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Abstract

In the framework of multidimensional Compressed Sensin§)(Qve introduce an analytical reconstruction
formula that allows one to recover a¥ith-order data tensgK € R+ *2x>I~ from a reduced set of multi-way
compressive measurements by exploiting its low multilireak structure. Moreover, we show that, an interesting
property of multi-way measurements allows us to build tle@nstruction based on compressive linear measurements
taken only in two selected modes, independently of the teoster V. In addition, it is proved that, in the matrix
case and in a particular case withd-order tensors where the same 2D sensor operator is dgpliall mode-3
slices, the proposed reconstructify. is stable in the sense that the approximation error is coamparto the
one provided by the best low-multilinear-rank approximatiwherer is a threshold parameter that controls the
approximation error. Through the analysis of the upper boofnthe approximation error we show that, in the 2D
case, an optimal value for the threshold parameterr, > 0 exists, which is confirmed by our simulation results.
On the other hand, our experiments on 3D datasets show thagweed reconstructions are obtained using: 0,
which means that this parameter does not need to be tune@x@unsive simulation results demonstrate the stability
and robustness of the method when it is applied to real-w&ibléind 3D signals. A comparison with state-of-the-arts
sparsity based CS methods specialized for multidimenkgigaals is also included. A very attractive characteristi
of the proposed method is that it provides a direct comprati.e. it is non-iterative in contrast to all existing
sparsity based CS algorithms, thus providing super fastpcations, even for large datasets.

Index Terms

Compressed Sensing (CS), Kronecker-CS, Low-rank tengmoajmation, Multi-way analysis, Tucker model.

. INTRODUCTION

URING the last years there has been an increased interé&Sonmpressed Sensir(¢S), whose aim is the

reconstruction of signals based on a set of measuremerttssthraich smaller than the original signal size.
Thus, instead to acquire a potentially large signal and cesgit, CS suggests that signals can be compressively
sampled thus reducing the amount of measurements. Moréfisplhyg, in standard CS[1],[]2], a signat € R",
which is assumed unavailable, is reconstructed from a extlset ofim linear projections/p < n) w = &x € R™,
where the sensing matrik € R"*" is typically random or composed by few selected rows of therieo transform
matrix [3]. In order to make the CS problem solvable, it ises=ary to exploia priori information about the signal
of interestx by imposing some constraints. For example, it is widely as=ilithat the signak is compressible
by decomposing it in a known Wavelet bastiictionary). In other words, it is assumed that every signal admits
a sparserepresentation on a given dictionary, i.e. combining oely £lements, calledtoms Under the scope of
thesesparse modelanany efficient CS algorithms were developed in order tomstract signals from compressive
measurements which involve iterative refinements of thetsw by means oGreedy algorithmr by minimizing
the ¢1-norm of the solution (seél[4] for an up to date summary of dtlgms). These algorithms have found many
applications in diverse fields such as in medical imagingyeiliance, machine learning, eic| [5].
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A. Multidimensional CS

Most of the development of CS was focused on problems inngl¢D signal or 2D image data encoded in vectors.
However, many important applications involve higher disienal signals otensors Some data sources are readily
generated as tensors such as hyperspectral images, \@izbght field displays[[6], Magnetic Resonance Imaging
(MRI) [7], etc., in other cases, tensors can be syntheficakated by a rearrangement of lower dimensional data
structures or by mathematical construction [8]. In someliegions, like in materials sciencgl[9] or in scientific
computation [[1D], the exponential increase in memory ante trequirements when the number of dimensions
increases, makes impossible to work with full datasets aodats with few parameters must be used. Such models
are referred as tensor decompositions, which can be obtéyenaking few inspections of the full-datasets or by
taking compressive measurements.

Recently, the Kronecker-CS model[11] has been proposeddierdo provide a practical implementation of CS
for higher order tensors by exploiting their multidimensab structure. This model explicitly assumes that multidi-
mensional signals have sparse representations usingabépdictionaries, usually known &onecker dictionaries
Kronecker bases are well known and widely used in image geicg, for example, given a 30/, x Iy x I3)
image, its associated dictionaly € RI\/2lsxli:Is s D = D3 @ Dy ® Dy whereD,, € R»*I» (n = 1,2,3) are
small dictionaries associated to columns (mode-1), ronwsd@¥?) and tubes (mode-3), respectively. Moreover, when
working with multidimensional signals, the Kronecker sture also arises naturally in the physical implementation
of the sensing devices since they can operate on differemriions or modes of the signal, independently, through
separated sensing matrices|[11],1[12]. This Kroneckerctire of the sensing operator/dictionary is equivalent to
apply the constrained Tucker model[13] and made possiblmpbement relatively fast and practical algorithms
based on sparsity structures, e.g., on hyperspectral 3Pesnand video data through a vectpmorm minimization
algorithm [11]. More recently, greedy algorithms, esplbgidesigned to take advantage of the Kronecker structure
and block sparsity of the representations, were proposgBinand applied to a variety of multidimensional signal
processing problems such as in MRI, hyperspectral imagiyraultidimensional inpaintind [14]. Also, in [15],
the authors developed generalized tensor compressedhgeaigorithms by exploiting the Kronecker structure in
a similar way as done in_[13]._[16] but using @&tminimization approach.

B. Exploiting low-rank approximations instead of sparsity

While sparsity is the “working horse” of standard CS, rebemrt new line of research has been proposed
suggesting that, instead of using sparse modets@#ori information about multidimensional signals, the low-rank
approximation property could be exploited, i.e. withouy anpriori knowledge about the possible bases or factor
matrices for each mode (dictionaries). This idea was firptard in [17], where matrices were reconstructed from
its under-sampled measurements by solely assuming theeesés of a low-rank approximation and by solving
a convex optimization problem involving the matrix nuclearm. These ideas have been extended to tensors,
by considering different models for the measurements afmgugnsor low-rank approximations (based on the
CANDECOMP/PARAFAC (CP) model) or low-multilinear-rank mximations (based on the Tucker model). For
example, in[[18], tensor completion of visual data was aredyby generalizing the minimization of matrix nuclear
norm to the tensor case. [n [19], also the problem of estirgatiissing entries in tensors was considered by assuming
that a low-rank CP model is fitted through a weighted leastiszgiproblem formulation. In_[20], hyperspectral
images (3D tensors) are recovered from random linear grojexcof all channels by using a reconstruction algorithm
that combines low-rank and join-sparse matrix recovery2lij the problem of reconstructing tensors having a low
multilinear-rank Tucker model, based on a set of linear meaments, was investigated and used for tensor denoising
via an iterative multilinear-rank minimization method. thne context of optical-interferometric imaging, in [22], a
method for recovering a supersymmetric rank-1 3D tensanfeoset of multilinear measurements was proposed
by using a convex linear program. In [23], the Kronecker senstructure was used for tensor compression and a
method involving a low-rank model fitting, followed by a peode ¢;/¢; decompression, was proposed in order
to recover a low-rank CP tensor with sparse factors. We tef@ablel] for a brief summary of recent approaches
to CS involving tensor datasets, where the differences anilasities among the methods are highlighted.

