C(G,Γ) → C. Since
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F is a dominant tensor functor, then it maps projective objects of C(G,Γ) to
projective objects of C, by [10, Theorem 2.5]. Since F (1) ∼= 1, and 1 is a

projective object of C(G,Γ), then 1 is a projective object of C and hence C is
a fusion category. Therefore so is its tensor subcategory D.

In this case, it follows from [4, Proposition 4.10] that

FPdim C(G,Γ) = FPdim(RepG) FPdim C = |G|| Supp C|FPdimD,

the last equality because C is faithfully graded by Supp C with neutral com-
ponent D; see [7, Proposition 8.20]. �

Proposition 6.3. Let C be a (G,Γ)-crossed tensor category. Then the fol-
lowing statements are equivalent:

(i) The exact sequence (6.1) is an equivariantization exact sequence.
(ii) The action ◃ : Supp C ×G −→ G is trivial.
(iii) The action ▹ : Supp C ×G −→ Supp C is by group automorphisms.

In Subsection 8.1 we shall further discuss (G,Γ)-crossed tensor categories
satisfying the equivalent conditions in this proposition.

Proof. Since Supp C is a G-stable subgroup of Γ, then (Supp C, G) is a
matched pair by restriction. As pointed out in Subsection 2.1, the action ◃
is trivial if and only if ▹ is an action by group automorphisms. Then (ii)
and (iii) are equivalent.

Suppose that the action ◃ : Γ × G −→ G is trivial. Conditions (a) and
(b) imply that, for all g ∈ G, ρg is a tensor functor with tensor structure
determined by γg0 and the isomorphisms γg in (4.2). Moreover, condition
(c) becomes in this case

(6.2) ((ρg,h2 )X ⊗ (ρg,h2 )Y ) γ
g
ρh(X),ρh(Y )

ρg(γhX,Y ) = γhgX,Y (ρg,h2 )X⊗Y ,

for all g, h ∈ G and for all Y ∈ C. Combining this with condition (d), we

obtain that ρg,h2 : ρgρh → ρhg are isomorphisms of tensor functors. There-
fore ρ is an action by tensor autoequivalences. Furthermore, the definition
of tensor product in Theorem 5.1 reduces in this case to the usual tensor
product (3.4) in the equivariantization CG. Hence (ii) implies (i).

Suppose that the exact sequence RepG −→ C(G,Γ) −→ C is an equivari-
antization exact sequence. Then, by [4, Theorem 5.21], the normal Hopf
monad T =

⊕
g∈G ρ

g is cocommutative, that is, for every morphism f :

T (1)→ 1 and for every object X ∈ C, we have

(6.3) (idT (X)⊗f)T2(X, 1) = (f ⊗ idT (X))T2(1, X) : T (X)→ T (X).
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Let s ∈ Γ, g ∈ G. Restricting both morphisms of (6.3) to ρg(X) ⊆ T (X),
X ∈ Cs, we get the commutativity of the following diagram:

ρg(X)

γg1,X
��

γgX,1 // ρg(X)⊗ ρg(1)

id⊗f |ρg(1)
��

ρs◃g(1)⊗ ρg(X)
f |ρs◃g(1)⊗id

// ρg(X),

for all g ∈ G and for all morphisms f : T (1)→ 1.
We may apply this to the morphism f = γg0πg, where πg is the canonical

projection πg : T (1) =
⊕

h∈G ρ
h(1)→ ρg(1). If s◃g ̸= g, then f |ρs◃g(1) = 0.

On the other hand, (id⊗f) γgX,1 = idρg(X) : ρ
g(X)→ ρg(X), by condition

(b).
Hence, if s ∈ Supp C, we may choose 0 ̸= X ∈ Cs, and thus we obtain

s ◃ g = g. This shows that (i) implies (ii) and finishes the proof of the
proposition. �

Observe that if (G,Γ) is any matched pair, where Γ = Z2 is the cyclic
group of order 2, then the action ▹ : Γ×G→ Γ is necessarily trivial. As a
consequence of Proposition 6.3 we obtain the following:

Corollary 6.4. Let C be a (G,Γ)-crossed tensor category, where Γ ∼= Z2.

