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Abstract

We consider polynomials Pn orthogonal with respect to the weight Jν on [0,∞),
where Jν is the Bessel function of order ν. Asheim and Huybrechs considered these
polynomials in connection with complex Gaussian quadrature for oscillatory inte-
grals. They observed that the zeros are complex and accumulate as n → ∞ near
the vertical line Re z = νπ

2 . We prove this fact for the case 0 ≤ ν ≤ 1/2 from strong
asymptotic formulas that we derive for the polynomials Pn in the complex plane.
Our main tool is the Riemann-Hilbert problem for orthogonal polynomials, suitably
modified to cover the present situation, and the Deift-Zhou steepest descent method.
A major part of the work is devoted to the construction of a local parametrix at the
origin, for which we give an existence proof that only works for ν ≤ 1/2.

1 Introduction

In this paper we are interested in the polynomials Pn that are orthogonal with respect
to the weight function Jν on [0,∞), where Jν is the Bessel function of order ν ≥ 0. The
Bessel function is oscillatory with an amplitude that decays like O(x−1/2) as x → ∞,
and therefore the moments ∫ ∞

0
xjJν(x)dx

do not exist. It follows that the polynomials Pn can not be defined by the usual orthog-
onality property ∫ ∞

0
Pn(x)xjJν(x)dx = 0, j = 0, 1, . . . , n− 1. (1.1)
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Asheim and Huybrechs [1] introduced the polynomials Pn via a regularization of the
weight with an exponential factor. For each s > 0, they consider the monic polynomial
Pn(x; s) of degree n that is orthogonal with respect to the weight function Jν(x)e−sx, in
the following sense:∫ ∞

0
Pn(x; s)xjJν(x)e−sxdx = 0, j = 0, 1, . . . , n− 1, (1.2)

and they take the limit
Pn(x) = lim

s→0+
Pn(x; s), (1.3)

provided that the limit exists. Since the weight function Jν(x)e−sx changes sign on the
positive real axis, there is actually no guarantee for existence or uniqueness of Pn(x; s).
For the limit (1.3) we therefore also have to assume that Pn(x; s) exists and is unique
for n large enough.

The polynomials Pn can alternatively be defined by the moments, since the limiting
moments for the Bessel function of order ν ≥ 0 are known, namely

mj := lim
s→0+

∫ ∞
0

xjJν(x)e−sxdx = 2j
Γ(1+ν+j2 )

Γ(1+ν−j2 )
, (1.4)

see [1, section 3.4]. Thus we have the determinantal formula (which is familiar from the
general theory of orthogonal polynomials)

Pn(x) =
1

∆n

∣∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mn−1 mn

m1 m2 · · · mn mn+1
...

...
. . .

...
...

mn−1 mn · · · m2n−2 m2n−1
1 x · · · xn−1 xn

∣∣∣∣∣∣∣∣∣∣∣
(1.5)

with a Hankel determinant ∆n = det [mi+j ]
n−1
i,j=0. The polynomial Pn thus exists if and

only if ∆n 6= 0.
Asheim and Huybrechs [1] analyze Gaussian quadrature rules with oscillatory weight

functions, such as complex exponentials, Airy and Bessel functions. The nodes for the
Gaussian quadrature rule are the zeros of the orthogonal polynomials. Since the weight
is not real and positive on the interval of orthogonality there is a problem of existence
and uniqueness of the orthogonal polynomials. In addition, even when the orthogonal
polynomial exists, its zeros may not be real, and they may distribute themselves on
some curve or union of curves in the complex plane as the degree tends to infinity.
Examples of this kind of behavior are known in the literature, for instance with Laguerre
or Jacobi polynomials with non–standard parameters, see [2], [14] and [16], and for
complex exponentials [4].

In the present case, with orthogonality defined as (1.2)–(1.3), it was shown in [1,
Theorem 3.5] that the zeros of Pn are on the imaginary axis in case ν = 0 and n is even.
Namely, if t1, . . . , tn/2 are the zeros of the orthogonal polynomial of degree n/2 (where
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Figure 1: Plot of the zeros of the polynomials Pn for n = 200 and ν = 0.25 (left), ν = 0.5
(right).

n is even) with respect to the positive weight K0(
√
t)t−1/2 on [0,∞), then the zeros of

Pn are ±i√t1, . . .± i
√
tn/2. Here K0 is the modified Bessel function of the second kind.

For ν > 0 the zeros of Pn are not on the imaginary axis, as is clear from the illus-
trations given in [1], see also the Figures 1 and 2. The computations have been carried
out in Maple, using extended precision. From these numerical experiments Asheim and
Huybrechs [1] concluded that the zeros seem to cluster along the vertical line Re z = νπ

2 .
More precisely, for ν ≤ 1

2 , one sees in Figure 1 that the vast majority of zeros are near
a vertical line, which is indeed at Re z = νπ

2 .
For ν > 1

2 one sees in Figure 2 that the zeros with large imaginary part are close
to the vertical line Re z = νπ

2 , although they are not as close to the vertical line as the
zeros in Figure 1.

We were intrigued by these figures and the aim of this paper is to give a partial
explanation of the observed behavior of zeros. We are able to analyze the polynomials
Pn when 0 ≤ ν ≤ 1

2 in the large n limit by means of a Riemann-Hilbert analysis. The
result is that we indeed find that the real parts of most of the zeros tend to νπ

2 as n→∞.
We are not able to handle the case ν > 1

2 , since in this case our method to construct
a local parametrix at the origin fails. This difficulty may very well be related to the
different behavior of the zeros in the case ν > 1

2 . It would be very interesting to analyze
this case as well. From the figures it seems that there is a limiting curve for the scaled
zeros, if we divide the imaginary parts of the zeros by n and keeping the real parts fixed.
This limiting curve is a vertical line segment if ν ≤ 1

2 (this will follow from our results),
but we do not know the nature of this curve if ν > 1

2 .
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Figure 2: Plot of the zeros of the polynomials Pn for n = 200 and ν = 0.8 (left), ν = 1.3
(right).

2 Statement of main results

2.1 Convergence of zeros

Our first result is about the weak limit of zeros.

Theorem 2.1. Let 0 < ν ≤ 1
2 . Then the polynomials Pn exist for n large enough.

In addition, the zeros of Pn(inπz) all tend to the interval [−1, 1] and have the limiting
density

ψ(x) =
1

π
log

1 +
√

1− x2
|x| , x ∈ [−1, 1]. (2.1)

The convergence of zeros to the limiting density (2.1) is in the sense of weak con-
vergence of normalized zero counting measures. This means that if z1,n, . . . , zn,n denote
the n zeros of Pn, then

lim
n→∞

1

n

n∑
j=1

δ zj,n
iπn

= ψ(x)dx

in the sense of weak∗ convergence of probability measures. Equivalently, we have

lim
n→∞

1

n

n∑
j=1

f
(zj,n
iπn

)
=

∫ 1

−1
f(x)ψ(x)dx

for every function f that is defined and continuous in a neighborhood of [−1, 1] in the
complex plane.

The weak limit of zeros, if we rescale them by a factor iπn, exists and does not
depend on the value of ν. Theorem 2.1 is known to hold for ν = 0, and we believe that
it also holds true for ν > 1

2 .
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Regarding the real parts of the zeros of Pn as n→∞, we have the following result.

Theorem 2.2. Let 0 < ν ≤ 1/2, and let δ > 0 be fixed. Then there exist n0 ∈ N
and C > 0 such that for n ≥ n0, every zero zj,n of Pn outside the disks D(0, nδ) and
D(±nπi, nδ) satisfies ∣∣∣Re zj,n −

νπ

2

∣∣∣ ≤ Cεn, (2.2)

where

εn =
nν−1/2

(log n)ν+1/2
. (2.3)

Remark 2.3. For each fixed δ > 0 there are approximately εn zeros of Pn in the disks
D(0, nδ) and D(±nπi, nδ) as n is large, where

ε =

∫ −1+δ/π
−1

ψ(x)dx+

∫ δ/π

−δ/π
ψ(x)dx+

∫ 1

1−δ/π
ψ(x)dx.

This is a consequence of the weak convergence of zeros, see Theorem 2.1.
Clearly, ε → 0 as δ → 0, and so it follows from Theorem 2.2 by taking δ arbitrarily

small that for all but o(n) zeros one has that the real part tends to νπ
2 as n→∞.

Remark 2.4. We do not have information about the zeros in the disk D(0, nδ). In our
Riemann-Hilbert analysis we prove the existence of a local parametrix around the origin,
but we do not have an explicit construction with special functions. Therefore we cannot
analyze the zeros near the origin.

On the other hand, we do have potential access to the extreme zeros in the disks
D(±nπi, nδ) since the asymptotics of the polynomials Pn(inπz) is given in terms of Airy
functions. From the figures it seems that the result (2.2) also holds for the extreme zeros,
but we omit this asymptotic result in Theorem 2.6, since it does not follow clearly from
the construction of the local parametrices in this case.

2.2 Orthogonality of Pn(inπz) and discussion

Theorems 2.1 and 2.2 follow from strong asymptotic formulas for the rescaled polyno-
mials

P̃n(z) = (inπ)−nPn(inπz). (2.4)

These polynomials are orthogonal polynomials on the real line, but with a complex
weight function.

Proposition 2.5. Let 0 ≤ ν < 1. Then the polynomial P̃n is the monic orthogonal
polynomial of degree n for the weight{

eνπi/2Kν(−nπx), for x < 0,

e−νπi/2Kν(nπx), for x > 0,
(2.5)

on the real line. That is,∫ ∞
−∞

P̃n(z)xje− sgn(x)νπi/2Kν(nπ|x|)dx = 0, j = 0, 1 . . . , n− 1. (2.6)
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The function Kν in (2.5) is the modified Bessel function of second kind of order ν.
Proposition 2.5 is proved in Section 3.3.

Since Kν(x) ∼ x−ν as x → 0, see for instance [17, 10.30.2], the condition ν < 1 is
necessary for the convergence of the integral (2.6) with j = 0. In case ν = 0 then (2.5)
is the real and positive weight function K0(nπ|x|). Then P̃n has all its zeros on the real
line, and consequently the zeros of Pn are on the imaginary axis. This way we recover
the result of [1].

For ν = 1/2, the modified Bessel function reduces to an elementary function and the
weight function (2.5) is {

eπi/4(2n|x|)−1/2e−nπ|x|, x < 0,

e−πi/4(2n|x|)−1/2e−nπ|x|, x > 0.
(2.7)

The weight (2.7) has three components:

• An exponential varying weight e−nπ|x| with a potential function V (x) = π|x| that
is convex but non-smooth at the origin.

• A square root singularity at the origin |x|−1/2.
• A complex phase factor e±πi/4 with a jump discontinuity at the origin.

The exponential varying weight determines the limiting density (2.1). Indeed we
have that ψ(x)dx is the minimizer of the logarithmic energy in external field π|x| among
probability measures on the real line, see [19], and as is well-known, the zeros of the
orthogonal polynomials with varying weight function e−nπ|x| have ψ as limiting density.
This continues to be the case for the weights (2.5) as is claimed by Theorem 2.1. A
Riemann-Hilbert analysis for the weight e−nπ|x|, and other Freud weights, is in [13].

