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Stable, Robust and Super Fast Reconstruction of
Tensors Using Multi-Way Projections
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Abstract

In the framework of multidimensional Compressed Sensing (CS), we introduce an analytical reconstruction
formula that allows one to recover anN th-order data tensorX ∈ R

I1×I2×···×IN from a reduced set of multi-way
compressive measurements by exploiting its low multilinear-rank structure. Moreover, we show that, an interesting
property of multi-way measurements allows us to build the reconstruction based on compressive linear measurements
taken only in two selected modes, independently of the tensor orderN . In addition, it is proved that, in the matrix
case and in a particular case with3rd-order tensors where the same 2D sensor operator is applied to all mode-3
slices, the proposed reconstructionX

τ
is stable in the sense that the approximation error is comparable to the

one provided by the best low-multilinear-rank approximation, whereτ is a threshold parameter that controls the
approximation error. Through the analysis of the upper bound of the approximation error we show that, in the 2D
case, an optimal value for the threshold parameterτ = τ0 > 0 exists, which is confirmed by our simulation results.
On the other hand, our experiments on 3D datasets show that very good reconstructions are obtained usingτ = 0,
which means that this parameter does not need to be tuned. Ourextensive simulation results demonstrate the stability
and robustness of the method when it is applied to real-world2D and 3D signals. A comparison with state-of-the-arts
sparsity based CS methods specialized for multidimensional signals is also included. A very attractive characteristic
of the proposed method is that it provides a direct computation, i.e. it is non-iterative in contrast to all existing
sparsity based CS algorithms, thus providing super fast computations, even for large datasets.

Index Terms

Compressed Sensing (CS), Kronecker-CS, Low-rank tensor approximation, Multi-way analysis, Tucker model.

I. INTRODUCTION

DURING the last years there has been an increased interest inCompressed Sensing(CS), whose aim is the
reconstruction of signals based on a set of measurements that is much smaller than the original signal size.

Thus, instead to acquire a potentially large signal and compress it, CS suggests that signals can be compressively
sampled thus reducing the amount of measurements. More specifically, in standard CS [1], [2], a signalx ∈ R

n,
which is assumed unavailable, is reconstructed from a reduced set ofm linear projections (m ≪ n) w = Φx ∈ R

m,
where the sensing matrixΦ ∈ R

m×n is typically random or composed by few selected rows of the Fourier transform
matrix [3]. In order to make the CS problem solvable, it is necessary to exploita priori information about the signal
of interestx by imposing some constraints. For example, it is widely assumed that the signalx is compressible
by decomposing it in a known Wavelet basis (dictionary). In other words, it is assumed that every signal admits
a sparserepresentation on a given dictionary, i.e. combining only few elements, calledatoms. Under the scope of
thesesparse models, many efficient CS algorithms were developed in order to reconstruct signals from compressive
measurements which involve iterative refinements of the solution by means ofGreedy algorithmsor by minimizing
the ℓ1-norm of the solution (see [4] for an up to date summary of algorithms). These algorithms have found many
applications in diverse fields such as in medical imaging, surveillance, machine learning, etc [5].
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A. Multidimensional CS

Most of the development of CS was focused on problems involving 1D signal or 2D image data encoded in vectors.
However, many important applications involve higher dimensional signals ortensors. Some data sources are readily
generated as tensors such as hyperspectral images, videos,3D light field displays [6], Magnetic Resonance Imaging
(MRI) [7], etc., in other cases, tensors can be synthetically created by a rearrangement of lower dimensional data
structures or by mathematical construction [8]. In some applications, like in materials science [9] or in scientific
computation [10], the exponential increase in memory and time requirements when the number of dimensions
increases, makes impossible to work with full datasets and models with few parameters must be used. Such models
are referred as tensor decompositions, which can be obtained by making few inspections of the full-datasets or by
taking compressive measurements.