Then the exact sequence RepG −→ C(G,Γ) −→ C is an equivariantization
exact sequence. �

Suppose that Γ̃ is a subgroup of Γ. Then the subcategory CΓ̃ =
⊕

s∈Γ̃ Cs
is a tensor subcategory of C.
Proposition 6.5. Let Γ̃ be a subgroup of Γ stable under the action ▹ of G.
Then the actions ◃ and ▹ induce by restriction a matched pair (G, Γ̃). The

category CΓ̃ is a (G, Γ̃)-crossed tensor category by restriction and there is a

strict embedding of tensor categories C(G,Γ̃)
Γ̃

→ C(G,Γ).

Proof. Since Γ̃ is stable under the action ▹, it is clear that (G, Γ̃) is a
matched pair. Condition (4.1) implies that CΓ̃ is stable under the action

ρ. It is immediate that the natural Γ̃-grading and the restriction of ρ make
CΓ̃ into a (G, Γ̃)-crossed tensor category. Finally, the embedding CΓ̃ → C
induces a strict embedding of tensor categories C(G,Γ̃)

Γ̃
→ C(G,Γ). �

Remark 6.6. It follows from Definition 4.1 that the neutral homogeneous
component Ce of C is a G-stable tensor subcategory. Furthermore, the action
of G on C restricts to an action of G on Ce by tensor autoequivalences.
Therefore F−1(Ce) ⊆ C(G,Γ) is a tensor subcategory containing RepG, and
in fact F−1(Ce) ∼= CGe is an equivariantization tensor category.

More generally, let Γ ⊆ Γ be the subgroup defined as

Γ = {s ∈ Γ| s◃ g = g, ∀g ∈ G}.
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Let CΓ be the tensor subcategory of C corresponding to the subgroup Γ, that
is, CΓ =

⊕
s∈Γ Cs.

It follows from the relations (1.1) that Γ is a G-stable subgroup of Γ. Let

C(G,Γ)
Γ

be the tensor subcategory in Proposition 6.5. Since Γ acts trivially

on G, Proposition 6.3 gives us:

Corollary 6.7. Then the induced exact sequence RepG −→ C(G,Γ)
Γ

−→ CΓ
is an equivariantization exact sequence. �

The following proposition and its corollary are dual to Proposition 6.3
and Corollary 6.7.

Proposition 6.8. Let C be a (G,Γ)-crossed tensor category. Then the fol-
lowing statements are equivalent:

(i) The category C(G,Γ) admits a Γ-grading such that the forgetful functor

F : C(G,Γ) → C is a Γ-graded tensor functor.
(ii) The action ▹ : Supp C ×G −→ Supp C is trivial.
(iii) The action ◃ : Supp C ×G −→ G is by group automorphisms.

Proof. The equivalence of (ii) and (iii) follows from relations (1.1). We shall
show that (i) is equivalent to (ii).

Assume (ii). For every s ∈ Γ, let C(G,Γ)s denote the full subcategory of

C(G,Γ) of all objects (X, r) ∈ C(G,Γ) such that X ∈ Cs. If (X, r) ∈ C(G,Γ)s and

(X ′, r′) ∈ C(G,Γ)t , s, t ∈ Γ, then (X, r)⊗ (X ′, r′) = (X ⊗X ′, r′′) is an object

of C(G,Γ)st , because Cs⊗Ct ⊆ Cst. In addition, if s ̸= t, then HomC(X,X
′) = 0

and therefore we obtain HomC(G,Γ)((X, r), (X ′, r′)) = 0.