The square root singularity and the jump discontinuity are known as Fisher-Hartwig
singularities in the theory of Toeplitz determinants. There is much recent progress in
the understanding of Toeplitz and Hankel determinants with such singularities [7]. This
is also related to the asymptotics of the corresponding orthogonal polynomials, whose
local behavior near a Fisher-Hartwig singularity is described with the aid of confluent
hypergeometric functions, see the works of Deift, Its and Krasovsky [6, 12] and also
[10, 11].

We are facing the complication that the Fisher-Hartwig singularity is combined with
a logarithmic divergence of the density ψ at the origin, see (2.1). In our Riemann-Hilbert
analysis we were not able to construct a local parametrix with special functions, and we
had to resort to an existence proof, where we used ideas from [13] and [3], although our
proof is at the technical level different from either of these papers.

2.3 Asymptotic behavior

Away from the region where the zeros of Pn(z) lie, the asymptotic behavior is governed
by the g function associated with the limiting density ψ, that is,

g(z) =

∫ 1

−1
log(z − x)ψ(x)dx, (2.8)
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where the density ψ is given by (2.1). Then g is defined and analytic for z ∈ C\ (−∞, 1].
We prove the following asymptotic behavior of Pn in the region away from the zeros.

We continue to use εn as defined in (2.3).

Theorem 2.6. Let 0 < ν ≤ 1/2. Then the polynomial Pn exists and is unique for suf-
ficiently large n. Moreover, the polynomial P̃n given by (2.4) has the following behavior
as n→∞:

P̃n(z) = eng(z)

(
z(z + (z2 − 1)1/2)

2(z2 − 1)

)1/4(
(z2 − 1)1/2 − i
(z2 − 1)1/2 + i

)−ν/4
(1 +O(εn)) , (2.9)

uniformly for z in compact subsets of C \ [−1, 1]. Here the branch of the function (z2 −
1)1/2 is taken which is analytic in C \ [−1, 1] and positive for real z > 1.

In a neighborhood of (−1, 1) we find oscillatory behavior of the polynomials P̃n
as n → ∞. We state the asymptotic formula (2.12) for Re z ≥ 0 only. There is an
analogous formula for Re z < 0. This follows from the fact that the polynomial Pn has
real coefficients, as all the moments in the determinantal formula (1.5) are real. Thus
Pn(z) = Pn(z), and so

P̃n(−z) = P̃n(z), z ∈ C.
To describe the behavior near the interval, we need the analytic continuation of the

density (2.1), which we also denote by ψ,

ψ(z) =
1

π
log

1 + (1− z2)1/2
z

, Re z > 0, (2.10)

which is defined and analytic in {z | Re z > 0} \ [1,∞). For Re z > 0 with z 6∈ [1,∞) we
also define

θn(z) = nπ

∫ 1

z
ψ(s)ds+

1

4
arccos z − π

4
. (2.11)

Theorem 2.7. Let 0 < ν ≤ 1/2. There is an open neighborhood E of (−1, 1) such that
for z ∈ E \ {0} with Re z ≥ 0 we have

P̃n(z) =
z1/4e

νπi
4 enπz/2

21/4(2e)n(1− z2)1/4
[
exp

(νπ
2
ψ(z) + iθn(z)

)(
1 +O

(
log n

n

))
+ exp

(
−νπ

2
ψ(z)− iθn(z)

)(
1 +O

(
log n

n

))
+O(εn)

]
(2.12)

as n→∞, with ψ and θn given by (2.10) and (2.11). The asymptotic expansion (2.12)
is uniform for z ∈ E with Re z ≥ 0 and |z − 1| > δ, |z| > δ, for every δ > 0.

The two terms exp
(
νπ
2 ψ(z) + iθn(z)

)
and exp

(
−νπ

2 ψ(z)− iθn(z)
)

in (2.12) describe
the oscillatory behavior near the interval as well as the leading order behavior of the
zeros. Zeros can only happen when these two terms are of comparable absolute value so
that cancellations can take place. When ν = 0 this happens for real z ∈ E. However,
for ν > 0 this does not happen for real z, but near the line Im z = − ν

2n , as we will show
in Section 4.4. This leads to Theorem 2.2.
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2.4 Outline of the paper

The structure of the rest of the paper is as follows. In Section 3 we state the Riemann–
Hilbert problem Y (s) for Pn(x; s) with s > 0, and we make an initial transformation

Y (s) 7→ X(s).

In the RH problem for X(s) we can take the limit s → 0+ which leads to a RH prob-
lem for X, that characterizes the polynomial Pn(x). Then we carry out the further
transformations

X 7→ U 7→ T 7→ S 7→ Q 7→ R

of the Deift–Zhou nonlinear steepest descent method [5, 8]. The step X 7→ U is rotation
and scaling, to translate the problem to the interval [−1, 1]. This leads to the polynomials
P̃n and the proof of Proposition 2.5. The normalization at ∞ in the U 7→ T step is
carried out using an equilibrium problem with a Freud weight w(x) = e−nV (x), where
V (x) = π|x| is the pointwise limit as n→∞ of the varying weight

Vn(x) = − 1

n
logKν(nπ|x|).

The construction of the global parametrix N on the interval [−1, 1] involves two Szegő
functions D1(z) and D2(z), that correspond respectively to an algebraic singularity of
the weight function at the origin and to a complex phase factor. The local parametrices
near the endpoints ±1 involve Airy functions, since the density ψ(x) in (2.1) behaves like
a square root in a neighborhood of these endpoints. The main difficulty of the analysis is
the construction of a local parametrix in a neighborhood of the origin, and the reason is
the lack of analyticity of the weight function Vn(x) in that neighborhood. In this paper,
we reduce the jump matrices in that local analysis to almost constant in a disk around
0 and then use a small norm argument in L2 ∩ L∞ to prove existence of a solution to
this local RH problem. In this respect, the analysis is similar to the one presented by
Kriecherbauer and McLaughlin in [13]. Also, the same limiting potential V (x) appears in
the work of Bleher and Bothner in [3]. Another example of non–analytic weight function
was considered in the work of Foulquié, Mart́ınez–Finkelshtein and Sousa, see [10] and
[11], although in this case the local parametrix at the origin is explicitly given in terms
of confluent hypergeometric functions.

Finally, in Section 4 we follow the transformations both outside and inside the lens,
but away from the origin, to get the asymptotic information about Pn(z) and its zeros.
This proves Theorem 2.6 and 2.7. Theorem 2.1 follows from Theorem 2.6 and Theorem
2.7 is a consequence of 2.2.

3 Riemann–Hilbert problem

3.1 RH problem for polynomials Pn(x; s)

We let ν > 0 and s > 0. Orthogonal polynomials are characterized by a matrix valued
Riemann-Hilbert problem as was first shown by Fokas, Its, and Kitaev [9], see also [5].
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This characterization does not use the fact that the orthogonality weight is non-negative,
and it therefore also applies to oscillatory weights. Thus the polynomial Pn(x; s) satis-
fying (1.2) is characterized by the following Riemann-Hilbert problem:

RH problem 3.1. Y (s) : C \ [0,∞) → C2×2 is a 2 × 2 matrix valued function that
satisfies:

1) Y (s) is analytic in C \ [0,∞).

2) Y (s) satisfies the jump condition

Y
(s)
+ (x) = Y

(s)
− (x)

(
1 Jν(x)e−sx

0 1

)
on (0,∞).

3) As z →∞,

Y (s)(z) = (I +O(1/z))

(
zn 0
0 z−n

)
, (3.1)

where I denotes the 2× 2 identity matrix.

4) Y (s)(z) remains bounded as z → 0.

The polynomial Pn(x; s) exists and is unique if and only if the RH problem has a
unique solution. In that case we have

Pn(x; s) = Y
(s)
11 (x). (3.2)

3.2 First transformation

In the first transformation we use the following connection formula between Jν and the
modified Bessel function Kν of the second kind:

Jν(z) =
1

πi

(
e−

νπi
2 Kν(−iz)− e νπi2 Kν(iz)

)
, | arg z| ≤ π

2
, (3.3)

see for instance [17, formula 10.27.9]. Alternatively, the Bessel function can be written
in terms of Hankel functions as in [17, formula 10.4.4].

The formula (3.3) leads to the following factorization of the jump matrix:(
1 Jν(x)e−sx

0 1

)
=

(
1 − e

νπi
2

πi Kν(ix)e−sx

0 1

)(
1 e−

νπi
2

πi Kν(−ix)e−sx

0 1

)
. (3.4)

We define the new matrix valued function X(s) by

X(s)(z) =



(
1 0

0 (πi)−1

)
Y (s)(z)

(
1 −e− νπi2 Kν(−iz)e−sz
0 πi

)
, if 0 < arg z < π

2 ,(
1 0

0 (πi)−1

)
Y (s)(z)

(
1 −e νπi2 Kν(iz)e−sz

0 πi

)
, if − π

2 < arg z < 0,(
1 0

0 (πi)−1

)
Y (s)(z)

(
1 0

0 πi

)
, elsewhere.

(3.5)
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Then X(s) has an analytic continuation across the positive real axis, due to the factor-
ization (3.4). Thus X(s) is defined and analytic in the complex plane except for the
imaginary axis, and it satisfies the following RH problem:

RH problem 3.2. 1) X(s) is analytic in C \ iR.

2) X(s) satisfies the jump condition (the imaginary axis is oriented from bottom to
top)

X
(s)
+ (x) = X

(s)
− (x)



(
1 e−

νπi
2 Kν(−ix)e−sx

0 1

)
, for x ∈ (0,+i∞),(

1 e
νπi
2 Kν(ix)e−sx

0 1

)
, for x ∈ (−i∞, 0).

(3.6)

3) As z →∞,

X(s)(z) = (I +O(1/z))

(
zn 0
0 z−n

)
. (3.7)

4) X(s)(z) remains bounded as z → 0 with Re z < 0, and

X(s)(z) =

(
O(1) O(z−ν)
O(1) O(z−ν)

)
, as z → 0 with Re z > 0. (3.8)

The asymptotic condition (3.7) follows from (3.1), the definition (3.5) and the fact
that

Kν(z) =
( π

2z

)1/2
e−z (1 +O(1/z)) , as z →∞, | arg z| < 3π

2
, (3.9)

see [17, formula 10.40.2]. The O(z−ν) terms in (3.8) appear because of the behavior

Kν(z) ∼ Γ(ν)

21−ν
z−ν (3.10)

as z → 0 for ν > 0, see for instance [17, formula 10.30.2]. Note that by (3.2) and (3.5)

Pn(x; s) = X
(s)
11 (x). (3.11)

In the RH problem for X(s) we can take s→ 0+. Indeed, after setting s = 0 in (3.6),
the off-diagonal entries in the jump matrices still tend to 0 as |x| → ∞ because of (3.9).
We put s = 0 and we consider the following RH problem.

RH problem 3.3. We seek a function X : C \ iR→ C2×2 satisfying:

1) X is analytic in C \ iR.

10



2) X satisfies the jump condition (the imaginary axis is oriented from bottom to top)

X+(x) = X−(x)



(
1 e−

νπi
2 Kν(−ix)

0 1

)
, for x ∈ (0,+i∞),(

1 e
νπi
2 Kν(ix)

0 1

)
, for x ∈ (−i∞, 0).