In this work, we extend the ideas and results of our recenfetence paper [24], providing a direct (i.e.,
analytical) reconstruction formula that allows us to remoa tensor from a set of multilinear projections that are
obtained by multiplying the data tensor by a different segsnatrix in each mode. This model comes into scene
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TABLE |

SUMMARY AND COMPARISON OF AVAILABLE APPROACHES TOCSFOR TENSOR DATASETS

Articles Tensor Data Model M easurements M odel Algorithm type
order
Duarte et al[[I1] N >2 Sparsity, Kronecker dictionarieg Multilinear £1-norm minimization
Caiafa et al[[1B], N >2 Sparsity, Block-sparsity, Kro Multilinear Greedy
necker dictionaries
Li et al [15] N>2 Sparsity, Kronecker dictionarieg Multilinear £1-norm minimization
Candes et al[17] N = Low-rank matrix Linear (missing entries Nuclear norm minimization
Liu et al [18] N=3 Low-rank (CP model) Linear (missing entries Tensor nuclear norm mini
mization
Acar et al [19] N=3 Low-rank (CP model) Linear (missing entries Weighted Least Squares
Golbabaee et a N=2 Joint-sparsity, Low-rank matri Linear Nuclear norm, /2, mixed
[20] ces norm minimization.
Rauhut et all[21] N >3 Low multilinear-rank (Tucker Linear Iterative Hard Thresholding
model)
Auria et al [22] N=3 Rank-1 Tensor Multilinear Convex programming
Sidiropoulos et al N=3 Low-rank Sparse CP model Multilinear lo/€1-norm decompression
[23]
Current article N >2 Low multilinear-rank (Tucker Multilinear Non-iterative (direct) recon-
model) struction

naturally in many potential applications, for example, e tcase of sensing 2D or 3D images by means of a
separable operator as developedlinl [25], [26]) [11]] [13,, iby taking compressive measurements of columns,
rows, etc. separately, imposing a Kronecker structure ensensing operator. The key assumption is that our
multidimensional signal is well approximated by a low miifigar-rank Tucker model which is realistic for many
structured datasets, specially in the case of multidineeradiimages. We formulate our multidimensional CS model
in a general setting folV-th order tensors and provide theoretical stability arialgnd robustness evidence for
N =2 and a very important particular case with = 3.

A patrticularly distinctive and attracting feature of theoposed reconstruction method is that, unlike all other
methods listed in Tablé I, our method is non-iterative. Wiehe that the present mathematical model could be fully
exploited by the next generation of multidimensional coesgive sensors for very large datasets. Through extensive
simulations on real-world datasets, we also illustrate riflevance of our results in hyperspectral compressive
imaging for which the technology is already availaklel [12B], [12].

C. Paper organization

This paper is organized as follows: in Sectidn Il, tensoratioh, definitions and basic results used throughout the
paper, are introduced; in Sectibnl I, the reconstructimmiula is introduced for the ideal case when the tensor of
interest admits an exact low multilinear-rank represémain Sectior 1V, the effect of a more realistic model for
signals is analyzed and a modified reconstruction formutedposed in order to guarantee stable reconstructions; in
Sectiorl Y, several numerical results based on 2D and 3Dwed{ signals are provided, validating our theoretical
results and evaluating the stability and robustness of @apgsed reconstruction scheme. The performance is
evaluated in terms of computational time, quality of red¢arions and variance of the results over Monte Carlo
simulations (robustness). Finally, in sectlod VI, the meimclusions of the present work are outlined.

[I. NOTATION, DEFINITIONS AND PRELIMINARY RESULTS
A. Tensor notation and operations

Tensors (multi-way arrays) are denoted by underlined bokltcapital letters, e.&X € R/t */2xxI~ is an N-th
order tensor of real numbers. Matrices (2D arrays) are @ehby bold uppercase letters and vectors by boldface
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lower-case letters, e.X € R"**!> andx € R are a matrix and a vector, respectively. The elentént, ... ,iy)
of a tensor is referred as,;, ;.- The Frobenius norm is defined BX||r = \/Zil ---ZiN m?liz___m. The spectral

norm of a matrixA is denoted by||A|| corresponding to its largest singular value.

Given a tensoiX € RIxxxIv " jts moden fibers are the vectors obtained by fixing all indices exadgpt
which correspond to columns: (= 1), rows ¢ = 2), and so on. Moder unfolding of a tensoiX € R */2x-x Iy
yields a matrixX,,, € RInxIn (T, = Hm;én I,,) whose columns are the corresponding madibers arranged
in a particular order, to be more precise, tensor elenténts,...,iy) maps to matrix elementi,,j), where
§ =14 Y lic — )i with J, = TT5-L, I [27].

Given a multidimensional signal (tensaX) € R *22x*In gnd a matrix® € R/*/» the moden tensor by
matrix productY = X x,, ® € R xInixIxlupix-xIx s defined by:

ITI,
Yir i rfinsnmin = D Tiyoiyoing G 1)
in=1
with i, = 1,2, ... I (k#n)andj =1,2,...,J. It should be noted that this corresponds to the product dfixna
® by each one of the mode-fibers of X sinceY(,,) = ®X,).

B. Tucker model and multilinear-rank

The Tucker decomposition modf8] provides a generalization of the low-rank approximatof matrices to
the case of tensors, i.e. for a given tendore R *%2>*Ix we haveX = X, + E, whereE is an error tensor
and the multilinear-rank&,, Rs, ..., Ry) tensor approximatioX,, is defined as follows (Tucker model):

X =G x1 A1 X9+ Xy Ap, (2)

with a core tensorG € R xF=xxEx gndfactor matricesA,, € R»*f~ (typically R, < I,). A data tensor
X € Rivxl2xxIv s said to havenultilinear-rank(R1, Ry, ..., Ry) if such a decomposition is exact for a set of
minimal values(R1, Rs, ..., Ry), i.e. X = X,. We say that a tensdi ¢ R xFxxEx g fyll-rank if all its
unfolded matrices are full-rank, i.&ank(G(n)) = R,, Vn. A particularly interesting case of the Tucker model
is when factor matriced,, = U,, € R/»*F» are orthogonal and chosen as the truncated matrices ofirefiilar
vectors associated with the unfolding matridé{sﬂ) = UnZ}nVS. In this case, we obtain the so called truncated
Higher Order Singular Value DecompositigdOSVD) [2€]. It is noted that, in the matrix case, the truieceSVD
provides the best low rank approximation having orthogdaetors and a diagonal core matrix.

C. Multi-way Projections

While in classical 1D CS, the set of compressive measuresmisnbbtained by a linear projection, i.e. by
multiplying the vector signal by a sensing matrix, in thest@ncase, we can exploit its multi-way structure and use
devices that provide compressive measurements by muttgpn Nth-order tensor by sensing matrices in several
modes, similarly or identically to the Kronecker-CS sagtjil]. According to the definition of the modeproduct
in egn. (1), multiplying a data tensor by a sensing matrixhia moder corresponds to apply a projection to every
moden fiber. For example, a 2D signa € R’**/> can be compressively sensed by using two sensing matrices,
&, ¢ RfU>I and @, € R™*% for mode-1 and mode-2, respectively, i = X x; &; x, &y € RF1xF2 or,
equivalently, W = &, X&', orw = (®,0®1)"x, wherew € R*:#> andx € R"'’> are the vectorized versions of
matricesW andX, respectively. Thus, the objective of Kronecker-CS is tmxer the signaK from the measured
data matrixW.