Let now (X, r) be any object of C(G,Γ). Then, for all g ∈ G, rg : ρg(X)→
X is an isomorphism in C. We have a decomposition X ∼=

⊕
s∈ΓXs, where

Xs ∈ Cs, for all s ∈ Γ. In view of condition (4.1), rg induces by restriction
an isomorphism rgs : ρg(Xs) → Xs, for all g ∈ G, s ∈ Γ, because the
action ▹ of G on Supp C is trivial by assumption. Moreover, (Xs, rs) is

an object of C(G,Γ), where rs = {rgs}g∈G is the restriction of r to Xs, and
thus (X, r) ∼=

⊕
s∈Γ(Xs, rs) is a decomposition of (X, r) into a direct sum

of objects (Xs, rs) ∈ C(G,Γ)s . This shows that C(G,Γ) =
⊕

s∈Γ C
(G,Γ)
s is a

Γ-grading in C(G,Γ). Moreover, for all (X, r) ∈ C(G,Γ)s , s ∈ Γ, we have
F (X, r) = X ∈ Cs, that is, the functor F is a Γ-graded tensor functor. Then
we get (i).

Conversely, assume that (i) holds. Let s ∈ Supp C and let 0 ̸= Y ∈ Cs.
Since F is a dominant Γ-graded tensor functor, there exists (X, r) ∈ C(G,Γ)s

such that Y ⊆ F (X, r) = X and X ∈ Cs (see Lemma 3.2). In particular,
X ̸= 0 and for all g ∈ G, rg : ρg(X)→ X is an isomorphism in C. It follows
from condition (4.1) that s ▹ g = s, for all g ∈ G. Since s ∈ Supp C was
arbitrary, we get (ii). This shows that (i) and (ii) are equivalent and finishes
the proof of the proposition. �
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Remark 6.9. The proof of (i) ⇒ (ii) in Proposition 6.8 shows that in fact, if

(X, r) is an object of C(G,Γ) such that X is a nonzero homogeneous object of
C, then the homogeneous degree of X is a fixed point of Γ under the action
of G.

Remark 6.10. Suppose that the action ▹ : Supp C ×G −→ Supp C is trivial.
Consider the Γ-grading of CG,Γ given by Proposition 6.8. Observe that the

neutral component CG,Γe of this grading is the category F−1(Ce). Therefore

CG,Γe
∼= DG is an equivariantization tensor category with respect to the

restriction of the action ρ to the tensor subcategory D = Ce. See Remark
6.6.

Consider the trivial Γ-grading on RepG. Let us also quote that, in this
context, the induced exact sequence RepG −→ C(G,Γ) −→ C is a Γ-graded
exact sequence, that is, both tensor functors involved are Γ-graded tensor
functors.

Let Γ ⊆ Γ be the set of fixed points of Γ under the action of G. Then Γ is

a G-stable subgroup of Γ. Let CG,ΓΓ be the tensor subcategory of CG,Γ given

by Proposition 6.5. Since G acts trivially on the subgroup Γ, Proposition
6.8 implies the following (c.f. Remark 6.10):

Corollary 6.11. The tensor subcategory CG,ΓΓ is a Γ-graded tensor category

with neutral component DG, and with respect to the trivial Γ-grading on

RepG, the induced exact sequence RepG −→ C(G,Γ)Γ −→ CΓ is a Γ-graded
exact sequence. �

Remark 6.12. Suppose that the neutral component D = Ce of C is a fusion
category. Then C(G,Γ) is also a fusion category, by Proposition 6.2. Corol-

laries 6.7 and 6.11 imply that the fusion subcategories C(G,Γ)
Γ

and C(G,Γ)Γ are,

respectively, a G-equivariantization of a group extension of D and a group
extension of a G-equivariantization of D. In particular, it follows from [8,
Proposition 4.1] that if D is weakly group-theoretical, then so are the fusion

subcategories C(G,Γ)
Γ

and C(G,Γ)Γ .