3) As z →∞,

X(z) = (I +O(1/z))

(
zn 0
0 z−n

)
.

4) X(z) remains bounded as z → 0 with Re z < 0, and

X(z) =

(
O(1) O(z−ν)
O(1) O(z−ν)

)
, as z → 0 with Re z > 0.

If there is a unique solution then the 11-entry is a monic polynomial of degree n, say
Pn, and

Pn(x) = X11(z) = lim
s→0+

X
(s)
11 (z) = lim

s→0+
Pn(x; s) (3.12)

see (3.11). Thus Pn is the polynomial that we are interested in.

3.3 Second transformation

We introduce a scaling and rotation z 7→ iπnz and our main interest is in the rescaled
polynomials Pn(inπz) whose zeros will accumulate on the interval [−1, 1] as n → ∞.
More precisely, we define U as

U(z) =

(
(inπ)−n 0

0 (inπ)n

)
X(inπz). (3.13)

From (3.13) and the RH problem 3.3, we immediately obtain the following RH prob-
lem for U(z):

RH problem 3.4. 1) U is analytic in C \ R.

2) U satisfies the jump condition

U+(x) = U−(x)



(
1 eνπi/2Kν(nπ|x|)
0 1

)
, x ∈ (−∞, 0),(

1 e−νπi/2Kν(nπ|x|)
0 1

)
, x ∈ (0,∞).

3) As z →∞,

U(z) = (I +O(1/z))

(
zn 0
0 z−n

)
.

11



4) U(z) remains bounded as z → 0 with Im z > 0, and

U(z) =

(
O(1) O(z−ν)
O(1) O(z−ν)

)
as z → 0 with Im z < 0.

Note that by (3.12), (3.13), and (2.4)

U11(z) = (inπ)−nX11(inπz) = (inπ)−nPn(inπz) = P̃n(z) (3.14)

which is a monic polynomial of degree n. The zeros of U11(z) are obtained from the
zeros of Pn by rotation over 90 degrees in the clockwise direction and by dividing by a
factor πn.

We can now prove Proposition 2.5.

Proof of Proposition 2.5. The RH problem for U is the RH problem for orthogonal poly-
nomials on the real line for the varying weight function e∓νπi/2Kν(nπ|x|) for x ∈ R±,
see [5, 8, 9]. Because of the e∓νπi/2 factor, the weight function is not real on the real
line, and it has a singularity at the origin because of the behavior (3.10) of the Kν

function near 0. The singularity is integrable since ν < 1, and so U11 = P̃n is the monic
polynomial of degree n satisfying (2.6).

3.4 Equilibrium problem and third transformation

In order to normalize the RH problem at infinity we make use of an equilibrium problem
with external field V (x) = π|x|. The equilibrium measure µ minimizes the energy
functional

I(µ) =

∫∫
log

1

|x− y|dµ(x)dµ(y) +

∫
π|x|dµ(x)

among all probability measures on R. The minimizer is supported on [−1, 1]. It is
absolutely continuous with respect to the Lebesgue measure, dµ(x) = ψ(x)dx, and has
density

ψ(x) =
1

π

∫ 1

|x|

1√
s2 − x2

ds,

which corresponds to the case β = 1 in [13]. The integral can be evaluated explicitly
and it gives the formula (2.1). Note that ψ(x) grows like a logarithm at x = 0.

The g function is defined in (2.8). The boundary values g+(x) and g−(x) on the real
axis satisfy

g+(x)− g−(x) =


2πi, x ≤ −1,

2πi

∫ 1

x
ψ(s)ds, −1 < x < 1,

0, x ≥ 1.

(3.15)

The Euler-Lagrange equations for the equilibrium problem imply that we have (see
e.g. [5] or [19])

g+(x) + g−(x)− π|x|
{

= `, x ∈ [−1, 1],

< `, x ∈ (−∞,−1) ∪ (1,∞).
(3.16)
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with the constant ` (see Theorem IV.5.1 in [19] or formula (3.5) in [13])

` = −2− 2 log 2. (3.17)

A related function is

ϕ(z) = g(z)− V (z)

2
− `

2
(3.18)

where

V (z) =

{
πz, Re z > 0,

−πz, Re z < 0.
(3.19)

The ϕ-function is analytic in C \ ((−∞, 1] ∪ iR). For x ∈ [−1, 1] we have from the
variational equation (3.16)

ϕ+(x) = g+(x)− V (x)

2
− `

2
=

1

2
(g+(x)− g−(x)),

ϕ−(x) = −ϕ+(x).
(3.20)

Thus 2ϕ gives an analytic extension of g+(x)−g−(x) from [−1, 1] into the upper half
plane minus the imaginary axis, and of g−(x) − g+(x) into the lower half plane minus
the imaginary axis. Note that ϕ±(x) is purely imaginary on [−1, 1], because of (3.15).

On the imaginary axis, the function ϕ(z) is not analytic because of the discontinuity
in V (z). The boundary values of this weight function satisfy

V−(z) = V+(z) + 2πz,

and as a consequence,
ϕ−(z) = ϕ+(z)− πz, z ∈ iR.

Here we take the orientation of the imaginary axis from bottom to top.
Now we are ready for the third transformation of the RH problem and we define the

matrix valued function

T (z) = e−n`σ3/2(2n)σ3/4U(z)e−n(g(z)−`/2)σ3(2n)−σ3/4, (3.21)

where σ3 =

(
1 0
0 −1

)
is the third Pauli matrix. We also write

Wn(x) =
√

2nKν(nπ|x|)enπ|x|, x ∈ R. (3.22)

Then from the above definitions and properties and from the RH problem 3.4 for U we
find that T satisfies the following Riemann–Hilbert problem.

RH problem 3.5. 1) T is analytic in C \ R.
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2) T satisfies the jump conditions

T+(x) = T−(x)



(
1 eνπi/2Wn(x)e2nϕ+(x)

0 1

)
, x ∈ (−∞,−1),(

e−2nϕ+(x) eνπi/2Wn(x)

0 e−2nϕ−(x)

)
, x ∈ (−1, 0),(

e−2nϕ+(x) e−νπi/2Wn(x)

0 e−2nϕ−(x)

)
, x ∈ (0, 1),(

1 e−νπi/2Wn(x)e2nϕ+(x)

0 1

)
, x ∈ (1,∞),

where Wn is given in (3.22).

3) As z →∞,
T (z) = I +O(1/z).

4) T (z) remains bounded as z → 0 with Im z > 0, and

T (z) =

(
O(1) O(z−ν)
O(1) O(z−ν)

)
, as z → 0 with Im z < 0. (3.23)

The off–diagonal elements in the jump matrices on (−∞,−1) and (1,∞) tend to 0
at an exponential rate, because of the Euler–Lagrange condition (3.16).

3.5 Fourth transformation

The jump matrix on the interval (−1, 0) has a factorization(
e−2nϕ+(x) eνπi/2Wn(x)

0 e−2nϕ−(x)

)
=

(
1 0

e−νπi/2

Wn(x)
e−2nϕ−(x) 1

)(
0 eνπi/2Wn(x)

− e−νπi/2

Wn(x)
0

)(
1 0

e−νπi/2

Wn(x)
e−2nϕ+(x) 1

)
,

while the jump matrix on (0, 1) factorizes as(
e−2nϕ+(x) e−νπi/2Wn(x)

0 e−2nϕ−(x)

)
=

(
1 0

eνπi/2

Wn(x)
e−2nϕ−(x) 1

)(
0 e−νπi/2Wn(x)

− eνπi/2

Wn(x)
0

)(
1 0

eνπi/2

Wn(x)
e−2nϕ+(x) 1

)
.

In order to open the lens around (−1, 1), we need the analytic extension of the
function Wn from (3.22) to C \ iR, which we also denote by Wn,

Wn(z) =

{√
2nKν(nπz)enπz, Re z > 0,√
2nKν(−nπz)e−nπz, Re z < 0.

(3.24)
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Figure 3: Opening of a lens around [−1, 1], and contour ΣS consisting of Σ1, . . . ,Σ4, the
segment (−iρ, iρ) and the real line.

Note that as n→∞, see (3.9) and (3.24),

Wn(z) =

{
z−1/2(1 +O(1/(nz)), Re z > 0,

(−z)−1/2(1 +O(1/(nz))), Re z < 0,
(3.25)

which explains the factor
√

2n that we introduced in (3.22) and (3.24).
Next, we fix a number ρ > 0 and we open a lens around [−1, 1], which defines

contours Σj , j = 1, . . . , 4 and domains Ωj , j = 1, . . . , 4 as indicated in Figure 3.
In the fourth transformation we define the matrix valued function S(z):

S(z) =



T (z)

(
1 0

− eνπi/2

Wn(z)
e−2nϕ(z) 1

)
, for z ∈ Ω1,

T (z)

(
1 0

− e−νπi/2

Wn(z)
e−2nϕ(z) 1

)
, for z ∈ Ω2,

T (z)

(
1 0

e−νπi/2

Wn(z)
e−2nϕ(z) 1

)
, for z ∈ Ω3,

T (z)

(
1 0

eνπi/2

Wn(z)
e−2nϕ(z) 1

)
, for z ∈ Ω4,

T (z), elsewhere,

(3.26)

using the analytic extension (3.24) for the function Wn(z) in each region, and ϕ(z)
defined in (3.18).

Remark 3.6. In order to divide by Wn(z) we need to be careful with possible zeros
of this function in the complex plane. Following the general theory in [21, §15.7], the
Bessel function Kν(nπz) is free from zeros in the half–plane | arg z| ≤ π

2 . Using (3.24),
we can conclude that Wn(z) 6= 0.

From the RH problem 3.5 and (3.26) we find that that S(z) is the solution of the
following RH problem:
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RH problem 3.7. 1) S is analytic in C \ ΣS , where ΣS is depicted in Figure 3.

2) S satisfies the jump conditions S+ = S−JS where

JS(z) =



(
1 0

eνπi/2

Wn(z)
e−2nϕ(z) 1

)
, z ∈ Σ1 ∪ Σ4,(

1 0
e−νπi/2

Wn(z)
e−2nϕ(z) 1

)
, z ∈ Σ2 ∪ Σ3,(

0 eνπi/2Wn(x)

− e−νπi/2

Wn(x)
0

)
, z ∈ (−1, 0),(

0 e−νπi/2Wn(x)

− eνπi/2

Wn(x)
0

)
, z ∈ (0, 1),(

1 eνπi/2e2nϕ(z)Wn(z)

0 1

)
, z ∈ (−∞,−1),(

1 e−νπi/2e2nϕ(z)Wn(z)

0 1

)
, z ∈ (1,∞),(

1 0

j1(z) 1

)
, z ∈ (0, iρ),(

1 0

j2(z) 1

)
, z ∈ (−iρ, 0).