Recently, the Kronecker-CS model [11] has been proposed in order to provide a practical implementation of CS
for higher order tensors by exploiting their multidimensional structure. This model explicitly assumes that multidi-
mensional signals have sparse representations using separable dictionaries, usually known asKronecker dictionaries.
Kronecker bases are well known and widely used in image processing, for example, given a 3D(I1 × I2 × I3)
image, its associated dictionaryD ∈ R

I1I2I3×I1I2I3 is D = D3 ⊗D2 ⊗D1 whereDn ∈ R
In×In (n = 1, 2, 3) are

small dictionaries associated to columns (mode-1), rows (mode-2) and tubes (mode-3), respectively. Moreover, when
working with multidimensional signals, the Kronecker structure also arises naturally in the physical implementation
of the sensing devices since they can operate on different dimensions or modes of the signal, independently, through
separated sensing matrices [11], [12]. This Kronecker structure of the sensing operator/dictionary is equivalent to
apply the constrained Tucker model [13] and made possible toimplement relatively fast and practical algorithms
based on sparsity structures, e.g., on hyperspectral 3D images and video data through a vectorℓ1-norm minimization
algorithm [11]. More recently, greedy algorithms, especially designed to take advantage of the Kronecker structure
and block sparsity of the representations, were proposed in[13] and applied to a variety of multidimensional signal
processing problems such as in MRI, hyperspectral imaging and multidimensional inpainting [14]. Also, in [15],
the authors developed generalized tensor compressed sensing algorithms by exploiting the Kronecker structure in
a similar way as done in [13], [16] but using anℓ1-minimization approach.

B. Exploiting low-rank approximations instead of sparsity

While sparsity is the “working horse” of standard CS, recently a new line of research has been proposed
suggesting that, instead of using sparse models asa priori information about multidimensional signals, the low-rank
approximation property could be exploited, i.e. without any a priori knowledge about the possible bases or factor
matrices for each mode (dictionaries). This idea was first explored in [17], where matrices were reconstructed from
its under-sampled measurements by solely assuming the existence of a low-rank approximation and by solving
a convex optimization problem involving the matrix nuclearnorm. These ideas have been extended to tensors,
by considering different models for the measurements and using tensor low-rank approximations (based on the
CANDECOMP/PARAFAC (CP) model) or low-multilinear-rank approximations (based on the Tucker model). For
example, in [18], tensor completion of visual data was analyzed by generalizing the minimization of matrix nuclear
norm to the tensor case. In [19], also the problem of estimating missing entries in tensors was considered by assuming
that a low-rank CP model is fitted through a weighted least squares problem formulation. In [20], hyperspectral
images (3D tensors) are recovered from random linear projections of all channels by using a reconstruction algorithm
that combines low-rank and join-sparse matrix recovery. In[21] the problem of reconstructing tensors having a low
multilinear-rank Tucker model, based on a set of linear measurements, was investigated and used for tensor denoising
via an iterative multilinear-rank minimization method. Inthe context of optical-interferometric imaging, in [22], a
method for recovering a supersymmetric rank-1 3D tensor from a set of multilinear measurements was proposed
by using a convex linear program. In [23], the Kronecker sensing structure was used for tensor compression and a
method involving a low-rank model fitting, followed by a per mode ℓ0/ℓ1 decompression, was proposed in order
to recover a low-rank CP tensor with sparse factors. We referto Table I for a brief summary of recent approaches
to CS involving tensor datasets, where the differences and similarities among the methods are highlighted.

In this work, we extend the ideas and results of our recent conference paper [24], providing a direct (i.e.,
analytical) reconstruction formula that allows us to recover a tensor from a set of multilinear projections that are
obtained by multiplying the data tensor by a different sensing matrix in each mode. This model comes into scene
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TABLE I
SUMMARY AND COMPARISON OF AVAILABLE APPROACHES TOCS FOR TENSOR DATASETS

Articles Tensor
order

Data Model Measurements Model Algorithm type

Duarte et al [11] N ≥ 2 Sparsity, Kronecker dictionaries Multilinear ℓ1-norm minimization

Caiafa et al [13],
[14]

N ≥ 2 Sparsity, Block-sparsity, Kro-
necker dictionaries

Multilinear Greedy

Li et al [15] N ≥ 2 Sparsity, Kronecker dictionaries Multilinear ℓ1-norm minimization

Candes et al [17] N = 2 Low-rank matrix Linear (missing entries) Nuclear norm minimization

Liu et al [18] N = 3 Low-rank (CP model) Linear (missing entries) Tensor nuclear norm mini-
mization

Acar et al [19] N = 3 Low-rank (CP model) Linear (missing entries) Weighted Least Squares

Golbabaee et al
[20]

N = 2 Joint-sparsity, Low-rank matri-
ces

Linear Nuclear norm, ℓ2,1 mixed
norm minimization.