7. (G,Γ)-crossed braidings

Let (G,Γ) be a matched pair of finite groups and let C be (G,Γ)-crossed
tensor category. We keep the notation in Section 4.

Definition 7.1. A (G,Γ)-crossed braiding in C is a triple (c, φ, ψ), where



CROSSED ACTIONS OF MATCHED PAIRS 23

• φ,ψ : Γ → G are group homomorphisms, satisfying the following
conditions, for all s, t ∈ Γ, g ∈ G:

(t−1 ▹ φ(s−1))st = s▹ ψ(t),(7.1)

(t◃ ψ(s))−1 = ψ(s−1▹ φ(t−1)),(7.2)

(t−1 ◃ φ(s−1)))−1 = φ(s▹ ψ(t)),(7.3)

ψ(t)g = (t◃ g)ψ(t▹ g),(7.4)

gφ(s▹ g)−1 = φ(s−1)(s◃ g),(7.5)

• c is a collection of natural isomorphisms

(7.6) cX,Y : X ⊗ Y → ρt
−1◃φ(s−1)(Y )⊗ ρψ(t)(X), X ∈ Cs, Y ∈ Ct.

For every s, t ∈ Γ, let s ≺ t and t ≻ s be the elements of Γ defined,
respectively, by

s ≺ t = t−1 ◃ φ(s−1), t ≻ s = s−1 ▹ φ(t−1).

The isomorphisms cX,Y are subject to the commutativity of the follow-
ing diagrams (when there is no ambiguity, we omit subscripts to denote
morphisms):

(1) For all g ∈ G, s, t ∈ Γ, X ∈ Cs, Y ∈ Ct,

ρg(X ⊗ Y )

ρg(c)
��

γg // ρt◃g(X)⊗ ρg(Y )

c
��

ρg(ρs≺t(Y )⊗ ρψ(t)(X))

γg

��

ρ(s▹(t◃g))≺(t▹g)ρg(Y)⊗ ρψ(t▹g)ρt◃g(X)

ρ2⊗ρ2
��

ρ(s▹ψ(t))◃gρs≺t(Y )⊗ ρgρψ(t)(X)
ρ2⊗ρ2

// ρ(s≺t)((s▹ψ(t))◃g)(Y )⊗ ρψ(t)g(X)

(2) For all s, t, u ∈ Γ, X ∈ Cs, Y ∈ Ct, Z ∈ Cu,

X ⊗ Y ⊗ Z

id⊗c

��

cX⊗Y,Z // ρst≺u(Z)⊗ ρψ(u)(X ⊗ Y )

id⊗γψ(u)

��
ρst≺u(Z)⊗ ρt◃ψ(u)(X)⊗ ρψ(u)(Y )

X ⊗ ρt≺u(Z)⊗ ρψ(u)(Y )
c⊗id

// ρs≺(t≻u)−1
ρt≺u(Z)⊗ ρψ(t≻u)−1

(X)⊗ ρψ(u)(Y )

ρ2⊗id⊗ id

OO

(3) For all s, t, u ∈ Γ, X ∈ Cs, Y ∈ Ct, Z ∈ Cu,
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X ⊗ Y ⊗ Z

c⊗id

��

cX,Y⊗Z // ρs≺tu(Y ⊗ Z)⊗ ρψ(tu)(X)

γ(tu)
−1◃s⊗id

��
ρs≺t(Y )⊗ ρs≺tu(Z)⊗ ρψ(tu)(X)

ρs≺t(Y )⊗ ρψ(t)(X)⊗ Z
id⊗c

// ρs≺t(Y )⊗ ρ(s▹ψ(t))≺u(Z)⊗ ρψ(u)ρψ(t)(X)

id⊗ id⊗ρ2

OO

Remark 7.2. Let C be a (G,Γ)-crossed tensor category and let φ and ψ : Γ→
G be maps. Assume in addition that the Γ-grading on C is faithful and theG-
action is faithful. Conditions (1), (2) and (3) in Definition 7.1 on the natural
isomorphism c imply that the maps φ and ψ are group homomorphisms
and that they satisfy the relations (7.1)–(7.5). This can be shown with an
argument similar to that in Remark 4.3.

