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The relationship between entanglement and anisotropy is studied in small spin chains with
periodic boundary conditions. The Hamiltonian of the spin chains is given by a slight modi¯-

cation of the dipolar Hamiltonian. The e®ect of the anisotropy is analyzed using the concurrence

shared by spin pairs, but the study is not restricted to nearest-neighbor (NN) entanglement. It is

shown that, under rather general conditions, the inclusion of anisotropic terms diminishes the
entanglement shared between the spins of the chain irrespective of its range or its magnetic

character.
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1. Introduction

The study of rings, chains, or small clusters of quantum spins has been fueled by its

applications in di®erent areas such as molecular magnetism and, more recently,

quantum computing.1,2 In the case of molecular magnets, the system contains several

magnetic ions whose coupled spins generate a collective spin. Recently this collective

spin has been pointed out as a feasible physical system to implement qubits. This is

possible since the two lowest energy states are well separated from the other states,
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enabling the manipulation of the qubit basis states. In the work of Bertaina et al.2 the

Rabi oscillations associated to the S ¼ 1=2 and S ¼ 3=2 collective states have been

observed. This is quite remarkable, since the system considered was a cluster of 15

vanadium ions, known as V15, each of which has S ¼ 1=2. Another molecular magnet

that enables the observation of coherent dynamics is the antiferromagnetic ring Cr7Ni

molecule3 and more recently, long-lived Rabi oscillations has been observed in antifer-

romagnetic quantum spin chains ðTMTTFÞ2X, with X ¼ AsF6, PF6, SbF6. These last

systems can be well modeled with an isotropic Heisenberg Hamiltonian, with a dimer-

ization parameter in the case of the composes ðTMTTF Þ2PF66 and ðTMTTF Þ2AsF6.

The calculation of the energy spectrum of the systems mentioned above is a rather

di±cult task, the dimension of the Hilbert space associated to the V15 cluster is

32,768 (and far larger in the case of the Cr7Ni cluster). There is lot of work related to

the calculation of the spectrum of molecular magnets, mainly those using group-

theoretical approaches (see Tsukerblat4 and references therein). The group theoret-

ical approach enables to reduce the dimension of the problem to be solved numeri-

cally, anyway this method does not provide the eigen-states of the problem, so if one

is interested in the entanglement shared between the spins of the molecule or cluster

it is necessary to resort to other methods. Another problem to study molecular

magnets or spins clusters lies in the fact that these systems present long-range

interactions, i.e. the spins do not interact only with its closest neighbors but with a

set of spins that can be scattered over the cluster.

There is only a handful of results about the behavior of entanglement in systems

with long-range interactions (see Gaudiano et al.5 and references therein) and those

refer mainly to mean ¯eld models as the Lipkin–Meshkov–Glick model,6 which is of

the XY type in an external ¯eld, or an equivalent of the BCS model,7 which is of the

XX type in an external ¯eld. Reference 8 presents a study of entanglement for nearest

and next-nearest neighbors (NNs) for the ground state of a Heisenberg chain with

nearest and competing ferromagnetic next-NN interactions. For a review on the

subject see Ref. 9. A previous work by us5 attempts to clarify the behavior of the

entanglement on a Heisenberg-like spin model with a exchange interaction which

e®ectively depends on the distance between the spins. Reference 5 deals with the

bipartite subsystem entanglement over all the possible distances between the con-

stituents spins on a ring and for the whole spectrum. Interestingly, as can be learned

from Ref. 5, at some extent the detailed dependence of the interactions with the

distance is unimportant: except for a small number of singular points the properties

of the spectrum and the associated orto-projectors of isotropic long-range Heisen-

berg-like Hamiltonians, whose exchange interactions decay with the distance as a

power law, are very much the same. The mean ¯eld and the Haldane–Shastry model

are particular examples of \non-typical behavior",5 in particular the Haldane–

Shastry model is integrable.11,12

In the case of cluster or molecular magnets both elements, long-range interactions

and anisotropy are crucial to understand its magnetic properties.10 In the case of
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molecular magnets, the adiabatic change of the magnetization at low temperature is

governed by the discrete energy-level structure, in this sense the adiabatic change of

the magnetization requires some interactions that produce gaps between the lowest

lying energy levels, i.e. interactions that do not commute with the magnetization.10 It

is in this regime, when the physical behavior is governed for what happens near a level

crossing, that the dipolar interaction becomes relevant, otherwise the spin Hamil-

tonian is dominated by the isotropic exchange between NNs.