In this paper, we assume that the following set of compressiviti-way measuremeng&™ € R % xR xlnxRoprxx Ry
(n=1,2,...,N), are available:

ZM) =X x; By Xg - X1 By Xpp1 By Xnga - Xy B, (3)

where®,, ¢ Rft»*I» (R, < I,,) are the corresponding modesensing matrices. Note that egil (3) indicates that
the original tensor is multiplied by the set of sensing neasiin all modes except in mode{see Fig[L (top)).
We also assume available the following core terf@dre R > Hzx xRy

W=Xx;®; x9--- xy Py, 4)
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Multiway compressive measurements of a 3D tensor

Z(1 Il><IQXI3 q)l(IlXIQ ><I3)
Ql @3
R3X13 (R1XI1) (Rg,XId)
(leRng3 IQXRQ)D‘I’ RlXIQXR?,)
Z(g) (Il><[2><]3) @1(11X12X13)
@ Q, W 2y 2
B = (RixD) (RsxIs)
(R1XR2X13) (R1><R2><R3)
(szRQ)D@QT (ngRg)chg
Perfect reconstruction of a multilinear rank-(R,, R, R;) 3D tensor
IlXIQ><I3 R1XR2XR3)
@ l Z3W 13 X Rg)
Q (ZoW3)T (Ry x I)
Z,W), (I, x Ry)

Fig. 1. Multi-way measurements and the reconstruction finfmtea low multilinear-rank 3D tensor.

which, in fact, is redundant since it can be computed fio and ®,, taking into account thatV = 7 %, &,
for any n.

Most of state-of-the-art tensor reconstruction algorghbased on Kronecker-CS J11], [13], [14], [22], [23]
assume that the only available measurement tens® jd.e. the product of the original dataset by the sensing
matrices®,, (n=1,2,3) in all modes simultaneously. On the other hand,pasent method requires to have the
set of tensor measurements obtained by multiplying thesd&taby all the sensing matrices except one, i.e. tensors
Z™ (n=1,2,3), not necessarily involving a larger amount of sueaments (see experimental comparison in Section
V-E). However, it is not difficult to see that already exigtihardware implementations of CS imaging systems can
be easily adapted in order to provide the kind of measuresneuofuired by our method. For example, in the 2D
case, our method proposes to collect measurements on celusing a common sensing mati, and rows using
®,. By using the same ideas of the single-pixel camera develop9] and used in[11], our sensing operator can
be obtained by using, for example, a linear array of DMDs {@aigMicroarray Devices) with random orientations
to sense columns and another linear array of DMDs to sens& ©w the other hand, it is also interesting to note
that in [25], a different hardware implementation was usedrbvide real Kronecker-CS, i.e., by applying different
sensing matrices to columns and rows which can be used taderttve measurements required by our method. It
is also interesting to note that, recently, inl[12], a newdiaare implementation has been proposed that allows to
employ Kronecker-CS with separable sensing operatorsanespnd in spectral domains which could be also used
to provide the measurements required by our method.

In some 3D applications, the modesensing matrix is the identity matrix, i.€@; = I € R%*/s, because the
same sensing operat¢P, @ ®;) is applied to each frontal slice of the tensor. This is theecésr instance, in
hyperspectral compressive imaging, where each frequeany (a frontal slice) is sensed by applying a different
selective filter [11], [[30]. This mathematical model is alagid for video sequences, where each frontal slice of
the tensor corresponds to a snapshot taken at a given time.

D. The Truncated Moore-Penrose Pseudo-inverse

It is well known that, by using the Moore-Penrose (MP) pseinderse of an ill-conditioned matriA € R* %z,
an unstable behavior is produced since the nan|| could be extremely large when the smallest singular value
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Omin (I,,1,) 1S Close to zero. In order to avoid this problem, thencated MP pseudo-invers@*- can be used as
a regularization technique, which is defined as follows [31]

W* = VS* U7, (5)

with entries of the diagonal matrig*- ¢ R2*!1 defined as follows:
ot = 1/0y, ?f o;>T ©)

0, if o; <7,

where is a free threshold parameter (see next sections). It isdribiet W*- — WT as7 — 0 and [[W*|| <
1/max (7,0r). Also, the following properties are easily verified:

WW*W =W + H, ()

with |[H|| <7 if 7> 0or, andH =0 if 7 < op;
W*WW* = W*  and (8)
[WW* || = [W*" W] = 1. 9)

The following lemma, provides a generalization of the propé7) to the3rd order tensor case.

Lemma I1.1. For a given tensoW ¢ R *R2xfs with smallest singular values in each madg,, og, andog,,
respectively, the following property holds:

W x4 W(l)W*T

1) X9 W(Q)W*T

2) X3 W(3)W*

3 = W+H, (10)
with

E = 97 |f T S g,

|IH|r < (VRi+VR;+VR3)r, ifr>7

where = max (og,) andg = min (og,) (n =1,2,3).

Proof. See proof in the Appendix A. O

I1l. EXACT LOW MULTILINEAR -RANK TENSOR RECOVERY

The following theorem provides an explicit reconstructfiormula, as illustrated in Fid.J1 (bottom), and states
the conditions under which the original tensor can be exaettovered from the set of multi-way measurements
Z™ (n=1,2,...,N) andW, defined in equation§}(3) andl (4), respectively.

Theorem 111.1 (Low multilinear-rank case). If tensorX € R1*%2>*In has multilinear-ranktRy, Ry . .., Ry)
and sensing matrice®, € Rf*~ are such that the tensoW = X x; ®;--- xy Py € R xR XX By jg
full-rank, then the following reconstruction formula isaex, i.e. X = X:

X =W x1 ZiW)) xa - xnx Zy W]y, (11)

where “I” stands for the MP pseudo-inverse of a matrix ag = (Z("))(n) € RI-*Ex | with R, =11 Ry,

Proof. Let us consider the exact HOSVD decompositln= T x; U; x5 --- xy Uy, with core tensol €
RFxR2xxBy gnd orthogonal factordJ, € R*%f» which exists because it is assumed that terXohas

m#n

multilinear-rank-R,, Rs, ..., Ry). We consider, for convenience, a change of bases suchhthatetv factorsA,,
satisfy ®,A,, = I € Rf»*E» We can do this by defining the new set of factors as follows:
An - Un(q)nUn)_la (12)

thus, we haveX = G x1 A1 X9--- Xy Ay WhereG = X x; AI Xg -+ XN Ajv = W. Note also that, with these
new bases, the multi-way measurements are now simplifi@ﬂb: W x, A, or, equivalentlyZ, = A, W,).
Taking into account thaW(l)WL)W(l) = W, the modet unfolded version of eqn[(11) is:

T
. — T T
X(l) = A1W(1) (ZNW(N) D ZZW(Q)) ) (13)
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which, can be written in terms of its associated madeafolding matrix as:
T
< i
X (o) = oWy Wo) (Za W]y @+ 0 ZsWiy @A)

Now, by substitutingZ,; = A, W y) in the previous equation and, by repeating this process Ifanadesn =
3,4,..., N, we finally arrive at:

A~

X(v) = ANW(y) (Avo1 @ @A), (14)
which proves thaX = X, sinceW = G. O

It is noted that, using a simplified notation, the Tucker mada tensor with sizd x I x I having multilinear rank
(R, R, R), requiresR® + 31 R parameters and the suggested reconstruction needs nohmasd 22 measurements
corresponding to tenso8™, n = 1,2, 3. This is larger than the number of parameters of the assatifiicker
model, however, ifR < I we see that the number of measurements is approxim#ieiiynes the number of
parameters, which is in general much smaller that the tatadber of entried?.