For instance, the relations (1.1) imply that (t−1 ▹ g)−1 = (t▹ (t−1 ◃ g)),
for all t ∈ Γ, g ∈ G. The existence of an isomorphism like in (7.6) makes it
necessary that condition (7.1) in Definition 7.1 holds, when the Γ-grading
on C is faithful.

Remark 7.3. Let C be (G,Γ)-crossed tensor category and suppose (c, φ, ψ)
is a (G,Γ)-braiding in C. Conditions (2) and (3) in Definition 7.1 imply
that the neutral homogeneous component D = Ce of C is a braided tensor
category with braiding induced by the restriction of the natural isomorphism
c.

7.1. Crossed braidings and the set-theoretical QYBE. Let (G,Γ) be
a matched pair of groups and let G on Γ be the associated group (see Sub-
section 2.1). We shall identify G and Γ with subgroups of G on Γ = G × Γ
in the natural way. Thus G on Γ is endowed with an exact factorization into
its subgroups G and Γ.

The exact factorization in G on Γ induces actions of G and Γ on each
other, denoted sg, sg, gs, gs, s ∈ Γ, g ∈ G, which are uniquely determined
by the relations

(7.7) sg = sg sg, gs = gs gs,

in G on Γ. See [15, Section 2].
From the definition of the group G on Γ, we obtain the following relations:

sg = s◃ g, sg = s▹ g, gs = (s−1 ▹ g−1)−1, gs = (s−1 ◃ g−1)−1,

for all g ∈ G, s ∈ Γ.



CROSSED ACTIONS OF MATCHED PAIRS 25

Let φ,ψ : Γ → G be group homomorphisms. The conditions (7.1)–(7.5)
in Definition 7.1 are equivalent, respectively, to the following conditions:

st = ψ(s)t sφ(t),(7.8)

ψ(s)t = ψ(sφ(t)),(7.9)

sφ(t) = φ(ψ(s)t),(7.10)

ψ(gt)gt = ψ(t)g,(7.11)

φ(gs)gs = gφ(s),(7.12)

for all s, t ∈ Γ, g ∈ G. Compare with [15, Proposition 1].
An alternative formulation for the conditions on the data (G,Γ, φ, ψ), in

terms of group actions by automorphisms and 1-cocycles, is explained in [15,
Theorem 2].

Remark 7.4. Consider the map bφ,ψ : Γ× Γ→ Γ× Γ, given by

bφ,ψ(s, t) = ((t−1 ▹ φ(s−1))−1, s▹ ψ(t)), s, t ∈ Γ.

In terms of the actions (7.7), this map has the following expression:

bφ,ψ(s, t) = (φ(s)t, sψ(t)), s, t ∈ Γ.

It turns out that bφ,ψ(s, t) coincides with the map R−1(t, s), where R :
Γ × Γ → Γ × Γ is the (invertible) set-theoretical solution of the QYBE on

the set Γ given in [14], corresponding to the actions φ(s)t and sψ(t) of Γ on
itself. The relevant condition for the result of [14] is (7.8) or, equivalently,
(7.1). In particular the map bφ,ψ is bijective.

7.2. Braiding in the category C(G,Γ). We next show that a (G,Γ)-crossed

braiding in C induces a braiding in the associated tensor category C(G,Γ).

Theorem 7.5. Let C be (G,Γ)-crossed tensor category and let (c, φ, ψ) be a

(G,Γ)-braiding in C. Then C(G,Γ) is a braided tensor category with brading

c(X,r),(Y,l) : (X, r)⊗ (Y, l)→ (Y, l)⊗ (X, r),

defined componentwise by the isomorphisms

(7.13) (lt
−1◃φ(s−1) ⊗ rψ(t)) cXs,Yt : Xs ⊗ Yt → Yt▹(t−1◃φ(s−1)) ⊗Xs▹ψ(t),

where X =
⊕

s∈ΓXs and Y =
⊕

t∈Γ Yt.