In this paper, we address the problem of how the entanglement is shared between

spins arranged in a polygon, with both long-range interactions and anisotropy. A well

known model Hamiltonian that has both features is the dipolar one, where the an-

tiferromagnetic isotropic exchange term decays with the distance and the anisotropic

term is ferromagnetic. To study the e®ect of the anisotropy, a parameter that reg-

ulates the strength of this interaction is introduced. Changing this parameter enables

us to go from a completely isotropic model to the dipolar one, and results in a richer

phase space. The arrangement of the spins makes natural to impose periodic

boundary conditions, this not only precludes the apparition of border e®ects but

stabilizes the results when rings of di®erent number of spins are analyzed. The model

can be studied with, or without, an external transverse ¯eld.

The anisotropic interaction mostly considered, in studies focusing in the rela-

tionship between entanglement and anisotropy, is the Dzyaloshinskii–Moriya (DM)

interaction. Antisymmetric superexchange interactions in spin Hamiltonians which

describe quantum antiferromagnetic systems were introduced phenomenologically by

Dzyaloshinskii.13 Moriya showed that such interactions arise naturally in perturba-

tion theory due to the spin-orbit coupling in magnetic systems with low symmetry.14

Quantum information techniques have been used to characterize the quantum crit-

ical properties of di®erent models with DM interactions since the work by Jafari

et al.,15 where the scaling properties of the entanglement on an antiferromagnetic

Ising model with DM interaction were obtained. The concurrence between next NNs

and between end spins in a one-dimensional (1D) frustrated ferromagnetic model

with DM interactions,16 the entanglement entropy of an antiferromagnetic XY

model with DM interactions,17 the ground state ¯delity in bond-alternative Ising

chains with DM interactions,18 and the concurrence of ¯nite Ising chains with anti-

ferromagnetic NNs interactions19 are good examples of the e®orts made to analyze

the e®ect of anisotropic interactions over the entanglement content of the ground

state of quantum spin chains models. Despite the di®erences between the DM in-

teraction and the dipolar anisotropy term, we will compare our results with those

available in the literature whenever that is possible.

Another issue that leads us to study a model with long-range interaction and

anisotropy is the possibility of ¯nding a system which presents (varying an adequate

parameter) entanglement with di®erent numbers of neighbors. Most commonly, in

magnetic spin models the number of spins that share entanglement with a given spin

is a constant for the ground state over the parameter space. For instance, the Ising

Entanglement in a spin ring with anisotropic interactions
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model with transverse ¯eld presents entanglement between nearest and next-NNs in

the whole parameter space, which is given by the exchange interaction and the

external ¯eld.20 Some particular models, ¯nite spin rings with di®erent non-collinear

anisotropic Ising interaction, show that changing the strength of an external mag-

netic ¯eld applied to it enables to select the number of neighbors that share entan-

glement with a given spin.21

The model is presented in the next section, together with some information on its

spectral properties. In Sec. 3, we deal with the pair, or two-site, entanglement. We pay

particular attention to the relationship between the concurrence of two-spin sub-

systems and the two-site spin-correlation functions, trying to emphasize the qualita-

tive aspects that seem to be present in all the models with anisotropic interactions.

Both Secs. 2 and 3, deal with the model without external ¯eld, while the behavior of

the pair entanglement when an external constant ¯eld is applied is the subject of

Sec. 4. In the concluding section, Sec. 5, we highlight those features observed which we

consider interesting and provide an argument explaining the short range of the pair

entanglement in the ground state in models with DM interactions. Besides, we brie°y

discuss in which kind of systems and parameter range, it can be plausible to observe

two-spin entanglement with a behavior similar to the one described in Sec. 4.