(3.27)

Here

j1(z) =
eνπi/2e−2nϕ−(z)

Wn,−(z)
− e−νπi/2e−2nϕ+(z)

Wn,+(z)
, z ∈ (0, iρ), (3.28)

and

j2(z) = −e
νπi/2e−2nϕ−(z)

Wn,−(z)
+
e−νπi/2e−2nϕ+(z)

Wn,+(z)
, z ∈ (−iρ, 0), (3.29)

using the appropriate values of ϕ±(z) and Wn,±(z) in each case. The imaginary
axis is oriented upwards, and so for z ∈ iR, we have that ϕ+(z) and Wn,+(z)
(ϕ−(z) and Wn,−(z)) denote the limiting value from the left (right) half-plane.

3) As z →∞,
S(z) = I +O(1/z).

4) S(z) remains bounded as z → 0 with Im z > 0, and

S(z) =

(
O(zν) O(z−ν)
O(zν) O(z−ν)

)
, as z → 0 with Im z < 0. (3.30)
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Note that as a consequence of the definition of ϕ(z) in (3.18) and formula (3.20),
Imϕ(x) is decreasing on [−1, 1]. Because of the Cauchy–Riemann equations, Reϕ(z) > 0
as we move away from the interval.

We may and do assume that the lens is small enough such that Reϕ(z) > 0 on the
lips of the lens. Then it follows from (3.25) and (3.27) that the jump matrix JS on
the lips of the lens tends to I at an exponential rate as n → ∞, if we stay away from
the endpoints ±1. Also the jump matrix on (−∞,−1) and (1,∞) tends to the identity
matrix. Thus for any δ > 0, there is a constant c > 0 such that

JS(z) = I +O(e−cn), z ∈ ΣS \ ([−1, 1] ∪ [−iρ, iρ] ∪D(±1, δ)). (3.31)

The condition (3.30) needs some explanation, since (3.23) and (3.26) at first sight

lead to the behavior S(z) =

(
O(1) O(z−ν)
O(1) O(z−ν)

)
as z → 0 with Im z < 0. However, a

cancellation takes place for the entries in the first column, as can be checked from the
jump conditions for S, see (3.27) on the intervals (−1, 0) and (0, 1). Since S remains
bounded as z → 0 with Im z > 0, and

S−(z) = S+(z)

(
0 O(z−ν)

O(zν) 0

)
, as z → 0,

one finds (3.30).

3.6 Global parametrix

If we ignore the jump matrices in the RH problem for S except for the one on the interval
[−1, 1], we arrive at the following RH problem for a 2× 2 matrix valued function N :

RH problem 3.8. 1) N is analytic in C \ [−1, 1].

2) N satisfies the jump conditions

N+(x) = N−(x)



(
0 eνπi/2Wn(x)

− e−νπi/2

Wn(x)
0

)
, x ∈ (−1, 0),(

0 e−νπi/2Wn(x)

− eνπi/2

Wn(x)
0

)
, x ∈ (0, 1).

3) As z →∞,
N(z) = I +O(1/z).

We solve the RH problem for N by means of two Szegő functions D1,n and D2, see
also [15], that are associated with Wn and e− sgn(x)νπi/2, respectively.

The first Szegő function D1 = D1,n is defined by

D1,n(z) = exp

(
(z2 − 1)1/2

2π

∫ 1

−1

logWn(x)√
1− x2

dx

z − x

)
, (3.32)
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which is defined and analytic for z ∈ C \ [−1, 1]. It satisfies

D1,n+(x)D1,n−(x) = Wn(x), x ∈ (−1, 1). (3.33)

It follows from (3.32) that D1,n has no zeros in C \ [−1, 1] and

D∞,n := lim
z→∞

D1,n(z) = exp

(
1

2π

∫ 1

−1

logWn(x)√
1− x2

dx

)
∈ (0,∞). (3.34)

In what follows we are not going to indicate the n-dependence in the notation for D1,n

and D∞,n, since the dependence on n is only mildly. Indeed, because of (3.25) we have
that D1,n tends to the Szegő function for the weight |x|−1/2 with a rate as given in the
following lemma.

Lemma 3.9. We have

D1,n(z) =

(
z + (z2 − 1)1/2

z

)1/4(
1 +O

(
log n

n

))
, (3.35)

D∞,n = 21/4 +O
(

log n

n

)
, (3.36)

as n→∞, with O-term that is uniform for z ∈ C\ ([−1, 1]∪D(0, δ)∪D(±1, δ)) for any
δ > 0.

Proof. The Szegő function for |x|−1/2 is

D(z; |x|−1/2) = exp

(
(z2 − 1)1/2

2π

∫ 1

−1

log |x|−1/2√
1− x2

dx

z − x

)
=

(
z + (z2 − 1)1/2

z

)1/4

.

and so(
z + (z2 − 1)1/2

z

)−1/4
D1,n(z) = exp

(
(z2 − 1)1/2

2π

∫ 1

−1

log(|x|1/2Wn(x))√
1− x2

dx

z − x

)
.

(3.37)
Because of (3.25) there exist c0, c1 > 0∣∣∣|x|1/2Wn(x)− 1

∣∣∣ ≤ c1
n|x| <

1

2
, |x| ≥ c0

n
.

Then also for some c2 > 0,∣∣∣log(|x|1/2Wn(x))
∣∣∣ ≤ c2

n|x| , |x| ≥ c0
n
.

It follows that∣∣∣∣∣
∫ 1

c0/n

log(|x|1/2Wn(x))√
1− x2

dx

z − x

∣∣∣∣∣ ≤ c2
dist(z, [−1, 1])n

∫ 1

c0/n

1

x
√

1− x2
dx

≤ c3
dist(z, [−1, 1])

log n

n
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with a constant c3 that is independent of n and z. By deforming the integration path
into the complex plane in such a way that it stays at a certain distance from z, and
applying similar estimates we find∣∣∣∣∣

∫ 1

c0/n

log(|x|1/2Wn(x))√
1− x2

dx

z − x

∣∣∣∣∣ ≤ c4
|z|

log n

n
(3.38)

with a constant that is independent of z ∈ C \ ([−1, 1] ∪D(0, δ) ∪D(±1, δ)). Similarly∣∣∣∣∣
∫ −c0/n
−1

log(|x|1/2Wn(x))√
1− x2

dx

z − x

∣∣∣∣∣ ≤ c5
|z|

log n

n
. (3.39)

Near x = 0 we use (3.10) and (3.22) to find a c6 > 0 such that

c6|nx|1/2−ν ≤ |x|1/2Wn(x) ≤ 1, |x| ≤ c0
n
.

The upper bound follows from the fact that 0 < Kν(s) ≤ K1/2(s) if 0 ≤ ν < 1/2 and
s > 0 and the explicit formula for K1/2(s) see [17, 10.37.1,10.39.2]. Then∣∣∣log(|x|1/2Wn(x))

∣∣∣ ≤ ∣∣log c6 +
(
1
2 − ν

)
log |nx|

∣∣ , |x| ≤ c0
n

and∣∣∣∣∣
∫ c0/n

−c0/n

log |x|1/2Wn(x)√
1− x2

dx

z − x

∣∣∣∣∣ ≤ 2

|z|

∫ c0/n

−c0/n

∣∣log c6 +
(
1
2 − ν

)
log |nx|

∣∣ dx ≤ c7
|z|

1

n
(3.40)

for some new constant c7 > 0.
Combining the estimates (3.38), (3.39), and (3.40), we get∣∣∣∣∣(z2 − 1)1/2

2π

∫ 1

−1

log(|x|1/2Wn(x))√
1− x2

dx

z − x

∣∣∣∣∣ = O
(

log n

n

)
with a O term that is uniform for |z| > δ |z ± 1| > δ, and so by (3.37)(

z + (z2 − 1)1/2

z

)−1/4
D1,n(z) = exp

(
O
(

log n

n

))
= 1 +O

(
log n

n

)
as claimed in (3.35).

Since (3.35) is uniform for |z| > δ, |z ± 1| > δ, we can let z → ∞, and obtain
(3.36).

The second Szegő function D2 corresponds to the weight e±νπi/2, and is defined as

D2(z) =

(√
z2 − 1− i√
z2 − 1 + i

)ν/4
, z ∈ C \ [−1, 1], (3.41)
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with the branch of the square root that is positive for real z > 1. It is not difficult to
check that z 7→ w = D2(z) is the conformal mapping from C \ [−1, 1] onto the sector
−νπ

4 < argw < νπ
4 that maps z = 0+ to w = 0, z = 0− to w =∞, z = ±1 to e∓

νπ
4 and

z =∞ to w = 1.
The Szegő function D2 is related to the function ψ from (2.10).

Lemma 3.10. We have

logD2(z) =


−νπ

2 ψ(z)− νπi
4 , Re z > 0, Im z > 0,

νπ
2 ψ(z)− νπi

4 , Re z > 0, Im z < 0,

−νπ
2 ψ(z) + νπi

4 , Re z < 0, Im z > 0,
νπ
2 ψ(z) + νπi

4 , Re z < 0, Im z < 0.

(3.42)

Proof. This follows from (2.10) and (3.41) by straightforward calculation.

It follows from (3.42) that D2 satisfies

D2+(x)D2−(x) =

{
eνπi/2, x ∈ (−1, 0),

e−νπi/2, x ∈ (0, 1),
(3.43)

and, since ψ(z) ∼ 1
π log(1/z) as z → 0,

D2(z) =

{
O(zν/2) as z → 0 with Im z > 0,

O(z−ν/2) as z → 0 with Im z < 0.
(3.44)

Having D1 and D2 we seek N in the form

N(z) = Dσ3
∞N0(z) (D1(z)D2(z))

−σ3 . (3.45)

Then N satisfies the RH problem 3.8 if and only if N0 satisfies the following standard
RH problem:

RH problem 3.11. 1) N0 is analytic in C \ [−1, 1].

2) N0 satisfies the jump conditions

N0+(x) = N0−(x)

(
0 1
−1 0

)
, x ∈ (−1, 1).

3) N0(z) = I +O(1/z) as z →∞.

The RH problem for N0 has the explicit solution (see for instance [5, Section 7.3]):

N0(z) =

(
β(z)+β(z)−1

2
β(z)−β(z)−1

2i

−β(z)−β(z)−1

2i
β(z)+β(z)−1

2

)
, with β(z) =

(
z − 1

z + 1

)1/4

, (3.46)
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for z ∈ C\ [−1, 1], and we take the branch of the fourth root that is analytic in C\ [−1, 1]
and that is real and positive for z > 1. Note that we can also write

N0(z) =
1√

2(z2 − 1)1/4

(
f(z)1/2 if(z)−1/2

−if(z)−1/2 f(z)1/2

)
(3.47)

where
f(z) = z + (z2 − 1)1/2 (3.48)

is the conformal map from C \ [−1, 1] to the exterior of the unit disk.

3.7 Fifth transformation

Around the endpoints z = ±1 we build Airy parametrices PAi in the usual way. We take
δ > 0 sufficiently small, and PAi is defined and analytic in D(±1, δ) \ ΣS such that it
has the same jumps as S on ΣS ∩D(±1, δ), and such that

PAi(z) = N(z)(1 +O(n−1)), uniformly for |z ± 1| = δ, (3.49)

as n → ∞. We refer the reader for instance to the monograph by Deift [5, §7.6] for
details.