Proof. Recall that C(G,Γ) = CT , where T =
⊕

g∈G ρ
g is the Hopf monad in

Theorem 5.1. The natural isomorphisms cX,Y : X ⊗ Y → ρt
−1◃φ(s−1)(Y ) ⊗

ρψ(t)(X), X ∈ Cs, Y ∈ Ct, induce canonically a natural transformation

RX,Y : X ⊗ Y →
⊕
g,h∈G

ρg(Y )⊗ ρh(X).

The commutativity of the diagrams (1), (2) and (3) in Definition 7.5 imply,
respectively, that the natural transformation R satisfies conditions (2.5),
(2.6) and (2.7).
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Let (X, r), (Y, l) ∈ C(G,Γ). Then the natural transformation

R#
(X,r),(Y,l) = (l ⊗ r)RX,Y : X ⊗ Y → Y ⊗X,

is given componentwise by isomorphisms

(lt
−1◃φ(s−1) ⊗ rψ(t)) cXs,Yt : Xs ⊗ Yt → Yt▹(t−1◃φ(s−1)) ⊗Xs▹ψ(t),

where X =
⊕

s∈ΓXs and Y =
⊕

t∈Γ Yt. Recall that t ▹ (t−1 ◃ φ(s−1)) =

(t−1 ▹ φ(s−1))−1, for all s, t ∈ Γ. It was observed in Remark 7.4 that the
map bφ,ψ : Γ×Γ→ Γ×Γ, defined by bφ,ψ(s, t) = ((t−1▹φ(s−1))−1, s▹ψ(t)),
is bijective. This implies that R# is an isomorphism.

We have thus shown that T is a quasitriangular Hopf monad on C. There-
fore C(G,Γ) is a braided tensor category with the braiding induced by the
R-matrix R, which is easily seen to coincide with (7.13). This finishes the
proof of the theorem. �

8. Some families of examples

8.1. G-crossed categories. Let G be a finite group. Then there is a
matched pair (G,Γ), where Γ = G, ▹ : G × Γ → G is the trivial action
and ◃ : G× Γ→ Γ is the adjoint action.

A (G,G)-crossed tensor category is the same as a G-graded tensor cat-
egory C =

⊕
g∈G Cg, endowed with a G-action by tensor autoequivalences

ρ : Gop → Aut⊗(C) such that ρg(Ch) = Cg−1hg, for all g, h ∈ G.
Thus, as a monoidal category, a (G,G)-crossed tensor category is a G-

crossed category as defined in [24, Section 3.2]. See also [22, Chapter VI].

In this case the exact sequence of tensor categories given by Theorem 6.1,

RepG→ C(G,G) → C,
is an equivariantization exact sequence; see Proposition 6.3.

Remark 8.1. Consider a matched pair (G,Γ) such that the action ◃ is trivial
or, equivalently, such that the action ▹ is by group automorphisms. In this
context, the notion of (G,Γ)-crossed fusion category is not new. In fact,
any (G,Γ)-crossed fusion category associated to such a matched pair can be
recovered from the G-crossed categories of [24].

This is due to the well-known fact that any action by group automor-
phisms can be recovered from an adjoint action, and can be formulated as
follows.

Suppose that the action ▹ : Γ×G→ Γ is by group automorphisms. Let
S = Γ oG be the semidirect product associated to this action, so that the
following relations hold in S:

(8.1) g−1sg = s▹ g,

for all s ∈ Γ, g ∈ G.
Consider an S-crossed (tensor) category C =

⊕
s∈S Cs. Since Γ is a normal

subgroup of S then the tensor subcategory CΓ =
⊕

s∈Γ Cs is stable under the
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adjoint action of S. Hence it is also stable under the adjoint action of G.
Relation (8.1), together with the conditions defining a G-crossed category
in [24, Section 3.2], imply that CΓ is a (G,Γ)-crossed tensor category.