A. Multi-way Measurements Via Linear Projections Applieddnly Two Selected Modes

It is interesting to note that all multi-way measurementngel in eqn.[(B)¢ = 1,2,..., N) and eqgn.[(4), can be
computed from linear measurements taken only in two seletiedes out ofV >. To show this, suppose that we
have at our disposal the linear measurements in mogdeandms given by:Y,, = P, X (), with m = mq, mo;
then, it is easy to see that the modeunfolding matrix of each multi-way measureme#it, (n # m), can be
written as follows:

Z) ) = Yn(@i® 0@, 0@l -
SR AR L= SRR ®<I>1T)-

For example, in the important particular case of hyperspkainages, sometimes it is easier to take compres-
sive measurements of columns (mode-1) and rows (mode-2) 3l arder tensoX € R**/2*Ispy using the
corresponding matrice®, ¢ R+ and®, ¢ R**/2> as follows:

Y, = ‘I>1X(1) andY,; = ‘I>2X(2). (15)

It is easy to see that the multi-way measurements requiredibynethod can be obtained from these two set of linear
projections, for example, noting thaZ") ) = Y2(®% @ 1), (2?) ) = Y1(®] 1), (Z2¥)1) = Y i(Io 1),

and that tensoW can be obtained using th&/ = 2™ x,, ®,, (for anyn). In this case, matrixp; € Rf*/s is

not a real sensing matrix and its rak must be chosen in order to capture the numerical rank of thesefain

its 3rd mode, i.eX 3. In Algorithm[d, the steps to reconstruct a ten3or R1x12xIs from the linear projections
defined in equatior (15) are summarized.

Algorithm 1 : Reconstruction of tens@ from linear projections taken in mode-1 and mode-2 (as defineqn.

@35)

Require: Linear projectionsY; € R *"2%s, 'y, € R*>*/1/3 sensing matrice®,, &2, &5 € R (R, < I,,)
Ensure: Tensor reconstructioX e R x 12 Ts
1: (ZM)(2) = Y2(®3 ®I); Mode-2 unfolding ofZ"

2: 2 = tensorizé(z(l))(g)); Tensorization

3: (2?)1) = Y1(®4 @ I); Mode-1 unfolding ofz®

4: 7® = tensorizé(Z (2))(1)) Tensorization

5. (2®) ) = Y1(I® ®5); Mode-1 unfoldindof 2

6: Z©® = tensorizé(z(?’))(l)) Tensorization

7 Zn = (Z2™)(n); Modex unfolding ( = 1,2, 3)

8 W =2" x, &,; foranyn=1,2, or 3

9: Compute pseudo inverses of unfoldlng mathQn) (n=1,2,3)
10: X W><1 Z1W1 X2 Z2W ><3 Z3W

[y
[N

:return X

Yt is noted that the mode-2 unfolding can be used instead lEsvi (Z®)) (o) = Yo(I® ®7) € RF2*//1,
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IV. STABLE RECONSTRUCTIONS OFAPPROXIMATELY LOW MULTILINEAR -RANK TENSORS

The reconstruction formula of eqi. {11) is exact for the easere the tensor has multilinear-ranks( Rs, . . ., Ry).
However, in real world applications, signals usually haw# tow multilinear-rank, but they admit good low
multilinear-rank approximations. Thus, a more realistiodal for a signal should b& = X, + E where X,
has exact multilinear-rankR|, Rs, ..., Ry) andE is a tensor error with sufficiently small norm, i.gE|r < e.

In this case, one may ask about the optimal choice for sensiagices®, < R *!» in order to provide
the best low multilinear-rank reconstruction. In the matase (V = 2), it is not difficult to see that, if sensing
matrices are constructed using the fissingular vectors in each mode, then the obtained recottistnis optimal
(best low-rank approximation). To be more specific, givem VD of the data matriX = UAVT ¢ R1**!z with
U= (U, Uy),V=(V, V,) andA = (% 2 ) whereU; € R andV; € R=2*# are the firstR left and
right singular values, respectively, ard, is a diagonal matrix containing the fir&t singular values in its main
diagonal in decreasing order, if we define the sensing nestids follows®, = U7 € RF* &, = VT € REX):,
then the reconstruction is given by:

X = ZyWIZ] = (X&])(2:X®]) (X" ®]) = (XV,) (U XVy)[(X"Uy) =
= (U A)AN (A VT = U A VT =X, (16)

where X is, by definition the truncated SVD which is the best low rapp@ximation.

However, in practice we do not know the singular vectors bsedhe original dataset is not available so we need
to use sensing matrices that are independent from the datasexample, by generating them randomly which
will give us sub-optimal reconstructions, ifX — X||r > .

In particular, we say that a reconstruction method is stititee obtained errof{X — X || is comparable to the
input errore, i.e. |X — X||r ~ Ke for some constank. As we will show in this section, the formula given by
eqn. [11) may suffer from an unstable behavior, especialthé matrix case{ = 2), i.e. generating large output
errors even when the input erreris small. We will show that we can solve this unstable belhaliousing the
truncated pseudo-inverse, as defined in Se¢fion II-D, aastef the exact MP pseudo-inverse. In other words, we
define themodified reconstructioformula as follows:

X, =W x, le?{) Xg - XN ZNW 3

i (17)

whereW - is the truncated pseudo-inverse of maW,, (with the threshold parametey. It is noted that, when
T < or(W,) Vn, eqn. [IY) is equivalent to eqi.{11).

In the next sections we derive theoretical upper boundsherréconstructions errors fa¥ = 2 (matrix case)
and for a particular case of a 3D tenso¥ & 3), where the same 2D sensor is applied to every frontal sii.
also analyze under which conditions the parametean be chosen in order to provide the minimum upper bound
(optimal valuer,,).

A. Error Upper Bound for the 2D case (N=2)

The following theorem provides an upper bound for the retanson of eqn.[(1l7) and shows that the error
bound approaches to zeroas» 0 if 7 =0 or 7 < € (i.e., 7 is proportional to the best approximation ereyr

Theorem IV.1. . Let matrixX € R’**/2 be approximated by a rank- matrix X, € R**"2, jie. X = Xo + E
where ||E|| < ¢ and, given sensing matricek; € Rf*/1 &, ¢ RF*!> such thatW = &, X&' is full-rank, then
the following error upper bound holds:

be—i—c;—i, if - <og,

X - X, | < (18)

a7’—|—be+c§, if 7> opg,
whereoy, is the R-th singular value (smallest) of the matrW and constants, b and ¢ are defined below.
Proof. Let Xy = U;T'UZ be the truncated SVD dXy, and the factor\;, A, € R7*# are defined by eqn[{1L2),

then we obtain
Xy = AGAT with G =W — & E®?. (19)
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Fig. 2. Matrix Case §¥ = 2): lllustration of the two possible shapes for the error ugpaund function depending on the magnitude of the
singular values . Typical values of parametets b ¢ were chosen as in the digital image example of Eigli3=¢ I> = 512 and R = 256).

The modet measurement matrix &, = X1, ®7 = Xo®] +E® = AW ;)+F;, withF, = (I-A,®,)E®]
(where we assumed thdt, A,, = I), and using a similar analysis for modewe obtain thaZy = Ao W ) + Fo,
with Fo = (I — A ®,)ET®T.