In the fifth transformation we put

Q =

{
SN−1, outside the disks D(±1, δ),

SP−1Ai , inside the disks.
(3.50)

Then Q is defined and analytic outside of a contour consisting of ΣS and two circles
around ±1. The construction of the Airy parametrix is such that it has the same jump
as S inside the circles. As a result Q is analytic inside the two disks. Also S and N have
the same jump on (−1, 1) and it follows that Q is analytic across (−1, 1). Therefore Q
is analytic in C\ΣQ where ΣQ consists of two circles around ±1, the parts of (−∞,−1),
Σj , j = 1, . . . , 4 and (1,∞) outside of these circles, and the segment (−iρ, iρ) on the
imaginary axis. See Figure 4.

From the RH problem 3.7 for S and (3.50) it then follows that Q solves the following
RH problem.

RH problem 3.12. 1) Q : C \ ΣQ → C2×2 is analytic.

2) Q satisfies the jump condition Q+ = Q−JQ on ΣQ where

JQ(z) =



N(z)P−1Ai (z), for z on the circles,

N(z)

(
1 0

j1(z) 1

)
N−1(z) for z ∈ (0, iρ),

N(z)

(
1 0

j2(z) 1

)
N−1(z) for z ∈ (−iρ, 0),

N(z)JS(z)N(z)−1, elsewhere on ΣQ.

Here j1 and j2 are given by (3.28) and (3.29).
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Figure 4: Contour ΣQ

3) As z →∞,
Q(z) = I +O(1/z).

4) Q(z) = O(1) as z → 0.

In the behavior around 0 there is no longer a distinction between the upper and lower
half planes, and Q remains bounded in all directions.

We note that

JQ(z) = I +O(n−1), for z on the circles (3.51)

because of the matching property (3.49). We also note that

JQ(z) = I +O(e−cn), on ΣQ \ (∂D(±1, δ) ∪ [−iρ, iρ]) (3.52)

because of (3.31), (3.45), and Lemma 3.9.
The jump matrix JQ on the imaginary axis can be rewritten as (we use (3.45)):

JQ(z) = Dσ3
∞N0(z)

(
1 0

j1,2(z)(D1(z)D2(z))
2 1

)
N−10 (z)D−σ3∞ , z ∈ (−iρ, iρ), (3.53)

with j1 on (0, iρ), and j2 on (−iρ, 0).
The entry j1,2(z)(D1(z)D2(z))

2 in (3.53) depends on n, and tends to 0 as n→∞ for
every z ∈ (−iρ, 0) ∪ (0, iρ), but not in a uniform way. Hence, further analysis is needed
in the next section. A similar situation is studied in [3, Section 5], where the jump on
the imaginary axis has the same structure and approaches the identity matrix at a rate
1/ log(n) as n→∞. In that case no local parametrix near the origin is needed.

3.8 Local parametrix near z = 0

The construction of a local parametrix in a neighborhood of the origin follows the idea
exposed in [13]. We take ε > 0 with

ε < min
(

1
2e ,

ρ
3

)
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and we build a local parametrix P defined in a neighborhood |z| < 3ε of 0. We use a
cut-off function χ(z) on iR such that

(a) χ : iR→ R is a C∞ function,

(b) 0 ≤ χ(z) ≤ 1 for all z ∈ iR,

(c) χ(z) ≡ 1 for z ∈ (−iε, iε),
(d) χ(z) ≡ 0 for z ∈ (−i∞,−2iε) ∪ (2iε, i∞).

Then we modify JQ by multiplying the off-diagonal entry in the middle factor of (3.53)
by χ(z), and in addition we use this as a jump matrix in the full imaginary axis. Thus

JP (z) = Dσ3
∞N0(z)

(
1 0

j1,2(z)(D1(z)D2(z))
2χ(z) 1

)
N−10 (z)D−σ3∞ , z ∈ iR, (3.54)

with j1 on iR+ and j1 on iR−.
Then the RH problem for the local parametrix P at the origin is:

RH problem 3.13. 1) P : {z ∈ C | −1 < Re z < 1} \ iR→ C2×2 is analytic.

2) P satisfies the jump condition

P+(z) = P−(z)JP (z), z ∈ iR, (3.55)

where JP (z) is given by (3.54).

3) P (z) = I +O (εn) as n→∞ uniformly for |z| = 3ε with εn given by (2.3).

Proposition 3.14. The RH problem 3.13 has a solution for n large enough.

The rest of this subsection is devoted to the proof of Proposition 3.14. It takes a
number of steps and it is the most technical part of the paper.

3.8.1 RH problem for P̂

We introduce a matrix P̂ (z) in the following way:

P (z) =


Dσ3
∞N0(z)P̂ (z)N0(z)

−1D−σ3∞ , for Im z < 0,

Dσ3
∞N0(z)

(
0 −1

1 0

)
P̂ (z)

(
0 1

−1 0

)
N0(z)

−1D−σ3∞ , for Im z > 0.
(3.56)

The extra factors in (3.56) for Im z > 0 are introduced in order to compensate the
jumps of N0 on [−1, 1]. Then P satisfies the jump condition (3.55) in the RH problem
3.13 if and only if P̂+ = P̂−JP̂ , where the jump is

J
P̂

(z) =



(
1 −j1(z)(D1(z)D2(z))

2χ(z)

0 1

)
, for z ∈ iR+,(

1 0

j2(z)(D1(z)D2(z))
2χ(z) 1

)
, for z ∈ iR−.

(3.57)
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Note the difference in the triangularity structure. So, we look for P̂ that solves the
following RH problem:

RH problem 3.15. 1) P̂ : C \ iR→ C2×2 is analytic.

2) P̂ satisfies the jump conditions

P̂+(z) = P̂−(z)J
P̂

(z), z ∈ iR, (3.58)

where J
P̂

(z) is given by (3.57).

3) P̂ (z) = I +O(1/z) as z →∞.

Our aim is to show that the RH problem for P̂ has a solution for n sufficiently large,
and that this solution satisfies in addition

4) P̂ (z) = I +O (εn) as n→∞, uniformly for |z| = 3ε.

Having P̂ we define P by (3.56) in terms of P̂ , and it will satisfy the requirements of
the RH problem 3.13.

We prove the following result:

Lemma 3.16. If 0 < ν ≤ 1/2, then for n large enough there exists P̂ (z) that solves the
RH problem 3.15, and as n→∞,

|P̂11(z)− 1| = O
(
n−1/2(log n)−2ν−1/2

)
, |P̂21(z)| = O

(
nν−1/2(log n)−ν−1/2

)
,

in C \ [−2iε, 0], and

|P̂12(z)| = O
(
n−ν−1/2(log n)−ν−1/2

)
, |P̂22(z)− 1| = O

(
n−1/2(log n)−2ν−1/2

)
,

in C \ [0, 2iε].

Remark 3.17. It follows from Lemma 3.16 that P̂ (z) = I+O (εn) as n→∞, uniformly
for |z| = 3ε, and because of (3.56), the same holds for P (z).

In the proof of this lemma we will need the following steps:

1. We write the jump conditions for P̂ (z) componentwise, and in terms of two integral
operators K1 and K2.

2. We estimate the operator norms ‖K1‖ and ‖K2‖ as n→∞. This requires estimates
for the functions j1(z), j2(z), D1(z) and D2(z), which are uniform as n → ∞ for
y in a fixed interval around the origin on the imaginary axis.

3. We show that the operators I − K2K1 and I − K1K2 are invertible for n large
enough, and this gives the existence and asymptotics of P̂ .

Finally, the estimates for P̂ (z) are used to prove that the matrix R(z), which will be
defined in Section 3.9 and which solves the Riemann–Hilbert problem 3.24, is close to
the identity matrix as n→∞.
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3.8.2 Integral operators

Let us write
η1(z) = −j1(z)(D1(z)D2(z))

2χ(z), z ∈ iR+,

η2(z) = j2(z)(D1(z)D2(z))
2χ(z), z ∈ iR−.

(3.59)

These functions depend on n, since j1, j2 and D1 depend on n. Note, however, that D2

and χ do not depend on n.
The jump condition (3.57)-(3.58) yields that for j = 1, 2,

P̂j1+(z) =

{
P̂j1−(z), for z ∈ iR+,

P̂j1−(z) + η2(z)P̂j2−(z), for z ∈ iR−,

P̂j2+(z) =

{
P̂j2−(z) + η1(z)P̂j1−(z), for z ∈ iR+,

P̂j2−(z), for z ∈ iR−.

(3.60)

Since χ(z) = 0 for |z| ≥ 2ε, we find that P̂j1 is analytic in C \ [−2iε, 0], and P̂j2
is analytic in C \ [0, 2iε]. Then by the Sokhotski-Plemelj formula and the asymptotic
condition P̂ (z)→ I as z →∞, we get

P̂11(z) = 1 +
1

2πi

∫ 0

−2iε

η2(s)P̂12(s)

s− z ds, P̂12(z) =
1

2πi

∫ 2iε

0

η1(s)P̂11(s)

s− z ds.

P̂21(z) =
1

2πi

∫ 0

−2iε

η2(s)P̂22(s)

s− z ds, P̂22(z) = 1 +
1

2πi

∫ 2iε

0

η1(s)P̂21(s)

s− z ds.

(3.61)

We can write the equations in operator form if we introduce two operators

K1 : L2([0, 2iε])→ L2([−2iε, 0]) and K2 : L2([−2iε, 0])→ L2([0, 2iε])

by

(K1f)(z) =
1

2πi

∫ 2iε

0

η1(s)f(s)

s− z ds, f ∈ L2([0, 2iε]), (3.62)

(K2g)(z) =
1

2πi

∫ 0

−2iε

η2(s)g(s)

s− z ds, g ∈ L2([−2iε, 0]). (3.63)

Then f1 = P̂11, g1 = P̂12 should solve

f1 = 1 +K2g1, g1 = K1f1 (3.64)

and f2 = P̂21, g2 = P̂22 should solve

f2 = K2g2, g2 = 1 +K1f2. (3.65)

Both K1 and K2 are integral operators between Hilbert spaces with operator norms

‖K1‖2 =

∫ 0

−2iε

∫ 2iε

0

|η1(s)|2
|s− t|2 |ds||dt|,

‖K2‖2 =

∫ 2iε

0

∫ 0

−2iε

|η2(s)|2
|s− t|2 |ds||dt|.
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The t-integrals can be done explicitly. This leads to the estimates (we also change to a
real integration variable by putting s = ±iy)

‖K1‖ ≤
(∫ 2ε

0

|η1(iy)|2
y

dy

)1/2

, ‖K2‖ ≤
(∫ 2ε

0

|η2(−iy)|2
y

dy

)1/2

. (3.66)

The next step is to show that both integrals are finite (so that K1 and K2 are well-
defined bounded operators) and that ‖K1K2‖ and ‖K2K1‖ tend to 0 as n→∞. To this
end, we need to control the functions η1 and η2, defined in (3.59).

3.8.3 The functions η1(z) and η2(z)

The functions η1 and η2 are defined in terms of j1, j2, D1 and D2, see (3.59). In this
section we obtain estimates for all these functions for large n.