2. The model

We consider the following slightly modi¯ed version of the dipolar Hamiltonian

H ¼
X
i<j

�i � �j
r3ij

� 3f
�i � rij
� �

�j � rij
� �

r5ij

" #
� h

X
i

� z
i ; ð1Þ

where ��i , � ¼ x; y; z are the Pauli matrices, rij is the distance between spins i and j,

the spins are arranged in a regular polygon which lies in the x� y plane, rij is the

vector that goes from spin i to spin j, h is an external magnetic ¯eld that points in the

ẑ direction and f is the anisotropy parameter that enables to change from an ani-

sotropic model (f ¼ 1 is the dipolar model) to an isotropic one (f ¼ 0 is a generalized

Heisenberg model, which has been studied in Gaudiano et al.5). Through the paper,

the distance between NNs is equal to one. Obviously the number of vertices of the

polygon is equal to the number of spins, N . Despite the rather particular dependence

on the distance, the Hamiltonian Eq. (1) has many of the elements present in

Hamiltonians describing molecular magnets: anisotropy, long-range interactions and,

at least for a portion of the phase space, antiferromagnetism.

The Hamiltonian in Eq. (1) is dimensionless so the external ¯eld h is measured in

terms of the gyromagnetic ratio of each spin and the cubic power of the NN distance.

As we want to focus in general physical features that can be derived for systems with

such Hamiltonian we do not consider a speci¯c set of interaction parameters. Any-

way, later on, we will discuss possible realistic experimental setups to implement the

Hamiltonian in Eq. (1).
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The energy spectrum and the eigenfunctions can be obtained numerically for small

values of N up to 11, without any special assumptions. Anyway, as we are interested

in ¯nite rings we will present results mostly for N ¼ 10.

Figure 1 shows the ¯rst four energy levels as a function of f for N ¼ 8. It is very

noticeable the abrupt change of behavior around f ’ 0:548. For f > 0:548 the

ground state is not degenerate, but it is very close to the ¯rst excited state. The same

can be said of the second and the third excited states, they form an approximate

multiplet. The inset of Fig. 1 shows in detail the structure of the lowest-lying energy

levels near this critical point. A remarkable fact about the spectrum of the model is

that its eigenvalues are only single or doubly degenerated, for even N both degen-

eracies are present, but for odd N all the eigenvalues are doubly degenerated. For odd

N the double degeneracy of each level is a consequence of the Kramers degeneracy

theorem,22 nevertheless it is interesting that a rather simple anisotropic interaction is

able to broke all the symmetries that produce a highly degenerate spectrum for the

isotropic (f ¼ 0 case) (see, for example, the work of Gaudiano et al.5).

The double degeneracy of the eigenvalues does not introduce further di±culties in

order to analyze even or odd polygons, but it must be taken into account if the

entanglement of the state were to be calculated (for a discussion about the calculation

of the entanglement of a degenerate eigen-energy see Gaudiano et al.5).

Despite that in this work, we do not attempt to completely characterize the phase

transition associated to this critical point studying the behavior of the model for

N ! 1, it is possible to correlate the change of behavior of the ground state energy

with the physics of the model studying the spin correlation functions.

0.548 0.55
-4.38

-4.37

-4.36

-4.35

0 0.2 0.4 0.6 0.8 1
f

-7

-6.5

-6

-5.5

-5

-4.5

-4

E

Fig. 1. The four lowest lying eigenvalues versus the anisotropy parameter f for a chain with N ¼ 8 spins.