Using the property[(8) of the truncated pseudo-inversergenstructed matrix becomes:

X, =Z, W27l (20)
Now, by inserting the expressions f@; andZ, into eqn. [20) we obtain:
X, = A\WW* WAL + A\ WW*F! + FW*WAT + FyW*FT. (21)

Assuming thaWW* W = W + H with |H| < 7 if 7 > o, andH = 0, if 7 < oy (see Sectiof II-D), and
usingX, = X — E and equation{19), we obtain:

X, - X =-E+A;®E®IAL + A\ HAL + AAWW*F] + FyW*" WAL + F{W*FL. (22)

If we apply the spectral norm to the last matrix equation apdibing that|W*-|| = 1/ max (7,0r), we finally
obtain

||X_XTH < be + ¢, 2 if m<ogr (23)
at + be + %, if 7> og,
where constants are identified as follows:
a = ||Ax[/||Az], (24)
b=1+[[Ar@1[|[|[A2®of + [|A1][(1 + [[AxP2|)][®1]| + [|A2[[(1 + A1 P1])][®2]], (25)
c=(1+[[Ar121])(1 + [[A2B2|)[[ @1 ][ @2]]- (26)
O

It is important to note that the obtained theoretical boundat tight in general because it is based on matrix
inequalities that usually are not tight, such as the tri¢amgimequality, i.e.|A + B|| < ||[A|| + ||B|| and other used
matrix inequalities. However, it still is useful since:

1) The case = 0 (exact case) is not realistic since always real world dé&aaee not low multilinear rank,
so a theoretical bound, even if it is not tight is needed torattarize the reconstruction behavior in real
applications;

2) The bound, as a function of is asymptotically linear, i.e. of orde®(¢). So as more precise the model
is (smallere), much better reconstructions, and of the same order, grectad, which is intuitive but can
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be only proved by a theoretical bound. In particular, it g®\that, the bound approaches zero as the best
low-rank approximation erro¢ — 0, whenr = 0 or 7 ¢, and perfect reconstruction is obtained when the
signal has rank, as it was already proved in Theorém111.1;

B. Optimal selection of threshold parameter

A quite important question arises here: What is the optinahler of the threshold paramete? Since the objective
is to obtain a reconstruction error as small as possible,ametry to minimize the upper bound and hope that the
theoretical bound gets its minimum at a point close to theiimim actual error. After a careful look at eqh.](18)
as a function ofr, if we define

To = €4/ —, (27)

we can identify two different cases:
o« CASE I (small or): Whenopr < %70, the error bound is a convex function attaining its globahimum at
T = 19. This means that we should usg, = 7. Note that the error bound for the original reconstruction
formula [11) corresponds to the case of setting 0, which gives us a larger error bound (see Fig. 2 (top)).

o CASE Il (large or): On the other hand, wheni > %TQ, the best choice is to set< or, which corresponds

to using the original reconstruction formula of eqn.](118,,iwith 7,,; = 0 (see Fig[R (bottom)).

However, it is important to note that, in practice, we are alole to compute the optimal parametgrbecause
we do not know matriced\; and A, which depends on the SVD decomposition of the original umkmsignal.
However, we may use a rough overestimated approximatiohmisfpgarameter by assuming thgA,, ®,,|| + 1 ~
|A,®,| and using the fact thatA,,®,| < ||A,|/||®.|| which provides us the following rough estimation:

70 3 €l @[ @2 (28)

But, the problem still remains challenging since usually deenot know exactly the error of the best low-rank
estimatione.

C. Error Upper Bound for a particular 3D case (N=3)

In this section we consider the recovery df-ed order tensoX € R’**/2%/s for the particular and very important
case where the same sensing operator is applied to evenalfrslice of a tensor as considered hyperspectral
CS imaging or video CS[11]. In other words, we assume thatixak; = I € R (i.e. Rz = I3) is
the identity matrix, thus the following multi-way projectis are availableZ; = X;)(I ® ®3)" € RI'*/hs,

Zo = X (I@ @) € R andZs = X5 (2 @ ®1)7 € RP*f%2_In this case, the core tens® defined

in eqn. [3) become® = Z®). The following theorem is th8-rd order counterpart of Theordm V.1 and provides
an upper bound for the reconstruction error. In order to nthkeanalysis simpler, we consider that the smallest
singular values of tensdW in mode-1 and mode-2 are the same and it is denotetkas or, = org,.

Theorem IV.2. . Let tensorX ¢ R*2*ls pe approximated by a multilinear-rankz;, R, R3) tensor X, €
RI*I2xIs e, X = X, + E where||[E||r < ¢ and, given sensing matriceB; € Rf*/ and ®, € R¥*!> such
that W = X x; @1 x4 @, is full-rank, then the following error upper bound holds éru

be + e, ifr <o

IX - X, ||Ir < (29)

aT—i-be—l-cé, ifr>7c

whereor = or, = oR,, @ = max(og,or,) and ¢ = min (og, og,). (i.e., the maximum and minimum of the
smallest singular values of the modednfolding matricesW,,)), and constants, b and c are defined below.

Proof. Following the same line of reasoning as used in the proof @ofén{1V.1, letX, = I x; U; x5 Us x3 U3
be the truncated HOSVD (i.e., having orthogonal facttis € R»*%~), which always exists since tensdf,
has multilinear-rankR;, Ro, R3), by defining new factor\,, € R»*%~ according to eqn[{12) and noting that
A; =1, we obtain:

Xy =G x1 Ay X2 Ay, With G =W — E x; 1 x93 P9, (30)
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Whereﬂ =X X1 P X9 Po.
The modet measurement matrix &; = X(;)(I0 ®2)" = (X)) (10 ®2)" +Eq)(I0 ®2)" = AiW 4y +Fy,
with
Fi=I-A12)Ey (I ®,)7, (31)

and, using a similar analysis as above, we obtain Tat Ao W ;) + Fy, with
Fy = (I— Ay®)Ep (I ®)7, (32)

for mode2, andZz; = W 3, for mode3. Using these expressions, the reconstructed tensor bacome

X, =90 x1 (A\W(;) + F1) x2 (AoW(9) + F2) x3 W), (33)

where = W x; W’(kf) X9 Wg) X3 W’(kg). The latter equation can be written in the following way
X, =B, +B,+B;+B,, (34)

with

B, = Qx1 AiW(p) X2 AgW(y) x3 W), (35)
B, = Qx1 AW xaFy x3Wg), (36)
B; = Qx1F1 X2 AgW(y) X3 W3, (37)
B, = Qx1F; xaFy x3 W), (38)

By applying Lemmd ILIL, we have th& x; W) x2 Wy x3 W3 = W + H and, taking into account eqn.
(30) and the fact thaK = X, + E, we obtain that the first term in the right-hand side in efd) @n be written
as follows:

B =X-E+Ex; Aj®; x2 Ag®P> + H x1 Ay X3 Ag. (39)

Now, by renaming
B;=-E+E x; A;® X2 Ao®y + H x; Ay X9 Ay, (40)

we have thaBB, = X + B;, which implies

X, -X=B,+B;+B,+B;, (41)

thus, we can find an upper bound of the approximation errordynding from above each of the terdss,, B;,
B, andB; in the last equation. Using the bounds developed in AppeBdiwe finally arrive at eqn[(29), where
the constantg, b andc are defined as follows:

a=(vRi + VRe + V)| A1 ]| Az,
b=14[|A1®1][[|A2Po| + [[A1]|(1+ [|Az®a]))||®1]| + [[Az||(1 + [|A1P]])[| P2l
c=(1+[[A1P1]))(1 + [[A2P2l])||P1]][|P2]|-

D. Reconstruction Sensitivity to threshold parameter

Theorem1V.2 shows that the Frobenius error bound of theaqmiation of a 3D tensor has exactly the same
flavor as the bound of the spectral norm for the reconstraatfanatrices (Theorein 1M 1). However, when we apply
the method to natural images using random sensing matrsess gectiof V), the reconstructions of 2D datasets
are always more unstable and more sensitive to the choideresiold parametet, compared to the case of 3D
datasets. This distinctive behavior is because, in the ZB,dhe truncated MP pseudo inverse is applied to a matrix
that is usually much more ill-conditioned than the ones w®red in the 3D case. To be more specific, in the 2D
case,W is a square randonR(x R) matrix, thus it tends to be ill-conditioned compared to teetangular random
matrices used in the 3D casW ;) € R fls, Wy, € RFe*Df and W5y € REx ke,

As a consequence and, in agreement with the observed behavithe experiments of secti@d V, in the 2D case
it is very important to use the proper threshold paramete# 0 defined in eqn[{(27) in order to provide the smallest
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reconstruction error and low variability of the results. @e other hand, in the 3D case, the method is always
very stable with small reconstruction errors obtained witk 0, i.e. computing the standard MP pseudo inverse
without truncation. This is a clear advantage of consideemumber of dimensiond > 2 because, usually, the
truncation parameter does not need to be tuned and optimal results are obtainegiby justr = 0.