First we write the functions j1(z) and j2(z) in terms of Bessel functions. Because
of the property Kν(z) = Kν(z) for real ν, see [17, §10.34.7], if we consider the positive
imaginary axis and we write z = iy, with y > 0, then the function Wn (recall (3.24))
can be written as

Wn,±(iy) =
√

2nKν(∓nπiy)e∓nπiy, (3.67)

so Wn,+(iy) = Wn,−(iy). Similarly, on the negative imaginary axis,

Wn,±(−iy) =
√

2nKν(±nπiy)e∓nπiy, (3.68)

so again Wn,+(−iy) = Wn,−(−iy). Additionally, we have

|Wn,−(iy)|2 = 2n|Kν(nπiy)|2 =
nπ2

2
|H(2)

ν (nπy)|2 =
nπ2

2

[
Jν(nπy)2 + Yν(nπy)2

]
,

|Wn,−(−iy)|2 = 2n|Kν(−nπiy)|2 =
nπ2

2
|H(1)

ν (nπy)|2 =
nπ2

2

[
Jν(nπy)2 + Yν(nπy)2

]
,

(3.69)
in terms of Hankel functions, see [17, §10.27.8]. We have the following auxiliary result:

Lemma 3.18. For y > 0, the functions j1(iy) and j2(−iy) can be written as follows:

|j1(iy)| = 2e−2nReϕ−(iy)

√
2nπ

|Jν(nπy) cos νπ − Yν(nπy) sin νπ|
J2
ν (nπy) + Y 2

ν (nπy)
,

|j2(−iy)| = 2e−2nReϕ−(−iy)
√

2nπ

|Jν(nπy)|
J2
ν (nπy) + Y 2

ν (nπy)
.

Proof. It follows from (3.28) that j1 can be written as

j1(iy) =
e−2nϕ−(iy)−nπiy

Wn,−(iy)Wn,+(iy)

[
e
νπi
2

+nπiyWn,+(iy)− e− νπi2 −nπiyWn,−(iy)
]
,
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and because of ϕ−(z) = ϕ+(z)−πz on the imaginary axis, and the fact that Wn,+(iy) =

Wn,−(iy), the two terms on the right hand side are complex conjugates, so

j1(iy) =
−2ie−2nϕ−(iy)−nπiy

|Wn,−(iy)|2 Im
[
e−

νπi
2
−nπiyWn,−(iy)

]
. (3.70)

Using the formula

Kν(z) = −πi
2
e−

νπi
2 H(2)

ν (ze−
πi
2 ), −π

2
< arg z ≤ π,

in terms of Hankel functions, see [17, §10.27.8] and (3.67) we observe that

e−
νπi
2
−nπiyWn,−(iy) = e−

νπi
2

√
2nKν(nπiy) = −

√
2nπi e−νπi

2
(Jν(nπy)− iYν(nπy)) .

Hence, on the positive imaginary axis,

Im
[
e−

νπi
2
−nπiyWn,−(iy)

]
= −
√

2nπ

2
(Jν(nπy) cos νπ − Yν(nπy) sin νπ).

Using (3.70) and (3.69), this proves the first formula. Similarly, for y > 0,

j2(−iy) =
2ie−2nϕ−(−iy)−nπiy

|Wn,−(−iy)|2 Im
[
e−

νπi
2
−nπiyWn,−(−iy)

]
. (3.71)

In this case, we use

Kν(z) =
πi

2
e
νπi
2 H(1)

ν (ze
πi
2 ), −π < arg z ≤ π

2
,

see [17, 10.27.8], and (3.68) to obtain

e−
νπi
2
−nπiyWn,−(−iy) = e−νπi/2

√
2nKν(−nπiy) =

√
2nπi

2
(Jν(nπy) + iYν(nπy)) ,

so

Im
[
e
−νπi

2
−nπiyWn,−(−iy)

]
=

√
2nπ

2
Jν(nπy).

We use (3.71) and (3.69), and this completes the proof.

Next, we will obtain estimates of the previous functions j1 and j2 for large n.

Lemma 3.19. For 0 < ν ≤ 1/2 there exist constants Cν , C
′
ν > 0 such that for all s > 0

we have
|Jν(s) cos νπ − Yν(s) sin νπ|

Jν(s)2 + Yν(s)2
≤ Cν

sν(1 + s1−2ν)

1 + s1/2−ν
,

|Jν(s)|
Jν(s)2 + Yν(s)2

≤ C ′ν
s3ν(1 + s1−2ν)

1 + s1/2+ν
.
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Proof. For the proof, we consider the following expansions: as s→ 0+,

Jν(s) =
sν

2νΓ(ν + 1)

(
1 +O

(
s−1
))
, ν 6= −1,−2, . . . (3.72)

and for ν < 1 we have

Yν(s) = −Γ(ν)

π

(s
2

)−ν
+O(sν). (3.73)

As s→∞, we have

Jν(s) =

(
2

πs

)1/2

cosω
(
1 +O

(
s−1
))
, Yν(s) =

(
2

πs

)1/2

sinω
(
1 +O

(
s−1
))
,

(3.74)
where ω = s− νπ

2 − π
4 . See for instance [17, formulas 10.7.3–4, 10.17.3–4].

From this, it follows that

Jν(s)2 + Yν(s)2 =
Γ(ν)2

π2

(s
2

)−2ν
+O(1), s→ 0,

Jν(s)2 + Yν(s)2 =
2

πs
+O

(
s−2
)
, s→∞.

(3.75)

From (3.75), we claim that there exist two constants C1,ν , C2,ν > 0 such that

C1,ν
s−2ν

1 + s1−2ν
≤ Jν(s)2 + Yν(s)2 ≤ C2,ν

s−2ν

1 + s1−2ν
, s > 0.

Using a similar argument, we have

|Jν(s)| ≤ C3,ν
sν

1 + s1/2−ν
,

and also

|Jν(s) cos νπ − Yν(s) sin νπ| ≤ C4,ν
s−ν

1 + s1/2−ν
,

and putting all the estimates together we get the bounds in the lemma.

As a consequence of Lemma 3.18 and Lemma 3.19 we obtain the following bounds
for j1 and j2 for y > 0:

|j1(iy)| ≤ Cν
2e−2nReϕ−(iy)

√
2nπ

(nπy)ν(1 + (nπy)1−2ν)

1 + (nπy)1/2−ν
,

|j2(−iy)| ≤ C ′ν
2e−2nReϕ−(−iy)

√
2nπ

(nπy)3ν(1 + (nπy)1−2ν)

1 + (nπy)1/2+ν
.

(3.76)

Next, we need an estimate for D1(z) (see formula (3.32)), with z = iy, y ∈ [−ρ, ρ]
where we recall that ±iρ is the intersection of the lens with the imaginary axis.
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Lemma 3.20. For 0 < ν ≤ 1/2, there exists a constant Cν such that for all sufficiently
large n,

|D1(iy)|2 ≤ Cν
n1/2−ν |y|−ν

1 + (n|y|)1/2−ν , y ∈ [−ρ, ρ]. (3.77)

Proof. We write first z = iy with y > 0 in (3.32) and use the parity of the function Wn

to get the following expression:

D1(iy) = exp

(
y(y2 + 1)1/2

2π

∫ 1

0

logWn(x)√
1− x2

dx

x2 + y2

)
. (3.78)

Using the asymptotic expansions (3.72), (3.73) and (3.74), we claim that there exist two
constants C1 and C2, depending on ν, such that Wn(x) satisfies

Wn(x) ≤ C1|x|−1/2, |nπx| ≥ 1,

and
Wn(x) ≤ C2n

1/2−ν |x|−ν , |nπx| ≤ 1.

Since ν ≤ 1/2, both bounds hold uniformly for nπx > 0. Since the integrand in
(3.78) is a real function, we can bound D1(iy) from above by another Szegő function:

D1(iy)2 ≤ D(iy;C1|πx|−1/2)2 = C1π
−1/2D(iy; |x|−1/2)2.

This last Szegő function is explicit, since for a general exponent α > −1 we have

D(z; |x|α) =

(
z

z +
√
z2 − 1

)α/2
. (3.79)

As a consequence, substituting z = iy with y ∈ [−ρ, ρ], and α = −1/2,

D1(iy)2 ≤ C1(ny)−1/2(y +
√
y2 + 1)1/2 ≤ C1

(
ρ+

√
ρ2 + 1

)1/2
(ny)−1/2,

and by the same argument with α = −ν,

D1(iy)2 ≤ C2n
1/2−νy−ν(y +

√
y2 + 1)ν ≤ C2

(
ρ+

√
ρ2 + 1

)ν
n1/2−νy−ν .

The bound in the lemma follows for y > 0 from these two estimates, for some constant
Cν . Finally, from the definition of D1, see (3.32), we have that if y < 0, then D1(iy) =
D1(−iy), so the modulus is equal and the bound holds also in this case.

Now we write together all the estimates computed before to obtain bounds for the
functions η1 and η2 defined in (3.59).

Lemma 3.21. For 0 < ν ≤ 1/2, there exist constants Cν , C
′
ν > 0 such that for n large

enough and y ∈ [0, ρ], we have the bounds

|η1(iy)| ≤
∣∣j1(iy)(D1(iy)D2(iy))2

∣∣ ≤ Cν yν e−2nReϕ−(iy), (3.80)

|η2(−iy)| ≤
∣∣j2(−iy)(D1(−iy)D2(−iy))2

∣∣ ≤ C ′ν (n2νyν + ny1−ν) e−2nReϕ−(−iy). (3.81)
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Proof. We collect the results on D1 (see formula (3.77)), D2 (we use the fact that this
function does not depend on n and formula (3.44)), j1 and j2 (formula (3.76)). Then for
some constant C1,ν we simplify the bound to

|η1(iy)| ≤ C1,νy
ν 1 + (ny)1−2ν

(1 + (ny)1/2−ν)2
e−2nReϕ−(iy) ≤ Cνyνe−2nReϕ−(iy).

Also,

|η2(−iy)| ≤ C2,νn
2νyν

1 + (ny)1−2ν

(1 + (ny)1/2+ν)(1 + (ny)1/2−ν)
e−2nReϕ−(−iy)

≤ C ′νn2νyν(1 + (ny)1−2ν)e−2nReϕ−(−iy),

and the result follows.

3.8.4 Estimates for ‖K1‖ and ‖K2‖ as n→∞
In order to estimate the norms of K1 and K2 we need the ‖ · ‖2 norm of η1 and η2, see
formula (3.66). For this we use the estimate in Lemma 3.21 and the following bound on
ϕ(z):

Lemma 3.22. For every s ∈ iR we have

Reϕ+(s) = Reϕ−(s) = −|s| log |s|+ |s| log(1 +
√

1 + s2) + log(|s|+
√

1 + s2)

≥ |s| log
1

|s| .
(3.82)

Proof. We consider Reϕ−(s) with s ∈ iR+. The other cases follow by symmetry. Let
x ∈ (0, 1). Then by (3.15) and (3.20),

ϕ±(x) = ±πi
∫ 1

x
ψ(t)dt,

and so ϕ′+(x) = −πiψ(x). By analytic continuation we find

ϕ′(z) = −πiψ(z), Re z > 0, Im z > 0.

Then

ϕ−(s) = ϕ+(x) +

∫ s

x
ϕ′(z)dz = ϕ+(x)− πi

∫ s

x
ψ(z)dz.