The ground state energy (solid black line) shows a sharp cusp near f � 0:549. The cusp sharpens when the
chain size is increased. The inset shows a detailed view of the zone near the cusp of the ground state energy,

where a number of avoided-crossings between the di®erent eigenvalues can be appreciated.
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Figure 2 shows the behavior of the NN spin correlation function Cxxði; iþ 1Þ ¼
h�x

i �
x
iþ1i as a function of f and di®erent polygon size, as we have assumed periodical

boundary conditions the spin correlation function does not depend on i. For N � 5

there is a transition fromnegative values of the spin correlation functionCxxði; iþ 1Þ ¼
h�x

i �
x
iþ1i to positive ones. Since the transition is rather sharp it is possible to ¯nd a well

de¯ned critical point, f N
c1 , which depends on the chain size N and is given by the

solution of Cxxði; iþ 1Þjfc1 ¼ 0. For small values of N there are odd–even e®ects that

can be appreciated from Fig. 2, for instance, f 10
c1 > f 8

c1 > f 9
c1 > f 6

c1 > f 7
c1. These fea-

tures become less and less noticeable when the chain size increases.

The abrupt change observed in the spin correlation function can be understood as

follows: for any value of N , and for f small enough the model must behave as an

antiferromagnetic system, i.e. the isotropic antiferromagnetic term in the Hamilto-

nian dictates the behavior of the system. For large enough f and N the anisotropic

ferromagnetic term of the Hamiltonian competes e±ciently with the antiferromag-

netic one producing the change of behavior observed around f N
c1 . It is clear that at c1

the ground state presents clear features of a ¯nite-size precursor of a phase transition.

Interestingly, there is another value of f that needs a closer look because the

degeneracy of the ground state energy at this point is di®erent than for any other

value of f . This point corresponds to f ¼ 2=3 ¼ f2=3, which is a point of high sym-

metry of the Hamiltonian, and at this point the ground state becomes degenerate for

any value of N . As the ground state and the ¯rst excited state are nearly degenerate

around f2=3 it is rather di±cult to discern if the critical point is associated to a

crossings of levels, or if the two levels are degenerate just at f2=3 without crossing each

other. The presence of f ¼ 2=3 is not revealed by the spin correlation function

h�x
i �

x
iþ1i, but for h�z

i�
z
iþ1i which changes its sign at f2=3. Figure 3 shows the behavior

of this spin correlation function near f ¼ 2=3. Since the eigenvalues and the

0.4 0.5 0.6
f

-0.6

-0.4

-0.2

0

0.2

0.4

C
xx

(i
,i+

1)

n=10
n=9
n=8
n=7
n=6

Fig. 2. The spin correlation function versus the anisotropy parameter f calculated for several chain

lengths. The transitions from negative to positive values of the spin correlation function signals the

presence of a critical point f N
c1 .
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eigenvectors of the Hamiltonian depend analytically on f , it is possible to discern

between the possibility of a crossing or another situation just calculating the inner

product between eigen-states at both sides of the point f ¼ 2=3. Calling  �
0 and  �

1

to the ground and ¯rst excited state, respectively, to the left of f ¼ 2=3, and  þ
0 ,  

þ
1

to the ground and ¯rst excited state to the right, in can be obtained numerically that

ð �
0 ;  

þ
0 Þ ’ 1 and ð �

1 ;  
þ
1 Þ ’ 1 too, which lead us to conclude that the point f ¼ 2=3

does not correspond to a crossing of eigenvalues.

The results presented above can be summarized as follows. There are two points

f N
c1 and f2=3, that separate the segment f 2 ð0; 1� in three parts

for f 2 ð0; f N
c1Þ ! �x

i �
x
iþ1h i < 0 and �z

i�
z
iþ1h i < 0

for f 2 ðf N
c1 ; f2=3Þ ! �x

i �
x
iþ1h i > 0 and � z

i�
z
iþ1h i < 0

for f 2 f2=3; 1
� � ! �x

i �
x
iþ1h i > 0 and � z

i�
z
iþ1h i > 0: ð2Þ

The transitions between the regions can be further characterized studying the

entanglement of the ground state via the concurrence23 and the ¯delity as has been

proposed by Zanardi.24 We want to point out here that f ¼ 0 is a singular point, since

the degeneracies of the spectrum for f ¼ 0 are quite di®erent from the degeneracies of

the model with f 6¼ 0. As we have already mentioned above, for f 6¼ 0 the degener-

acies present in the spectrum are one and two, conversely the spectrum of the model

with f ¼ 0 is highly degenerate, see Gaudiano et al.5

3. Entanglement for Zero External Field

The ¯rst work to point out that quantum information quantities such as the con-

currence are well suited to study quantum phase transitions was done by Osterloh

et al. in 2002.20 They dealt with the bipartite entanglement shared between the spins