Rauhut et al [21] N ≥ 3 Low multilinear-rank (Tucker
model)

Linear Iterative Hard Thresholding

Aurı́a et al [22] N = 3 Rank-1 Tensor Multilinear Convex programming

Sidiropoulos et al
[23]

N = 3 Low-rank Sparse CP model Multilinear ℓ0/ℓ1-norm decompression

Current article N ≥ 2 Low multilinear-rank (Tucker
model)

Multilinear Non-iterative (direct) recon-
struction

naturally in many potential applications, for example, in the case of sensing 2D or 3D images by means of a
separable operator as developed in [25], [26], [11], [12], i.e., by taking compressive measurements of columns,
rows, etc. separately, imposing a Kronecker structure on the sensing operator. The key assumption is that our
multidimensional signal is well approximated by a low multilinear-rank Tucker model which is realistic for many
structured datasets, specially in the case of multidimensional images. We formulate our multidimensional CS model
in a general setting forN -th order tensors and provide theoretical stability analysis and robustness evidence for
N = 2 and a very important particular case withN = 3.

A particularly distinctive and attracting feature of the proposed reconstruction method is that, unlike all other
methods listed in Table I, our method is non-iterative. We believe that the present mathematical model could be fully
exploited by the next generation of multidimensional compressive sensors for very large datasets. Through extensive
simulations on real-world datasets, we also illustrate therelevance of our results in hyperspectral compressive
imaging for which the technology is already available [11],[25], [12].

C. Paper organization

This paper is organized as follows: in Section II, tensor notation, definitions and basic results used throughout the
paper, are introduced; in Section III, the reconstruction formula is introduced for the ideal case when the tensor of
interest admits an exact low multilinear-rank representation; in Section IV, the effect of a more realistic model for
signals is analyzed and a modified reconstruction formula isproposed in order to guarantee stable reconstructions; in
Section V, several numerical results based on 2D and 3D real-world signals are provided, validating our theoretical
results and evaluating the stability and robustness of our proposed reconstruction scheme. The performance is
evaluated in terms of computational time, quality of reconstructions and variance of the results over Monte Carlo
simulations (robustness). Finally, in section VI, the mainconclusions of the present work are outlined.

II. N OTATION, DEFINITIONS AND PRELIMINARY RESULTS

A. Tensor notation and operations

Tensors (multi-way arrays) are denoted by underlined boldface capital letters, e.g.X ∈ R
I1×I2×···×IN is anN -th

order tensor of real numbers. Matrices (2D arrays) are denoted by bold uppercase letters and vectors by boldface
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lower-case letters, e.g.X ∈ R
I1×I2 andx ∈ R

I are a matrix and a vector, respectively. The element(i1, i2, . . . , iN )

of a tensor is referred asxi1i2...iN . The Frobenius norm is defined by‖X‖F =
√

∑

i1
· · ·∑iN

x2i1i2...iN . The spectral
norm of a matrixA is denoted by‖A‖ corresponding to its largest singular value.

Given a tensorX ∈ R
I1×I2×···×IN , its mode-n fibers are the vectors obtained by fixing all indices exceptin,

which correspond to columns (n = 1), rows (n = 2), and so on. Mode-n unfolding of a tensorX ∈ R
I1×I2×···×IN

yields a matrixX(n) ∈ R
In×Īn (Īn =

∏

m6=n Im) whose columns are the corresponding mode-n fibers arranged
in a particular order, to be more precise, tensor element(i1, i2, . . . , iN ) maps to matrix element(in, j), where
j = 1 +

∑

k 6=n(ik − 1)Jk with Jk =
∏k−1

m6=n Im [27].
Given a multidimensional signal (tensor)X ∈ R

I1×I2×···×IN and a matrixΦ ∈ R
J×In the mode-n tensor by

matrix productY = X×n Φ ∈ R
I1×···×In−1×J×In+1×···×IN is defined by:

yi1···in−1jin+1···iN =

In
∑

in=1

xi1···in···iNφjin , (1)

with ik = 1, 2, ..., Ik (k 6= n) and j = 1, 2, ..., J . It should be noted that this corresponds to the product of matrix
Φ by each one of the mode-n fibers ofX sinceY(n) = ΦX(n).