Since ϕ+(x) is purely imaginary, we obtain by taking the real part and letting x→ 0+,

Reϕ−(s) = Imπ

∫ s

0
ψ(z)dz = Im

∫ s

0
log

(
1 + (1− z2)1/2

z

)
dz,

where we used (2.10) for ψ. The integral can be evaluated explicitly and it gives (3.82).
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Without loss of generality we assume in what follows that ρ is small enough so that
|s| log 1

|s| > 0 for s ∈ (−iρ, iρ).

In order to estimate integrals involving the functions ϕ±(z), we use (3.82), together
with the following technical lemma.

Lemma 3.23. For any α > −1, there exists a constant C = Cα such that for n large
enough ∫ 1/e

0
yαe
−4ny log 1

y dy ≤ C(n log n)−α−1. (3.83)

Proof. We split the integral into two parts and we estimate∫ 1/e

0
yαe
−4ny log 1

y dy =

∫ 1/
√
n

0
yαe
−4ny log 1

y dy +

∫ 1/e

1/
√
n
yαe
−4ny log 1

y dy

≤
∫ 1/

√
n

0
yαe−4yn logn dy +

∫ 1/e

1/
√
n
yαe−2

√
n logn dy. (3.84)

where for the second integral we used that −y log 1
y is decreasing on [0, 1e ] and so

−y log 1
y ≤ 1√

n
log
√
n for y ∈ [ 1√

n
, 1e ]. The first integral of (3.84) is estimated by ex-

tending the integral to +∞ and the result is that it is O((n log n)−α−1) as n→∞. The
second integral in (3.84) is O(e−c

√
n) as n→∞. This gives the result.

Combining the estimates in (3.80), (3.81), (3.82) and (3.83) we obtain, whenever
2ε < 1

e ,∫ 2ε

0
|η1(iy)|2dy = O(n−2ν−1(log n)−2ν−1),

∫ 2ε

0

|η1(iy)|2
y

dy = O(n−2ν(log n)−2ν),

(3.85)
and∫ 2ε

0
|η2(−iy)|2dy = O(n2ν−1(log n)−2ν−1),

∫ 2ε

0

|η2(−iy)|2
y

dy = O(n2ν(log n)−2ν),

(3.86)
as n → ∞. To obtain (3.86) one has to consider the three different integrals coming
from square of the factor n2νyν + ny1−ν in (3.80)–(3.81), and retain the largest one.

Hence, using (3.66) and (3.85)-(3.86) we have the bounds

‖K1‖ ≤
(∫ 2ε

0

|η1(iy)|2
y

dy

)1/2

= O(n−ν(log n)−ν),

‖K2‖ ≤
(∫ 2ε

0

|η2(−iy)|2
y

dy

)1/2

= O(nν(log n)−ν).

(3.87)

Thus K1 and K2 are bounded operators between the Hilbert spaces L2([0, 2iε]) and
L2([−2iε, 0]). In addition from (3.87), we get

‖K1K2‖ ≤ ‖K1‖ ‖K2‖ = O((log n)−2ν), n→∞, (3.88)
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and similarly
‖K2K1‖ = O((log n)−2ν), n→∞. (3.89)

3.8.5 Proof of Lemma 3.16

Proof. It follows from (3.88) and (3.89) that the operators I −K2K1 and I −K1K2 are
invertible for n large enough, and then we can solve the equations (3.64) and (3.65).
Thus we define the entries of the matrix P̂ as follows:

P̂11 = (I −K2K1)
−11, P̂12 = K1P̂11 (3.90)

P̂21 = K2P̂22, P̂22 = (I −K1K2)
−11. (3.91)

In (3.90) and (3.91) we use 1 to denote the identically-one function in L2([0, 2iε]) and
L2([−2iε, 0]), respectively. Then (3.64) and (3.65) hold true, which means that the
equations in (3.61) hold. This then also means that the jump condition (3.58) in the
RH problem 3.15 is satisfied.

The equations (3.61) allow us to give estimates on P̂ (z). First of all we obtain from
(3.88)-(3.89), (3.90), and (3.91) that

‖P̂11‖L2([0,2iε]) = O(1), ‖P̂22‖L2([−2iε,0]) = O(1), (3.92)

and then by (3.87)

‖P̂12‖L2([−2iε,0]) ≤ ‖K1‖ ‖P̂11‖L2([0,2iε]) = O(n−ν(log n)−ν), (3.93)

‖P̂21‖L2([0,2iε]) ≤ ‖K2‖ ‖P̂22‖L2([−2iε,0]) = O(nν(log n)−ν). (3.94)

For pointwise estimates we use the distances

d+(z) = dist(z, [0, 2iε]), d−(z) = dist(z, [−2iε, 0]).

Then by the first equation in (3.61), we get for z ∈ C \ [−2iε, 0],

|P̂11(z)− 1| ≤ 1

2πd−(z)

∣∣∣∣∫ 2iε

0
η2(s)P̂12(s)ds

∣∣∣∣ ≤ 1

2πd−(z)
‖η2‖2 ‖P̂12‖2

where we used the Cauchy-Schwarz inequality, and ‖ · ‖2 is the L2 norm on [−2iε, 0].
Thus by (3.86) and (3.93),

|P̂11(z)− 1| = 1

d−(z)
O
(
n−1/2(log n)−2ν−1/2

)
, (3.95)

as n→∞, uniformly for z ∈ C \ [−2iε, 0]. Using similar arguments, we obtain

|P̂12(z)| =
1

d+(z)
O
(
n−ν−1/2(log n)−ν−1/2

)
, (3.96)

|P̂21(z)| =
1

d−(z)
O
(
nν−1/2(log n)−ν−1/2

)
, (3.97)

|P̂22(z)− 1| = 1

d+(z)
O
(
n−1/2(log n)−2ν−1/2

)
, (3.98)
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as n → ∞, and the O terms are uniform in z. Observe that all O terms tend to 0 as
n→∞, since ν ≤ 1/2.

It follows from (3.95)–(3.98) that P̂ (z) = I + O(z−1) as z → ∞ and therefore P̂
satisfies the RH problem 3.15. For |z| = 3ε we have d±(z) ≥ ε. From (3.95)–(3.98)
we then immediately find that the estimates in Lemma 3.16 hold, and the lemma is
proved.

This also completes the proof of Proposition 3.14.

3.9 Final transformation

Having P as in Proposition 3.14 we define the final transformation Q 7→ R as

R(z) =

{
Q(z), for |z| > 3ε,

Q(z)P (z)−1, for |z| < 3ε.
(3.99)

Recall that Q is the solution of the RH problem 3.12.
Then R has jumps on a contour ΣR that consists of ΣQ \ (−iε, iε) together with the

circle of radius 3ε around 0, see Figure 5. Note that the jumps of P and Q coincide on
(−iε, iε), so that R has an analytic continuation across that interval.

From RH problem 3.12 and the definition (3.99) it follows that R satisfies the fol-
lowing RH problem.

RH problem 3.24. 1) R : C \ ΣR → C2×2 is analytic.

2) R satisfies the jump condition R+ = R−JR on ΣR where

JR(z) =


JQ(z) for z ∈ ΣR with |z| > 3ε,

P (z)−1 for |z| = 3ε,

P−(z)JQ(z)P−1+ (z) for z ∈ (−3iε,−iε) ∪ (iε, 3iε).

(3.100)

3) As z →∞,
R(z) = I +O(1/z).
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In order to solve this RH problem asymptotically for large n, we need to show that
the jump matrices for R(z) are close to the identity matrix uniformly for z ∈ ΣR, see
Figure 5.

Lemma 3.25. The jump matrix JR in the RH problem for R satisfies for some constant
c > 0,

JR(z) =


I +O(εn), for |z| = 3ε,

I +O(1/n), for |z ± 1| = δ,

I +O(e−cn), elsewhere on ΣR,

(3.101)

as n→∞, where the O terms are uniform.

Proof. For z ∈ ΣR with |z| > 3ε, we have JR(z) = JQ(z). On the boundary of the disks
around the endpoints we have JQ(z) = I + O(n−1), see (3.51) and on the rest of ΣR

except (−iρ, iρ) we have JQ(z) = I +O(e−cn) for some c > 0, see (3.52).
On the circle |z| = 3ε, the jump is JR(z) = P (z)−1. We use (3.56) and the fact that

P̂ (z) = I +O(εn), uniformly for |z| = 3ε, to find that

JR(z) = P (z)−1 = I +O(εn),

as given in (3.101).
For z ∈ (3iε, iρ) we get from (3.100) and (3.53)

JR(z) = JQ(z) = Dσ3
∞N0(z)

(
1 0

j1(z)(D1(z)D2(z))
2 1

)
N−10 (z)D−σ3∞ .

From (3.80) and (3.82), we obtain for y ∈ [0, ρ],

|j1(iy)(D1(iy)D2(iy))2| ≤ Cνyνe−2ny, Cν > 0, (3.102)

We also use (3.36) and then (3.101) for z ∈ (3iε, iρ) follows. The case z ∈ (−iρ,−3iε)
can be handled in a similar way.

What is left are the intervals (iε, 3iε) and (−3iε,−iε). For z ∈ (iε, 3iε) we find from
(3.100) and (3.56) that

JR(z) = Dσ3
∞N0(z)

(
0 −1
1 0

)
P̂−(z)

(
1 −j1(z)(D1(z)D2(z))

2

0 1

)
× P̂−1+ (z)

(
0 1
−1 0

)
N0(z)

−1D−σ3∞ .

Using (3.57)-(3.58) we rewrite this as

JR(z) = I − j1(z)(D1(z)D2(z))
2(1− χ(z))Dσ3

∞N0(z)

(
0 −1
1 0

)
P̂+(z)

(
0 1
0 0

)
× P̂−1+ (z)

(
0 1
−1 0

)
N0(z)

−1D−σ3∞ . (3.103)
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Here we note that det P̂ (z) = 1, which follows by standard arguments from the RH

problem 3.15, and therefore P̂−1+ =

(
P̂22 −P̂12

−P̂21 P̂11

)
+

. Then a little calculation shows

that (3.103) reduces to

JR(z) = I + j1(z)(D1(z)D2(z))
2(1− χ(z))Λ(z), z ∈ (iε, 3iε), (3.104)

where

Λ(z) = Dσ3
∞N0(z)

(
−P̂11(z)P̂21(z) −P̂21(z)

2

P̂11(z)
2 P̂11(z)P̂21(z)

)
N−10 (z)D−σ3∞ .

The functions P̂11 and P̂21 are analytic on (iε, 3iε) and so we do not have to take the
+-boundary value.

Then it follows from (3.36) and the estimates in (3.95) and (3.97) that all entries in
Λ are uniformly bounded as n → ∞. Then by (3.80) and (3.104) we find (3.101) for
z ∈ (iε, 3iε). A similar argument shows that JR(z) is exponentially close to the identity
matrix for z ∈ (−3iε,−iε) as well, and the lemma follows.