0.55 0.6 0.65 0.7 0.75 0.8
f

-0.04

-0.03

-0.02

-0.01

0

0.01

C
zz

(1,2)

Fig. 3. The spin correlation function Czzði; iþ 1Þ versus the anisotropy parameter f . The vertical red line

corresponds to f ¼ 2=3.
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of an Ising model with transversal ¯eld. Using ¯nite size scaling methods they cal-

culated the critical parameter and critical exponent from the derivative of the con-

currence. Anyway, in their work there was no indication of why the quantity to be

analyzed was the derivative of the concurrence (except that the concurrence was a

¯nite quantity for all values of the external ¯eld).

The relationship between bipartite entanglement and quantum phase transitions

was clari¯ed, at least for quantum spin models, by the work of Wu et al.25 More

recently, Zanardi et al. have proposed the ground state overlap as a good quantity to

reveal the presence of critical behavior in quantum spin models.26 The idea behind

both approaches is simple: some quantity shows non-analytic behavior when a

quantum phase transition happens. Moreover, the work of Wu et al. gives precisely

the recipe of which quantity shows the non-analytic behavior: if the quantum phase

transition is of ¯rst-order the entanglement measure used to obtain the bipartite

entanglement is a discontinuous function, in the case of a second-order transition the

derivative of the entanglement measure becomes the non-analytical function to be

considered.

3.1. Concurrence

Figure 4 shows the behavior of the concurrence in the ground state for NNs spins as a

function of f for several values of N . The change of behavior around f ’ 0:548 is quite

noticeable. For f ! 0 the concurrence goes to � 0:41 which is consistent with the

concurrence calculated in Ref. 5 for an isotropic model (the isotropic model corre-

sponds exactly to the model analyzed in this paper with f ¼ 0). The NNs concurrence

is rather steep near f ’ f N
c1 , and, probably, discontinuous in the limit of N ! 1.

Anyway, here we do not attempt to characterize the critical behavior for larger

systems. A more striking result appears studying the next nearest (and beyond)

0 0.2 0.4 0.6 0.8 1
f

0

0.1

0.2

0.3

0.4

0.5

C
(i

,i+
1)

0.555 0.56 0.565
0

0.05

0.1

Fig. 4. The NN concurrence versus f for N ¼ 10. The curve shows a very steep behavior near f ’ 0:558.

The inset shows a zoom of the region near the critical pointf ’ 0:558.
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concurrence. For f < f N
c1 (in the antiferromagnetic phase) the concurrence is di®er-

ent from zero only for NNs bipartite subsystems. For f > f N
c1 the concurrence is

di®erent from zero for all distances, as shows Fig. 5.

3.2. Ground state overlap

As has been shown by Zanardi and Paunović,26 and Cozzini et al.27 the overlap

function jh ðf þ �fÞj ðf � �fÞij is a good quantity to detect the presence of quan-

tum critical points and transitions, where f is the parameter of the Hamiltonian of the

system that drives the transition,  ðfÞ is the ground state of the system, and �f is

small enough. For a good quantity, it is understood that h ðf þ �fÞj ðf � �fÞi is a
smooth function of f and �f. The method detects di®erent kinds of models and

quantum phase transitions, for example for the Dicke model and the XY spin chain

(see Ref. 26) and for second-order matrix product state quantum phase transitions

(see Ref. 27).