V. NUMERICAL SIMULATIONS OF CS USING REAL-WORLD DATASETS

Here, we analyze various aspects of the proposed CS regotistr method through numerical simulations and
compare the performance with 2D and 3D datasets. All the lations were performed using Matlab software on
an iMac desktop computer, equipped with an Intel Core i5 g@ssor (2.2 GHz) and 8 GB RAM. Matlab codes
to reproduce the simulation results are available at hitph.fi.uba.arfccaiafa/Cesar/Low-Rank-Tensor-CS.html.
In order to evaluate the quality of the reconstructions we the Peak Signal to Noise Ratio defined as follows:
PSNR (dB}- 20log; (max(X)/||X — X||r).

A. Selected illustrative examples for 2D and 3D signals

First, we consider the 2D digital image “Lena” encoded innmakK < R>'2*512 and assume that compressive
Gaussian samples are collected for rows and columns asvkllé; = X<I>§ and zg = & X with ®,P, €
R2°6x512 peing matrices with independent Gaussian entries. Note thahis case, we havé, = I, = 512,

R = 256 and the core matridVv = <I>1X<I>§ can be computed from the available measurement mdtior Z,
multiplying it by the appropriate sensing matdx or ®,, respectively. In Fid.I3, the original digital image is show
in the top-left panel, and right down below, its best raRlepproximation (truncated SVD) and the reconstructions
obtained witht = 0 andr = 79, as defined in eqn[(27), are also shown. It is clear that thiEnapresult is
obtained with7,,; = 79 = 0.19 with PSNR=31.9dB, which is considerably much higher than the value obthine
with 7 = 0 = 0.19 (PSNRA7.6dB).

We also considered a 3D hyperspectral tensor indge R'28*128%32 which is actually a patch extracted from
“Ribeira”, a large hyperspectral image included in a publitaset used in [32]. We also assumed Gaussian sensing
matrices®,, ®, € R%*!?® which provides us with the following measurement matricgs:= X;)(I ® ®,)7,

Zy = X(5)(I0®1)" andZs = X3 ($2®®1)”. Note that, in this casé¥V 3 = Z3). In Fig.[3, the original tensor
is shown in the top-right panel as a color RGB display, anttrapwn below, its best multilinear-rank4, 64, 32)
approximation is shown, which was obtained by applying tbek€r Alternating Least Squares (ALS) algorithm of
the Tensor Toolbox [33]. We also show that the obtained reftoations using- = 0 (PSNR=37.1dB) is slightly
better than the one obtained with= 7y = 0.2 (PSNR=33.2dB).

As it is illustrated in these examples, in general, we cantlsaly working with higher dimensions is an advantage
because involved matrices tend to be better conditionedliagpthe difficulty of estimating the optimat and
allowing us to use just,,; = 0 (regular MP pseudo inverse).

B. Sensitivity to parametetr analysis in the 2D and 3D cases

In order to analyze the behavior of the reconstructions asetibn of the threshold parametein the 2D and 3D
cases, we have generated a matrix signal by using the bésirapproximation of “Lena” imageb(2 x 512) and
a tensor signal by using the best multilinear-rafik-R, I3) approximation (Tucker-ALS) of a tensor patch used in
the previous section. By adding some Gaussian noise to bassesignals, we obtained our modé{s= X, + ¢E
(2D case) anX = X, + ¢E (3D case), wherdE|| = | E||r = 1 ande can be controlled by adjusting the variance
of the added noise. We have normalized the maXixand tensoiX in order to have|X|| = || X||r = 1.

In Fig.[4 (a), the reconstruction erroflX — X, |, obtained for a fixedt = 3.1 x 104, over a total number
of 500 simulations (with different sensing matrices in each satiah) are shown for the 2D case and compared
against the best low-rank approximation (truncated SVDg &&n see that the actual error has a convex shape
attaining its minimum approximately at,;, = 7o = 0.19 (optimal choice). In this case, we obtained an average
or = 4.02 x 10~ which means that matri¥ is usually ill-conditioned andr < 0.57.

In Fig.[@ (b) the reconstruction errors for the 3D cas¥, — X._||, for a fixede = 6.2 x 1073 and the best low
multilinear-rank, are shown. In the latter, we observe allpdifferent behavior compared to the 2D case, instead
of a convex function, now the minimum error is obtained by asiog 7,,; = 0, which is also slightly lower than
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Original hyperspectral image patch

Original "Lena" (512x512) (128x1 28x32i - RGB displa

Best Low-rank Approx. Best Low-rank Approx.
truncated SVD), PSNR=46.4dB (Tucker-ALS), PSNR=41.1dB

Aot
r————-\

Reconstruction with t =0, Reconstruction with t =0,
PSNR=17.6dB PSNR=37.1dB

[

Reconstruction with t=t, Reconstruction with t=t
PSNR=31.9dB PSNR=33.2dB

0

[

Fig. 3. Original 2D and 3D datasets (top), their best lowkrapproximations (2nd row) and the reconstructions obthing our method
usingT = 0 (3rd row) andr = 7o (bottom). It is highlighted that, unlike in the 2D case, wer asser,,; = 0 as the optimal value (lower
error bound) in the 3D case.

usingT = 79 = 0.2. It is noted that, in this case, the average smallest singalae wasor = 0.03, which means
that matricesW ;) and W, are better conditioned than in the 2D case.

Another remarkable property of the proposed reconstmagtiethod is that it provides very low variance of the
results (robustness). In the 2D case, the standard deviatib is minimal at,,; = 79 (s.d. = 3.0 x 10~%) and
increases significantly for < 5. On the other side, the standard deviation of the errorsirdddan the 3D case is
very small 6.d. = 3.0 x 10~%) and approximately constant for all the range of the paramevalues. This means,
that our method is robust to the actual random sensing reatlt¢ and ®, and, the results in the 2D case is very
sensitive to the choice of parameteiopposed to the 3D case.
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(a) 2D digital image (Lena) (b) 3D hyperspectral tensor image
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Fig. 4. Approximation errors computed on 500 simulations“feena” (512 x 512) (a) and a {28 x 128 x 32)-patch of “Ribeira”. The
range of obtained values are shown as shaded areas. It igghtgh that the standard deviation of the error, at the mimn, is3.0e — 4 in
both cases ((a) and (b)), which means that the method is @brst to the actual choice of random sensing matrieesand ®-. Averaged
or and 7 values are also indicated.

(a) 2D digital image (Lena) (b) 3D hyperspectral tensor image

107 Reconstruction Error with T=0 : Reconstruction Error with T=0
Reconstruction Error with =t D10 Reconstruction Error with T=T, :
. Best LR Approx Error (trunc. SVD)| - Best LR Approx Error (Tucker-ALS) |
10' I I I I I I I I J T T T T T I I I J
10" 10° 10° 10" 10° 10* 10° 10°% 10" 10°
€ (best low-rank approx. error (trunc.SVD)) € (best LR approx. error (Tucker-ALS))

Fig. 5. Approximation errors versusfor 2D case (a) and 3D case (b). It is highlighted that, while- 0 gives poorer results (large errors
and large deviations) compared to= 7o for the 2D case, in the 3D case, similar good results (smatirerand deviations) are obtained
for both, 7 = 0 and 7 = 7.