As a consequence of (3.101), the biggest estimates for JR−I are on the circle |z| = 3ε.
For 0 < ν ≤ 1/2, the jump matrix satisfies (recall εn is given by (2.3))

JR(z) = I +O(εn), n→∞, (3.105)

uniformly for z ∈ ΣR where ΣR is the union of contours depicted in Figure 5. Note that
JR(z)→ I as n→∞, but the rate of convergence is remarkably slow.

Following standard arguments, we now find that for n sufficiently large, the RH
problem 3.24 for R is solvable, and

R(z) = I +O(εn), n→∞, (3.106)

uniformly for z ∈ C \ ΣR. The convergence rate in (3.106) may not be optimal, since
some of the bounds in the analysis may not be as sharp as possible. Note that for
ν = 1/2 we only have R(z) = I +O( 1

logn), which is a very slow convergence.
Since all of the transformations X 7→ U 7→ T 7→ S 7→ Q 7→ R are invertible, we then

also find that the RH problem for X is solvable for n large enough. In particular we find
that the polynomial Pn = X11 exists for n large enough.

4 Proofs of the Theorems

4.1 Proof of Theorem 2.6

Proof. Following the transformations of the Deift–Zhou steepest descent analysis and
using formula (3.106), we obtain asymptotic information about P̃n(z) = U11(z) in the
complex plane, see (3.14) and (2.4). Consider the region in Figure 5 which is outside
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the lens and outside of the disks around z = ±1. In this case U11(z) = T11(z)e
ng(z), and

by (3.21), (3.26), (3.50), (3.99),

T (z) = S(z) = Q(z)N(z) = R(z)N(z),

which means that

P̃n(z)e−ng(z) = T11(z) = R11(z)N11(z) +R12(z)N21(z)

= N11(z)(1 +O(εn)) +N21(z)O(εn),
(4.1)

using (3.106). Here εn is given again by (2.3). We observe thatN11 = D∞N0,11(D1D2)
−1,

from (3.45), and using (3.35), (3.36), (3.41) and (3.47) we get

N11(z) =

(
z(z + (z2 − 1)1/2)

2(z2 − 1)

)1/4(
(z2 − 1)1/2 − i
(z2 − 1)1/2 + i

)−ν/4(
1 +O

(
log n

n

))
, (4.2)

as n→∞. Similarly, we also see that N21(z) = O(1) as n→∞ and (2.9) follows.
Since the lens can be taken arbitrarily close to the interval [−1, 1] and the disks

can be taken arbitrarily small, the asymptotics (2.9) is valid uniformly on any compact
subset of C \ [−1, 1]. This proves Theorem 2.6.

4.2 Proof of Theorem 2.7

Proof. Inside the lens, but away from the endpoints and the origin, we use the relation
(3.26) between the functions T (z) and S(z). Let z be in the lens with Re z > 0. Then
we have

T11(z) = S11(z)± S12(z)
e
νπi
2
−2nϕ(z)

Wn(z)
,

for ± Im z > 0, and therefore

P̃n(z) = eng(z)T11(z) = eng(z)

[
S11(z)± S12(z)

e
νπi
2
−2nϕ(z)

Wn(z)

]
.

Since S(z) = Q(z)N(z) away from the endpoints, and Q(z) = R(z) away from the origin
(if |z| > 3ε), see (3.50) and (3.99), we obtain

P̃n(z) = eng(z)

[
N11(z)±N12(z)

e
νπi
2
−2nϕ(z)

Wn(z)
+O(εn)

]
. (4.3)

for Re z ≥ 0, and ± Im z > 0.
We are going to simplify the expression (4.3) and we do it for Re z > 0, Im z > 0.

First we use (3.18), (3.19), and (3.17) in (4.3) to get

P̃n(z) =
e
nπz
2

(2e)nWn(z)1/2

[
N11(z)Wn(z)1/2enϕ(z) +

N12(z)

Wn(z)1/2
e
νπi
2
−nϕ(z) +O(εn)

]
. (4.4)

36



From (3.45) we have N11 = D∞N0,11(D1D2)
−1, N12 = D∞N0,12D1D2 and so

P̃n(z) =
D∞e

nπz
2

+ νπi
4

(2e)nWn(z)1/2

[
N0,11(z)Wn(z)1/2

D1(z)D2(z)
e−

νπi
4

+nϕ(z)

+
N0,12(z)D1(z)D2(z)

Wn(z)1/2
e
νπi
4
−nϕ(z) +O(εn)

]
. (4.5)

Next we use (3.47) to write

N0,11(z) = e−
πi
4

f(z)1/2√
2(1− z2)1/4

, N0,12(z) = e
πi
4

f(z)−1/2√
2(1− z2)1/4

,

where (1− z2)1/4 denotes the branch that is real and positive for −1 < z < 1 and f(z)
is given by (3.48). Thus

P̃n(z) =
D∞e

nπz
2

+ νπi
4√

2(2e)n(1− z2)1/4Wn(z)1/2

×
[(

f(z)1/2Wn(z)1/2

D1(z)D2(z)
enϕ(z)−

νπi
4
−πi

4 +
D1(z)D2(z)

f(z)1/2Wn(z)1/2
e−nϕ(z)+

νπi
4

+πi
4

)
+O (εn)

]
.

(4.6)

The two terms in parenthesis are inverse of each other. We write all contributing
factors in exponential form. We have by (3.20), (3.15) and (3.42)

enϕ(z) = exp(πin

∫ 1

z
ψ(s)ds) (4.7)

D2(z)e
νπi
4 = exp

(
−νπ

2
ψ(z)

)
(4.8)

for Re z > 0, Im z > 0, and we note that by (3.25) and (3.35)

Wn(z)1/2

D1(z)
= f(z)−1/4

(
1 +O

(
log n

n

))
(4.9)

as n→∞. Finally, we write

f(z)1/2 = e
i
2
arccos z, Im z > 0 (4.10)

and inserting (4.7)–(4.10) into (4.6) we find (2.12), where we also use (3.25), (3.36) to
simplify the first factor.

A similar calculation leads to the same formula (2.12) for z ∈ E with Re z > 0 and
Im z < 0.
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4.3 Proof of Theorem 2.1

Proof. It follows from (4.1) and (4.2) that the leading factor in the outer asymptotics of
Pn(inπz) does not vanish for z ∈ C \ [−1, 1].

Let P̃n(z) = (inπ)−nPn(inπz) be the monic polynomial. Then we find from (2.8)
that

lim
n→∞

1

n
log |P̃n(z)| = Re g(z) =

∫ 1

−1
log |z − x|ψ(x)dx, (4.11)

uniformly for z in compact subsets of C\[−1, 1]. This implies that for any given compact
subsetK ⊂ C\[−1, 1], the polynomial P̃n does not have any zeros inK for n large enough.
In other words, all zeros of P̃n tend to the interval [−1, 1] as n→∞.

In addition we find from (4.11) that the zeros of P̃n have ψ(x) as limiting density.
This follows from standard arguments in potential theory, see e.g. [19]. This proves
Theorem 2.1.

4.4 Proof of Theorem 2.2

Let E be the neighborhood of (−1, 1) as in Theorem 2.7. Theorem 2.2 will follow from
the asymptotic approximation (4.3) that is valid uniformly for z in

Eδ = E \ (D(−1, δ) ∪D(0, δ) ∪D(1, δ))

with Re z ≥ 0.

Lemma 4.1. There is a constant C > 0 such that for large n all zeros in Eδ satisfy∣∣∣Re
νπ

2
ψ(z)− Im θn(z)

∣∣∣ < Cεn. (4.12)

Proof. It is enough to consider Re z ≥ 0.
Let

Fn(z) = exp
(νπ

2
ψ(z) + iθn(z)

)
Then by (2.12) we have that zeros of P̃n in Eδ with Re z > 0 are in the region where

Fn(z)

(
1 +O

(
log n

n

))
+ Fn(z)−1

(
1 +O

(
log n

n

))
= O(εn).

This leads to
Fn(z) + Fn(z)−1 = O(εn),

and so there is a constant C > 0 such that all zeros in Eδ satisfy

|Fn(z) + Fn(z)−1| ≤ Cεn (4.13)

if n is large enough.
Note that

|Fn(z)| = exp
(

Re
νπ

2
ψ(z)− Im θn(z)

)
.
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Thus if (4.12) is not satisfied then either |Fn(z)| ≥ exp(Cεn) or |Fn(z)| ≤ exp(−Cεn).
In both cases it follows that

|Fn(z) + Fn(z)−1| ≥ eCεn − e−Cεn ≥ 2Cεn.

Because of (4.13) this cannot happen for zeros of P̃n in Eδ if n is large enough, and the
lemma follows.

The lemma is the main ingredient to prove Theorem 2.2.

Proof of Theorem 2.2. In the proof we use c1, c2, . . ., to denote positive constants that
do not depend on n or z. The constants will depend on δ > 0.

It is easy to see from the definition (2.11) that θ′n(x) ≤ c1n < 0 for x ∈ (0, 1 − δ)
This implies that for some constant c2 > 0

Im θn(z)

{
≤ −c2n Im z for z ∈ Eδ,Re z > 0, Im z ≥ 0

≥ c2n| Im z| for z ∈ Eδ,Re z > 0, Im z < 0
(4.14)

There are also constants c3, c4 > 0 such that

c3 < Re
νπ

2
ψ(z) < c4, z ∈ Eδ,Re z > 0, (4.15)

see (2.10). Thus if Im z ≥ 0 then by (4.14) and (4.15)∣∣∣Re
νπ

2
ψ(z)− Im θn(z)

∣∣∣ ≥ c2n Im z + c3 ≥ c3 > 0

and thus there are no zeros in Eδ with Im z ≥ 0 by Lemma 4.1 if n is large enough.
For Im z ≤ 0 we have by (4.14) and (4.15)∣∣∣Re

νπ

2
ψ(z)− Im θn(z)

∣∣∣ ≥ c2n| Im z| − c4

It follows from this and Lemma 4.1 that for large n, there are no zeros with Im z ≤ − c5
n

if c5 > c4/c2.
Now assume z ∈ Eδ with − c5

n < Im z < 0 and Re z > 0. Write z = x+ iy. Then by
Taylor expansion

νπ

2
ψ(z) =

νπ

2
ψ(x) +O(1/n)

and, see also (2.11),

θn(z) = θn(x) + iyθ′n(x) +O(1/n)

= θn(x)− iynπψ(x) +O(1/n)

and O terms are uniform for z in the considered region.
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Then since ψ(x) and θn(x) are real, we have

Re
νπ

2
ψ(z)− Im θn(z) =

νπ

2
ψ(x) + ynπψ(x) +O(1/n)

=
(ν

2
+ ny

)
πψ(x) +O(1/n)

Thus if |ν2 + ny| ≥ c6εn then by the above and (4.15)∣∣∣Re
νπ

2
ψ(z)− Im θn(z)

∣∣∣ ≥ 2c6c3
ν

εn +O(1/n)

and from Lemma 4.1 it follows that z = x+ iy is not a zero if c6 is large enough.
Thus for large n all zeros z = x+ iy of P̃n in Eδ satisfy∣∣∣ν

2
+ ny

∣∣∣ ≤ c6εn.
Then inπz is a zero of Pn, see (2.4), and the real part of this zero is −nπy which differs
from νπ

2 by an amount less than πc6εn. This proves Theorem 2.2.
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