Conversely, suppose that C =
⊕

s∈Γ Cs is a (G,Γ)-crossed tensor category.
Condition (4.1) in Definition 4.1 implies that

ρg(Cs) = Cg−1sg,

for all s ∈ Γ, g ∈ G, in view of (8.1).
The Γ-grading on C induces an S-grading C =

⊕
s∈S Cs, letting Cs := 0,

for all s ∈ S\Γ.
Similarly, the action ρ : Gop → Aut(C) which, by Proposition 6.3, is in

this case an action by tensor autoequivalences, induces an action by tensor
autoequivalences ρ̃ : Sop → Aut(C) in the form ρ̃s = ρs, for all s ∈ S, where
s ∈ G denotes the image of s under the canonical projection S → G.

The remaining conditions in Definition 4.1 imply that C becomes in this
way an S-crossed category.

Recall that aG-braiding in aG-crossed category C is a collection of natural
isomorphisms αX,Y : X ⊗ Y → Y ⊗ ρt(X), Y ∈ Ct, called a G-braiding,
satisfying appropriate compatibility conditions. See [22], [24, Subsection
3.3].

Proposition 8.2. Let C be a G-crossed tensor category. Then the following
data are equivalent:

(i) A G-braiding c in C.
(ii) A (G,G)-crossed braiding (c, φ, ψ) in C, where ψ = idG : G → G

and φ : G→ G is the trivial group homomorphism.

Note that the trivial homomorphism φ and the identity homomorphism
ψ satisfy conditions (7.1)–(7.5) in Definition 7.1. The map bφ,ψ is given in
this case by

bφ,ψ(s, t) = (t, t−1st), s, t ∈ G.

Proof. It is enough to observe that the commutativity of the diagrams (1)–
(3) in Definition 7.1 in the case where ψ is the identity homomorphism
and φ : G → G is the trivial group homomorphism, is equivalent to the
commutativity of the diagrams in [24, Subsection 3.3]. �

Remark 8.3. Let C be a G-braided tensor category regarded as a (G,G)-
crossed tensor category. Suppose (c, φ, ψ) is any (G,G)-braiding in C where
ψ = idG. It follows from conditions (7.1)–(7.5) that φ is a group homomor-
phism φ : G→ Z(G).

8.2. Abelian exact sequences of Hopf algebras. Consider a matched
pair of finite groups (G,Γ). Let also σ : G×G→ (k∗)Γ and τ : Γ×Γ→ (k∗)G

be normalized 2-cocycles, that is, using the notation σs(g, h) = σ(g, h)(s)
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and τg(s, t) = τ(s, t)(g), s, t ∈ Γ, g, h ∈ G, the following relations hold:

σs▹g(h, l)σs(g, hl) = σs(g, h)σs(gh, l),(8.2)

σs(e, g) = σs(g, e) = 1,(8.3)

τg(st, u)τu◃g(s, t) = τg(t, u)τg(s, tu),(8.4)

τg(e, s) = τg(s, e) = 1,(8.5)

for all g, h, l ∈ G, s, t, u ∈ Γ.

Assume in addition that σ and τ satisfy the following compatibility con-
ditions:
(8.6)
σst(g, h)τgh(s, t) = σs(t◃g, (t▹g)◃h)σt(g, h)τg(s, t)τh(s▹(t ◃g), t▹g),

(8.7) σe(g, h) = τe(s, t) = 1,

for all s, t ∈ Γ, g, h ∈ G.