B. Tucker model and multilinear-rank

The Tucker decomposition model[28] provides a generalization of the low-rank approximation of matrices to
the case of tensors, i.e. for a given tensorX ∈ R

I1×I2×···×IN , we haveX = X0 + E, whereE is an error tensor
and the multilinear-rank-(R1, R2, . . . , RN ) tensor approximationX0 is defined as follows (Tucker model):

X0 = G×1 A1 ×2 · · · ×N AN , (2)

with a core tensorG ∈ R
R1×R2×···×RN and factor matricesAn ∈ R

In×Rn (typically Rn ≪ In). A data tensor
X ∈ RI1×I2×···×IN is said to havemultilinear-rank-(R1, R2, . . . , RN ) if such a decomposition is exact for a set of
minimal values(R1, R2, . . . , RN ), i.e. X = X0. We say that a tensorG ∈ R

R1×R2×···×RN is full-rank if all its
unfolded matrices are full-rank, i.e.,rank (G(n)) = Rn, ∀n. A particularly interesting case of the Tucker model
is when factor matricesAn = Un ∈ R

In×Rn are orthogonal and chosen as the truncated matrices of left singular
vectors associated with the unfolding matricesX(n) = UnΣnV

T
n . In this case, we obtain the so called truncated

Higher Order Singular Value Decomposition(HOSVD) [28]. It is noted that, in the matrix case, the truncated SVD
provides the best low rank approximation having orthogonalfactors and a diagonal core matrix.

C. Multi-way Projections

While in classical 1D CS, the set of compressive measurements is obtained by a linear projection, i.e. by
multiplying the vector signal by a sensing matrix, in the tensor case, we can exploit its multi-way structure and use
devices that provide compressive measurements by multiplying anN th-order tensor by sensing matrices in several
modes, similarly or identically to the Kronecker-CS setting [11]. According to the definition of the mode-n product
in eqn. (1), multiplying a data tensor by a sensing matrix in the mode-n corresponds to apply a projection to every
mode-n fiber. For example, a 2D signalX ∈ R

I1×I2 can be compressively sensed by using two sensing matrices,
Φ1 ∈ R

R1×I1 andΦ2 ∈ R
R2×I2 for mode-1 and mode-2, respectively, i.e.W = X ×1 Φ1 ×2 Φ2 ∈ R

R1×R2 or,
equivalently,W = Φ1XΦT

2 , or w = (Φ2⊗Φ1)
Tx, wherew ∈ R

R1R2 andx ∈ R
I1I2 are the vectorized versions of

matricesW andX, respectively. Thus, the objective of Kronecker-CS is to recover the signalX from the measured
data matrixW.

In this paper, we assume that the following set of compressive multi-way measurementsZ(n) ∈ R
R1×···×Rn−1×In×Rn+1×···×RN

(n = 1, 2, . . . , N ), are available:

Z(n) = X×1 Φ1 ×2 · · · ×n−1 Φn−1 ×n+1 Φn+1 ×n+2 · · · ×N ΦN , (3)

whereΦn ∈ R
Rn×In (Rn ≪ In) are the corresponding mode-n sensing matrices. Note that eqn. (3) indicates that

the original tensor is multiplied by the set of sensing matrices in all modes except in mode-n (see Fig. 1 (top)).
We also assume available the following core tensorW ∈ R

R1×R2×···×RN :

W = X×1 Φ1 ×2 · · · ×N ΦN , (4)
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Multiway compressive measurements of a 3D tensor

Perfect reconstruction of a multilinear rank-(R1,R2,R3) 3D tensor

(   )

(   )

(   )

Fig. 1. Multi-way measurements and the reconstruction model for a low multilinear-rank 3D tensor.

which, in fact, is redundant since it can be computed fromZ(n) andΦn taking into account thatW = Z(n)×nΦn

for anyn.
Most of state-of-the-art tensor reconstruction algorithms based on Kronecker-CS [11], [13], [14], [22], [23]

assume that the only available measurement tensor isW, i.e. the product of the original dataset by the sensing
matricesΦn (n=1,2,3) in all modes simultaneously. On the other hand, our present method requires to have the
set of tensor measurements obtained by multiplying the datasets by all the sensing matrices except one, i.e. tensors
Z(n) (n=1,2,3), not necessarily involving a larger amount of measurements (see experimental comparison in Section
V-E). However, it is not difficult to see that already existing hardware implementations of CS imaging systems can
be easily adapted in order to provide the kind of measurements required by our method. For example, in the 2D
case, our method proposes to collect measurements on columns using a common sensing matrixΦ1, and rows using
Φ2. By using the same ideas of the single-pixel camera developed in [29] and used in [11], our sensing operator can
be obtained by using, for example, a linear array of DMDs (Digital Microarray Devices) with random orientations
to sense columns and another linear array of DMDs to sense rows. On the other hand, it is also interesting to note
that in [25], a different hardware implementation was used to provide real Kronecker-CS, i.e., by applying different
sensing matrices to columns and rows which can be used to provide the measurements required by our method. It
is also interesting to note that, recently, in [12], a new hardware implementation has been proposed that allows to
employ Kronecker-CS with separable sensing operators in space and in spectral domains which could be also used
to provide the measurements required by our method.