Figure 6 shows the ground state overlap function near the critical point f ’ f N
c1 ,

for N ¼ 8. The overlap is shown in the small region around f ’ f N
c1 where it di®ers

appreciably from one, this region decreases when � ! 0 as can be seen from the

several curves shown in Fig. 6, which correspond to di®erent values of �f. The overlap

changes from values around one to values close to zero rather suddenly, and remains

very small (� 10�13) for an interval. The behavior of the overlap observed in Fig. 6 is

slightly di®erent from the one observed in, for example, the works by Zanardi26 and

Cozzini.27 They analyzed systems with larger number of components than the ones

considered in this work, resulting in a rather smooth behavior of the overlap in

0.55 0.56

f

0

0.04

0.08

C

C(i,i+1)
C(i,i+2)
C(i,i+3)
C(i,i+4)

Fig. 5. The concurrence Cði; iþ jÞ versus the parameter f , for j ¼ 1; 2; 3 and 4. The maximum value of

the concurrence for neighbors beyond the nearest one is rather small when compared with the NN con-

currence in the antiferromagnetic region, f < f 10
c1 . For f > f 10

c1 the entanglement shared with the di®erent

neighbors is basically the same, while the concurrence Cði; iþ jÞ � 0 when f < f 10
c1 for the second, third

and fourth neighbors.
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contradistinction with the \box-shaped" curves shown in Fig. 6. It is clear that for

�f ! 0 the overlap goes to zero in a smaller and smaller region around the critical

point, pointing to it more and more precisely.

It is worth to point that the critical points obtained using the ground state

overlap, the spin correlation function and the concurrence are the same, for ¯xed N ,

up to a relative error of order 10�4:

4. Entanglement with an External Applied Field

As it has been shown in Sec. 3, the model shows a transition from short ranged

entanglement, with only NNs sharing entanglement, to long ranged entanglement,

where a given spin shares almost the same amount of entanglement with all its

neighbors, see Fig. 5. We have found this feature for all the spin chain sizes (up to

N ¼ 12) analyzed. On the other hand, this long-range entanglement becomes weaker

and weaker as the chain length increases.

In this Section, we analyze the e®ect of an external magnetic ¯eld h over the

entanglement, we look for regions of the ðf;hÞ space in which a given spin shares

entanglement with its neighbors. Our motivation comes from certain tasks in

quantum information in which it is necessary to control the entanglement between

di®erent pairs of spins. Of course, for an eigenstate of a translationally invariant spin

chain, if a spin at site i shares entanglement with a spin at site j then all pairs

separated by distance ji� jj do share entanglement too. Other point of interest is

how the entanglement decays with the distance.

We consider an external magnetic ¯eld applied in the z direction, i.e. perpendic-

ular to the plane in which lies the ring of spins. In this case, it is clear that for large

enough external magnetic ¯eld the quantum state should become disentangled since

the spins should tend to be aligned with the ¯eld if this is large enough. For ¯xed f in

0.5 0.52 0.54 0.56 0.58 0.6
f

0

0.2

0.4

0.6

0.8
|<

ψ
(f

+
δf

)|ψ
(f

-δ
f)

>
|

δf = 0.01
δf = 0.005
δf = 0.001
δf = 0.0005

Fig. 6. The ground state overlap versus f , for N ¼ 8 and di®erent increments �f. The overlap is ap-

proximately equal to one except near f N
c1 .
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the ferromagnetic region, the NN concurrence should behave very much alike as the

NN concurrence of the Ising model with transverse ¯eld.20 As in Sec. 3, we proceed

¯rst to analyze the behavior of the NN spin correlation function h�x
i �

x
iþ1i and then

the concurrence as a function of both f and h.