Then the vector space H = kΓ ⊗ kG becomes a Hopf algebra with the
crossed product algebra structure and crossed coproduct coalgebra struc-
ture, denoted H = kΓ τ#σkG. The multiplication and comultiplication of
H are defined, for all g, h ∈ Γ, g, h ∈ G, in the form

(es#g)(et#h) = δs▹g,h σs(g, h)es#gh,(8.8)

∆(es#g) =
∑
tu=s

τg(t, u) et#(u ◃ g)⊗ eu#g.(8.9)

It is well-known that H is a semisimple Hopf algebra if and only if the
characteristic of k does not divide the order of G.

Let i = id⊗u : kΓ → H and p = ϵ⊗ id : H → kG be the canonical Hopf
algebra maps. Then we have an exact sequence of Hopf algebras

(8.10) k −→ kΓ
i−→ H

p−→ kG −→ k.

By [4, Proposition 3.9] this exact sequence gives rise to an exact sequence
of tensor categories

(8.11) RepG
p∗−→ RepH

i∗−→ C(Γ),

where C(Γ) = Rep kΓ is the category of finite dimensional Γ-graded vector
spaces.

The category C(Γ) is a (G,Γ)-crossed fusion category with respect to the
following data:

(a) The Γ-grading C(Γ) =
⊕

s∈Γ C(Γ)s, where, for all s ∈ Γ, C(Γ)s is the
category of finite dimensional vector spaces of degree s.

(b) The action ρ : Gop → Aut(C(Γ)) is given by ρg(V ) = V with G-
grading ρg(V )s = Vs▹g.
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The monoidal structure of ρ is given by ρ0 = id : ρe → idC(Γ), and

ρg,h2 = σ(h, g)−1 : ρgρh(V )→ ρhg(V ), that is,

ρg,h2 (v) = σ|v|(h, g)
−1v,

for every homogeneous element v ∈ V of degree |v|.
(c) For all U ∈ C(Γ), V ∈ C(Γ)s, the natural isomorphisms γgU,V : ρg(U⊗

V )→ ρs◃g(U)⊗ ρg(V ), are given by

γgU,V (u⊗ v) = τg(|u|, s)u⊗ v,

on homogeneous elements u ∈ U of degree |u|.
(d) The isomorphisms γg0 : ρg(k) = k → k are identities, for all g ∈ G.
The next theorem relates the tensor category associated to the (G,Γ)-

crossed tensor category C(Γ) with the Hopf algebra H.

Theorem 8.4. There is a strict equivalence of tensor categories

C(Γ)(G,Γ) ∼= RepH.

Proof. Since H = kΓ#σkG is a crossed product as an algebra, it follows
from [20, Proposition 3.2] that ρ is an action by k-linear autoequivalences
and there is an equivalence of k-linear categories K : RepH ∼= C(Γ)G =

C(Γ)(G,Γ), where for all H-module W , K(W ) = (W |kΓ , g−1|W ). The inverse

equivalence maps an object (V, r) of C(Γ)(G,Γ) to the vector space V endowed
with the H-action (es#g).v = (rg)−1(vs), v ∈ V .

It is straightforward to verify that K is a strict equivalence of tensor
categories. This proves the theorem. �

Remark 8.5. Consider the case where the exact sequence (8.10) is a split
exact sequence. This corresponds to the situation where σ and τ are the
trivial 2-cocycles.

Regard the category C(Γ) as a (G,Γ)-crossed tensor category as above.
Suppose (c, φ, ψ) is a (G,Γ)-braiding in C(Γ). It follows from [15, Theorem
1] that the compatibility conditions between φ and ψ given in Definition
7.1 imply that pairs (φ,ψ), satisfying the compatibility conditions in Defini-
tion 7.1, are in bijective correspondence with positive quasitriangular struc-
tures in the Hopf algebra H. In fact, the conditions in [15, Theorem 1] are
equivalent to the conditions (7.1)–(7.5), in view of [15, Proposition 1]. See
Subsection 7.1.
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gentina

E-mail address: natale@famaf.unc.edu.ar
URL: http://www.famaf.unc.edu.ar/∼natale