In some 3D applications, the mode-3 sensing matrix is the identity matrix, i.e.Φ3 = I ∈ R
I3×I3 , because the

same sensing operator(Φ2 ⊗ Φ1) is applied to each frontal slice of the tensor. This is the case, for instance, in
hyperspectral compressive imaging, where each frequency band (a frontal slice) is sensed by applying a different
selective filter [11], [30]. This mathematical model is alsovalid for video sequences, where each frontal slice of
the tensor corresponds to a snapshot taken at a given time.

D. The Truncated Moore-Penrose Pseudo-inverse

It is well known that, by using the Moore-Penrose (MP) pseudo-inverse of an ill-conditioned matrixA ∈ R
I1×I2 ,

an unstable behavior is produced since the norm‖A†‖ could be extremely large when the smallest singular value
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σmin (I1,I2) is close to zero. In order to avoid this problem, thetruncated MP pseudo-inverseW∗τ can be used as
a regularization technique, which is defined as follows [31]:

W∗τ = VS∗τUT , (5)

with entries of the diagonal matrixS∗τ ∈ R
I2×I1 defined as follows:

σ∗
i =

{

1/σi, if σi > τ

0, if σi ≤ τ ,
(6)

whereτ is a free threshold parameter (see next sections). It is noted thatW∗τ → W† as τ → 0 and ‖W∗τ ‖ ≤
1/max (τ, σR). Also, the following properties are easily verified:

WW∗τW = W+H, (7)

with ‖H‖ ≤ τ if τ > σR, andH = 0 if τ ≤ σR;

W∗τWW∗τ = W∗τ , and (8)

‖WW∗τ ‖ = ‖W∗τW‖ = 1. (9)

The following lemma, provides a generalization of the property (7) to the3rd order tensor case.

Lemma II.1. For a given tensorW ∈ R
R1×R2×R3 with smallest singular values in each modeσR1

, σR2
andσR3

,
respectively, the following property holds:

W×1 W(1)W
∗τ

(1) ×2 W(2)W
∗τ

(2) ×3 W(3)W
∗τ

(3) = W+H, (10)

with

H = 0, if τ ≤ σ,

‖H‖F ≤ (
√
R1 +

√
R2 +

√
R3)τ, if τ > σ

whereσ = max (σRn
) and σ = min (σRn

) (n = 1, 2, 3).

Proof. See proof in the Appendix A.

III. E XACT LOW MULTILINEAR -RANK TENSOR RECOVERY

The following theorem provides an explicit reconstructionformula, as illustrated in Fig. 1 (bottom), and states
the conditions under which the original tensor can be exactly recovered from the set of multi-way measurements
Z(n) (n = 1, 2, . . . , N ) andW, defined in equations (3) and (4), respectively.

Theorem III.1 (Low multilinear-rank case). If tensorX ∈ R
I1×I2×···×IN has multilinear-rank-(R1, R2 . . . , RN )

and sensing matricesΦn ∈ R
Rn×In are such that the tensorW = X ×1 Φ1 · · · ×N ΦN ∈ R

R1×R2×···×RN is
full-rank, then the following reconstruction formula is exact, i.e.X̂ = X:

X̂ = W ×1 Z1W
†
(1) ×2 · · · ×N ZNW

†
(N), (11)

where “†” stands for the MP pseudo-inverse of a matrix andZn ≡ (Z(n))(n) ∈ R
In×R̄n , with R̄n =

∏

m6=nRm.

Proof. Let us consider the exact HOSVD decompositionX = Γ ×1 U1 ×2 · · · ×N UN , with core tensorΓ ∈
R

R1×R2×···×RN and orthogonal factorsUn ∈ R
In×Rn , which exists because it is assumed that tensorX has

multilinear-rank-(R1, R2, . . . , RN ). We consider, for convenience, a change of bases such that the new factorsAn

satisfyΦnAn = I ∈ R
Rn×Rn . We can do this by defining the new set of factors as follows:

An = Un(ΦnUn)
−1, (12)

thus, we haveX = G×1 A1 ×2 · · · ×N AN whereG = X×1 A
†
1 ×2 · · · ×N A

†
N = W. Note also that, with these

new bases, the multi-way measurements are now simplified toZ(n) = W×n An or, equivalently,Zn = AnW(n).
Taking into account thatW(1)W

†
(1)W(1) = W(1), the mode-1 unfolded version of eqn. (11) is:

X̂(1) = A1W(1)

(

ZNW
†
(N) ⊗ · · · ⊗ Z2W

†
(2)

)T

, (13)
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which, can be written in terms of its associated mode-2 unfolding matrix as:

X̂(2) = Z2W
†
(2)W(2)

(

ZNW
†
(N) ⊗ · · · ⊗ Z3W

†
(3) ⊗A1

)T

.