C. Reconstruction error versus model error

In Fig.[, using the same model as in the previous section doerating 2D and 3D signals, the performance
of the reconstructions using= 7, is compared against the case of using- 0, as a function ot (best low-rank
approximation error). In the 2D case (a), the original restarction formula (eqn[{(11)) gives always poorer results,
i.e., larger errors, and less robust behavior (larger dievia over repeated simulations). On the other side, when
using the modified formula (eqri_{17)) with the optimal ttvelsl parameter,,; = 7 = 6\/0/—(1, the reconstruction
errors are robust and much smaller, in fact they are closbaaase of the best low-rank approximation given by
the truncated SVD foe > 0.003, approximatelly.

On the other hand, in the 3D case (b), robust (small devigtaer repeated simulations) and small errors are
obtained withr = 0, as well as withr = 7y. Thus, our method is less sensitive to the choice of parameie
the 3D case compared to the 2D case. Also, for a very small hmudee ¢ < 3.1 x 10~%), better reconstructions
are obtained withr = 7 while, for a larger model noise: (> 3.1 x 10~%), usingT = 0 provides slightly better
reconstructions.
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2D-1:"Paint” 2D-2:"Mondrian” 2D-3:"Facade”[18]
(1024x1024) (512x512) (512x512)

3D-1:"Hyperspectral” [32] ~ 3D-2:“Brain MRI"[18]  3D-3:“Tomato Video”[18]
(1024x1024x32) (128x128x128) (256x256x128)
RGB display Central Slice Central frame

Fig. 6. 2D - images (top) and 3D tensors (bottom) used in auukitions. 3D-1 hyperspectral image corresponds to theest&arme’
included in a public dataset (http://personalpages.nestehac.uk/staff/david.fostz[/)[32]. 3D-2 Brain MRIdaBD-3 Tomato Video datasets
were used in the paper [18] and can be obtained from the asithebpage.

(a) 2D images examples (b) 3D tensor examples
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Fig. 7. Performance of reconstructions for 2D (a) and 3D @gsets. Mean values plus/minus the standard deviatiogis160 Monte
Carlo simulations are shown. PSNRs associated with theld®estank (truncated SVD) and the best multilinear-rank &iied through the
Tucker-ALS algorithm) approximations are also shown fderence.

D. Reconstruction error versus sampling ratio

In Fig.[@, we analyze, through00 Monte Carlo simulations, the approximation errors obtdibg our method
and we compare it to the best possible low-rank approximai®a function of the sampling ratig i.e. the size of
the non-redundant measurement data divided by the sizeedadrthinal dataset, for several 2 % I) images (see
Fig.[B-top) and different types of 30 (x I x I3) data tensors: a hyperspectral imagel [32], a Magnetic Resmn
Image (MRI) of a brain[[118], and a video squentcel[18] (see [Bigottom).

We note that, to compute the reconstruction, matriéesZ, and W are redundant, in fact matri¥v can be
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computed directly from measuremelf#s as follows:W = ®,7Z,. Also, by assuming the following block notation:
Z1 = (Z1)1,212), Z8 = (Zoj,Z2), ®1 = (P11, P12) and @y = (Po1, o), With Z11,Zo1, P11, P21 €
REXU=R) and Z; 5, Zo o, ®1 9, P22 € R*E, it is not difficult to prove that, in the 2D casg, » can be actually
computed fromZ, andZ; ; as follows:

Zio = (®2Zy — 21191 ,)(®13)", (42)

where matrix®; » is assumed to be invertible. Thus, the size of the minimal-redlundant measurement data
required is given b2RI — R? (i.e. the sum of the sizes of matricés andZ; ;), which means that the sampling

ratio can be defined as follows: )
R R
ool (1Y @3

It is easy to see that, the same sampling ratio formula is\a$id for the 3D case when the sensing matrix in the
mode3 is equal to the identity matrix.

In Fig.[@ (a), the obtained PSNRs using= 7, for all the 2D datasets are shown while, in Hig. 7 (b), the
obtained PSNRs using = 0 for all the 3D datasets are shown. These results demonsgtrteobustness of the
method regarding the actual selection of sensing matdegsP,, since the observed variance of PSNR is very
small. It is noted that, the gap between the actual PSNR amddist (ideal) Low-Rank (LR) approximation is
much smaller in the 3D case compared to the 2D case. In partiadataset 3D-2 (Brain MRI), showed a very
strong low rank structure allowing us to obtain very goodorestructions compared to the other two datasets. For
instance, ford = 0.4, the obtained PSNR is arourtiddB for dataset 3D-245dB for dataset 3D-1 (hyperspectral
image) and28dB for dataset 3D-3 (video sequence).

E. Comparison against state-of-the-arts sparsity base@rhms

Here we compare our proposed reconstruction method agaatstof-the-arts sparsity based CS algorithms for
multidimensional datasets using random sensing matritgges: a) Gaussian, and b) Bernoulli, i.e. with entries
being+1 or —1 with equal probability.

In Table[ (rightmost columns), we show the obtained PSNRsapplying our method to all the 2D datasets
shown in Fig[® (top) usind: = 0.21, and we compare them against the results obtained by apgplyinKronecker-
CS (leftmost columns), consisting in using the SPGL1 atgori[11], [26] and taking into account the Kronecker
structure using Daubechies Wavelet bases. At first glatnoepild seem that our proposed method uses more
measurements than Kronecker-CS algorithms because wevaserisor measurements, i1 72 instead of
only one tensoW < R*%, In order to make a more complete and fair comparison, in #wral columns of
Table[Il, we show the results of applying the Kronecker-CShmeé using a large? in order to attain the same
sampling ratiod = 0.36 as in our method. It is interesting to note that, even in theecaf having the same
sampling ratio, our method gives the best results in all caseept with the 2D-1 “Paint” dataset, indicating that,
its sparse model is richer than its low-rank model. On theeiottand, datasets 2D-2 and 2D-3 have stronger low
rank structures, which allows our proposed method to olietter reconstructions.

In Table[Il, we show the obtained PSNRs by applying our méttoothe 3D datasets shown in Fig. 6 (bottom),
and we compare them against the results obtained by appthimdN-Way Block Sparse Orthogonal Matching
Pursuit (NBOMP) algorithm developed ih [13] for the sale= 0.125 (leftmost columns) and same sampling
ratio § = 0.23 (central columns). Note that, for example, the hyperspeamage in dataset 3D-1 is so large that
it is almost impossible to apply other CS algorithms, eveortecker-CS methods using a standard computer.

In Table[IM and TabléV, we compare the computation timesiredun each case showing that our direct method
provides an extremely faster computation. For a fixed samgpttiod, our method is 5 orders of magnitude faster
in the 2D case, and 2 orders of magnitude faster in the 3D Easexample, dataset 2D-1 “Paint” required almost
one hour to be reconstructed by using the Kronecker-CS itligorand our method takes only 41 milliseconds to
build the reconstruction.