Figure 7 shows the NN spin correlation function as a function of f and h. The

¯gure shows clearly that for f > f N
c1 , which corresponds to the ferromagnetic region

for the model without magnetic ¯eld, the spin correlation function smoothly decays

to zero when h grows and for f ¯xed, while for f < f N
c1 , which correspond to the

antiferromagnetic region, the spin correlation function proceeds through a number of

steps until its value reaches zero. This steps are very similar to those observed in the

ferromagnetic XX model with NN exchange interaction and transverse external

¯eld28 or the Heisenberg model in an external ¯eld.29 The steps are °at near f ¼ 0

and slightly curved near the critical point f N
c1 . We call f N

c1ðhÞ the curve that separates
the region in which h�x

i �
x
iþ1i < 0 from the region in which h�x

i �
x
iþ1i > 0. Figure 8

shows several cuts of the surface depicted in Fig. 7. The cuts correspond to di®erent

values of the external ¯eld, and the steps in the spin correlation function are clearly

visible for h ¼ 5; 6; 7; 8.

Figure 9 shows the NN concurrence as a function of f and h. As the concurrence is

a positive de¯nite quantity, the transition between the ferro and antiferro region,

given by the curve f N
c1ðhÞ is mostly signaled by the steep change in the value of the

concurrence. In the antiferromagnetic region, the steps associated to the steps of the

spin correlation function are quite noticeable. On the other hand fo ¯xed f in the ferro

region the concurrence is a smooth function with a single maximum.

The main di®erence between the ferromagnetic and antiferromagnetic regions are

best put out by looking at the behavior of Cði; iþ 1Þ, Cði; iþ 2Þ, Cði; iþ 3Þ and so on

10-0.61
1

-0.41

8 0.8

-0.22

6 0.6

-0.025

4

0.17

0.4h

C
_{

xx
}(

i,i
+1

)

0.36

2 0.2
f

0 0

Fig. 7. The spin correlation function h�x
i �

x
iþ1i versus the anisotropy parameter and the strength of the

external magnetic ¯eld for a spin chain with N ¼ 8. The plane h ¼ 0 shows the curve already shown in
Fig. 2. For weak enough magnetic ¯elds the ferromagnetic and antiferromagnetic zones can be easily

appreciated, the spin correlation function is positive or negative, respectively.
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(Cði; iþ jÞ stands for the concurrence between spins separated by distance j). These

concurrences are shown in Fig. 10. As can be appreciated there is a small region in the

ðf;hÞ space where the concurrences Cði; iþ jÞ are all di®erent from zero. In the

antiferromagnetic region (which can be easily identi¯ed by the presence of the well

de¯ned steps) the number of neighbors that share entanglement with a given spin can

be tuned by changing f or h. This number can be equal to 1, 2 or bN=2c, where bxc
stands for the the largest integer not greater than x, i.e. is the °oor function.

Fig. 9. The NN concurrence versus f and h. The ferromagnetic region can be clearly appreciated as the

hill-like surface that appears for f large enough. For f close to zero there is a number of steps that signals

the antiferromagnetic behavior and whose height decreases when the magnetic ¯eld strength increases.

0 0.2 0.4 0.6 0.8 1
f

-0.6

-0.4

-0.2

0

0.2

C
xx

(i,i+1)

h=0
h=1
h=3
h=4
h=5
h=6
h=7
h=8

Fig. 8. The NN spin correlation function versus f for di®erent values of the external ¯eld. Near f ¼ 1 the

curves are, from top to bottom, h ¼ 0; 1; 3; 4; 5; 6; 7; 8. For large enough values of the external ¯elds the spin
correlation shows the steps characteristics of antiferromagnetic models as the XX model. Inside each step

the spin correlation changes its value very slowly, but it is not a constant function.
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On the other hand, the long ranged entanglement found in the ferromagnetic

region for h ¼ 0, see Fig. 5, also can be found for h 6¼ 0 in a very small region of the

ðf;hÞ space.

5. Discussion and Conclusions

The spin correlation function steps found in the antiferromagnetic region are quite

similar to the ones founded in frustrated two-leg s ¼ 1
2 ladder models.30,31 Besides,

there are other models which have eigen-states where a given spin is equally entan-

gled with a number of neighbors, for example the frustrated magnetic model in a

kagom�e lattice, see Ref. 31.