VI. CONCLUSIONS ANDDISCUSSION

We have provided a new CS reconstruction formula for muitetisional signals assuming that a set of multi-way
projections are available and that a good low multilinesarkr approximation exists. Compared to existing sparsity
based CS methods, our model does not require to assumetpparigher a dictionary based representation.
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RECONSTRUCTION QUALITY(PSNR)OF THE PROPOSED METHOD AND THEKRONECKER CSALGORITHM [[11]] FOR 2D SIGNALS USING

TABLE I

GAUSSIAN AND BERNOULLI SENSING MATRICES

RECONSTRUCTION QUALITY(PSNR)OF THE PROPOSED METHOD ANIN-WAY BLOCK-SPARSEOMP (NBOMP)ALGORITHM [11] FOR

Kronecker-CS Kronecker-CS New Method

R =021 R=0.61 R=0.21

6 =0.04 6 =0.36 6 =0.36
Data | Gaussian | Bernoulli | Gaussian | Bernoulli | Gaussian | Bernoulli
2D-1 22.8dB 22.3dB 31.7dB 30.6dB 28.3dB 28.4dB
2D-2 9.8dB 12.6dB 26.8dB 26.6dB 32.5dB 32.3dB
2D-3 13.9dB 12.7dB 21.9dB 21.7dB 24.0dB 24.2dB

TABLE Il

3D SIGNALS USING GAUSSIAN AND BERNOULLI SENSING MATRICES

COMPUTATIONAL TIME COMPARISON BETWEEN THE PROPOSED METHODMD KRONECKER- CSALGORITHM [IE] FOR2D SIGNALS.

COMPUTATIONAL TIME COMPARISON BETWEEN THE PROPOSED METHODMD N-WAY BLOCK-SPARSEOMP (NBOMP)ALGORITHM

NBOMP-CS NBOMP-CS New Method
R =0.1251 R = 0.481 R =0.1251
6 =0.016 6 =0.23 6=0.23
Data | Gaussian | Bernoulli | Gaussian | Bernoulli | Gaussian | Bernoulli
3D-1 21.9dB 22.4dB 39.8dB 39.9dB 40.6dB 40.5dB
3D-2 6.3dB 6.1dB 27.7dB 29.2dB 33.0dB 34.4dB
3D-3 3.6dB 3.6dB 23.1dB 22.2dB 25.8dB 25.7dB
TABLE IV

Kronecker-CS | Kronecker-CS | New Method
R=0.2I R=0.61 R=021
5 =0.04 =0.36 5 =0.36
Data Time (sec.) Time (sec.) Time (sec.)
2D-1 5.4 x 10? 3.5 x 10° 4.1 x 1072
2D-2 1.2 x 10? 6.7 x 102 8.8 x 1072
2D-3 1.2 x 10? 7.7 % 10? 9.3 x 1073
TABLE V

[13] FOR 3D SIGNALS.

NBOMP-CS | NBOMP-CS | New Method
R=0.125] | R=048] | R=0.125]
§=0.016 5§=0.23 =0.23
Data | Time (sec.) Time (sec.) Time (sec.)
3D-1 6.8 4.0 x 10° 1.1 x 10
3D-2 8.2 1.8 x 10 4.4 %1071
3D-3 | 4.1 x 10! 2.4 x 10? 1.8
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In sparsity based CS, [R6], [11], [13], available theomdtiguarantees are based on sparsity levels and properties
of the sensing/dictionary matrix such as RIP (restrictammistry property) and coherence. It is known that, if a
signal has an exact sparse representation, then classtcaldorithms such as Matching Pursuit (MP) or Basis
Pursuit (BP) are able to provide an exact reconstruction iétice signal has an approximate sparse representation,
then MP and BP provide reconstructions that are stable, they are close to the original signal with high
probability. In our approach, we prove that, if the signas laa exact low multilinear-rank representation, then the
proposed reconstruction is exact and, in the realistic tteeahe signals have only approximate low multilinearkran
representations, the reconstruction error has an upperdothat is of ordeiO(¢) wheree is the model error.

Our simulation results showed that, the present methodheotlowing significant advantages:

1) It is super fastbecause it does not involve iterations making it potemntiallitable for large-scale problems;

2) It is stable in the sense that tensors which are well approximated by eFumodel, are also well
reconstructed by the proposed method,

3) It is robustbecause the reconstruction performance is not sensitivieetaised Gaussian/Bernoulli sensing
matrices.

Moreover, we have shown that, working with higher dimensigN > 2), in particular with N = 3, gives us
additional advantages because the involved matrices dter m®nditioned compared to the 2D case, providing
more stable results and allowing us to use the standard MBdpsaverse, i.e. without truncation.

We have shown the applicability of our method to the case gkbhgpectral compressive imaging for which the
technology is already available J11], [25] and applied &cato other kinds of 3D datasets such as MRI images
and video sequences.

Our model is presented in a general setting which makes iefodp applicable to next generation of multi-
dimensional sensors and new methods for big-data progessider the assumption of the existence of a good
multilinear rank representation and the availability ofltiinear compressive measurements.

APPENDIX A: PROOF OFLEMMA [I.1]

Let us consider the mode-unfolding of the left-hand side of eqrl._(10), and apply theparty [7) to matrix

W, i.e. W(l)W’(klf)W(l) =Wy + P(y), then we obtain:

WiyWin W) (W Wi @ Wi W 5
*r k. \T *r
Wiy (Wi Wi @ Wiy Wi )" + Py (Wi Wi
The mode2 representation of the last equation is as follows:

)T

s \T'
@ W Wiz)T.

)
*o T *r *r T

W(Z)W(g) ®I)" + W(Q)W(Z)P(Q) (W(g)W(g) ®I)".

Now, by applying the property(7) to matriW ), i.e. W(Z)W’{ZT)W(Z) = W(2) + Q(2), and using the modg-
representation of the last equation, we arrive at:

WieyWis Wiy + Wiy Wi Qe + Wi Wi

W) (W5 Wi

* T
P (WyWi o)’

Using again the property1(7), i.éN(g)W(g)W’(kg) = W3, + R(3), and writing the last equation in tensor format,
we finally obtain:W + H, with

H=R+Q x3 W(s)ng) +P Xy W(z)WB)

which, by using elementary properties of the Frobenius grettsal norms and the fact thgP Q) ll;

IRl <7 (7 >7) and [Py || = [[Q2)ll = [Res)ll = 0 (7 < ), implies that||H||p < /R3T + RoT + V1T
if r>7,andH=01if 7 <go.

X3 W(3)W>(k§),
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APPENDIX B: BOUNDS FOR TENSOR®,, B;, B, AND B;
By considering the mode-unfolding of egn.[(36) we have that

1Bl = [[FoW 5 W (9) (W5 W5 @ A1W(1)W?{))THF,

from which, by applying the propert{](9) of sectibnTl-D, ansing the fact thaj AB|| < ||A|/||B||#, that spectral
norm is a sub-multiplicative norm, and that the spectralmaif the Kronecker product oA and B is equal to
the product of the norm oA and that ofB, namely,|A @ B|| = ||A||||B||, we obtain that|B, | r < ||A:||||F2] .
Now, using the definition of matri¥, (see eqn.[(32)), we have thgFs|r < [T — Ax®s|||I ® ®4||||E|» which
implies the following bound foB,

[Ballm < [|AL[[(1 + [|Az®a|])[|P1]le. (44)
Analogously, we obtain the following bound f@;:
B3l < [|A2[[(1 + [|A1@1])[|P2]le. (45)
By considering the modeé-representation of eqrl_{38) we obtain the following ineiyal
IByllr < [[FAW W 0)l[F[W 5 W5 @ FaW 5 || 7,

and using properties of the MP pseudo-inverse and the girelidined bounds folF || and||Fz||r we finally
arrive at: )
[®1][|P2]le

B < (1 A D 1 As® .
IBallr < (1+ [ Ar@i)(1 + | Ans]) 0022l

From the definition ofB; in eqn. [40) and by using Lemnia 1.1, we derive the followingubds:||B;|r <
e(1+ |A121[[[[A2®2) + 7(VRL + VR2 + V) [Ad[[[| A2, if 7> 7, and|[Bs||r < e(1+ [|A1 21| A2®2]]), if

T <o0o.
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