Given the similarities stated in the paragraph above, it is natural to ask what

other similar traits can be found between the model analyzed in this work and the

ones found in the literature. There is a problem to start with the comparisons: most of

the models previously analyzed focus on, as has been already mentioned in the in-

troduction, anisotropic terms DM-like. It is well known that the DM anisotropy

(a) (b)

(c) (d)

Fig. 10. (Color online) Gray scale map of the concurrences Cði; iþ jÞ for j ¼ 1; 2; 3 and 4 (panel (a), (b),

(c) and (d), respectively) in the ðf;hÞ space. The darker zones correspond to regions with larger entan-

glement. It is rather easy to identify the region where the entanglement is not zero for di®erent neighbors,
in particular it is appreciable the region where a given spin shares bipartite entanglement with all its

neighbors. This region corresponds to the zone where Cði; iþ 4Þ 6¼ 0.
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induces a quantum phase transition when it is added to NN models and depending

the strength of the DM term the ground state corresponds to a chiral phase or an

antiferromagnetic one.15 So, we proceeded to explore two other models, (i) a model

with Hamiltonian given by Eq. (1) but with f < 0, and (ii) a model with Hamiltonian

H ¼
X
i<j

¾i � ¾j

r3ij
�D

X
i

�x
i �

y
iþ1 � � y

i�
y
iþ1

� �
; ð3Þ

i.e. an isotropic Heisenberg-like term with a DM anisotropy. To avoid reiterative

information we do not include further ¯gures for these models, and proceed to

comment the results.

The model with \antiferromagnetic dipolar interaction", i.e. the case (a) of the

above paragraph, does not show any critical points for f < 0 and the NN spin cor-

relation function and concurrence are smooth non-increasing functions of jfj. This is
also the case in the model with a DM term, except for a few critical points the NN

spin correlation function and concurrence are smooth non-increasing functions of D.

One of this critical points is related to the transition from a chiral phase to an

antiferromagnetic one.15 Besides, if an external magnetic ¯eld h is applied, the NN

functions again show steps whose height decreases when the strength of the ¯eld is

increased, quite similarly to the features observed in the model of Eq. (1). A major

di®erence between the dipolar model and the model with DM interactions appears in

the behavior of the concurrences beyond the NN. The model with DM interactions

and external ¯eld does not show bipartite entanglement beyond the NN, i.e.

Cði; iþ jÞ ¼ 0, for j > 1 and for all the values of h and D explored. This is compatible

with the ¯ndings shown in Ref. 30.

It is interesting to ponder in what kind of experimental setups and parameter

regions it is plausible to study some of the entanglement scenarios depicted in this

work. In a typical Nuclear Magnetic Resonance setup the magnetic dipole–dipole

interaction is on the order of the tens of KHz, while the Zeeman term owed to the

external magnetic ¯eld is on the order of tens of MHz for a magnetic ¯eld strength of

several Teslas. So, at least in principle, the scenario depicted in Fig. 7 could be

observed for ¯elds of 10�2 or 10�3 Teslas. Ultracold atomic gases in optical lattices

have been used to simulate condensed matter systems and, in particular, spin

Hamiltonians. In these gases, the long-range interaction strength is low enough to

enable the manipulation of the quantum states with ¯eld strengths of 10�2 or 10�3

Teslas. We estimate that the aforementioned scenario can be found in systems where

the Zeeman energy of one magnetic dipole is similar to the dipolar interaction be-

tween NNs.

All in all, it can be said that the most immediate e®ect of the anisotropy smoothly

reduce the NN concurrence value (with respect to the one observed in the isotropic

case), regardless of the type of anisotropy involved or its range.

Anyway, a word of caution must be mentioned. Since we studied the model de-

scribed by Eq. (1) in rings, when the number of sites in the ring increases and the ring
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becomes more like a chain the distance between pairs of spins beyond the NN

changes, as well as the angles between successive segments of the chain. It is rea-

sonable to expect that the di®erent quantities studied are smooth functions of the

distances between neighbors and the angles between successive segments of the chain.

The properties of the bipartite entanglement beyond NNs in two-dimensional lattices

with di®erent coordination numbers is currently under study.
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