Now, by substitutingZ2 = A2W(2) in the previous equation and, by repeating this process for all modesn =
3, 4, . . . , N , we finally arrive at:

X̂(N) = ANW(N) (AN−1 ⊗ · · · ⊗A1)
T , (14)

which proves that̂X = X, sinceW = G.

It is noted that, using a simplified notation, the Tucker model of a tensor with sizeI×I×I having multilinear rank
(R,R,R), requiresR3+3IR parameters and the suggested reconstruction needs no more than3IR2 measurements
corresponding to tensorsZ(n), n = 1, 2, 3. This is larger than the number of parameters of the associated Tucker
model, however, ifR ≪ I we see that the number of measurements is approximatelyR times the number of
parameters, which is in general much smaller that the total number of entriesI3.

A. Multi-way Measurements Via Linear Projections Applied to Only Two Selected Modes

It is interesting to note that all multi-way measurements defined in eqn. (3) (n = 1, 2, . . . , N ) and eqn. (4), can be
computed from linear measurements taken only in two selected modes out ofN >. To show this, suppose that we
have at our disposal the linear measurements in modesm1 andm2 given by:Ym = ΦmX(m), with m = m1,m2;
then, it is easy to see that the mode-m unfolding matrix of each multi-way measurementZ(n), (n 6= m), can be
written as follows:

(Z(n))(m) = Ym(ΦT
N ⊗ · · · ⊗ΦT

m+1 ⊗ΦT
m−1 ⊗ · · ·

· · · ⊗ΦT
n+1 ⊗ I⊗ΦT

n−1 ⊗ · · · ⊗ΦT
1 ).

For example, in the important particular case of hyperspectral images, sometimes it is easier to take compres-
sive measurements of columns (mode-1) and rows (mode-2) of a3rd order tensorX ∈ R

I1×I2×I3by using the
corresponding matricesΦ1 ∈ R

R1×I1 andΦ1 ∈ R
R2×I2 as follows:

Y1 = Φ1X(1) andY2 = Φ2X(2). (15)

It is easy to see that the multi-way measurements required byour method can be obtained from these two set of linear
projections, for example, noting that:(Z(1))(2) = Y2(Φ

T
3 ⊗ I), (Z(2))(1) = Y1(Φ

T
3 ⊗ I), (Z(3))(1) = Y1(I⊗ΦT

2 ),
and that tensorW can be obtained using thatW = Z(n) ×n Φn (for anyn). In this case, matrixΦ3 ∈ R

R3×I3 is
not a real sensing matrix and its rankR3 must be chosen in order to capture the numerical rank of the dataset in
its 3rd mode, i.e.X(3). In Algorithm 1, the steps to reconstruct a tensorX ∈ R

I1×I2×I3 from the linear projections
defined in equation (15) are summarized.

Algorithm 1 : Reconstruction of tensorX from linear projections taken in mode-1 and mode-2 (as defined in eqn.
(15))
Require: Linear projectionsY1 ∈ R

R1×I2I3 , Y2 ∈ R
R2×I1I3 , sensing matricesΦ1,Φ2,Φ3 ∈ RRn×In (Rn ≪ In)

Ensure: Tensor reconstruction̂X ∈ R
I1×I2×I3

1: (Z(1))(2) = Y2(Φ
T
3 ⊗ I); Mode-2 unfolding ofZ(1)

2: Z
(1) = tensorize((Z(1))(2)); Tensorization

3: (Z(2))(1) = Y1(Φ
T
3 ⊗ I); Mode-1 unfolding ofZ(2)

4: Z
(2) = tensorize((Z(2))(1)); Tensorization

5: (Z(3))(1) = Y1(I⊗Φ
T
2 ); Mode-1 unfolding1of Z(3)

6: Z
(3) = tensorize((Z(3))(1)); Tensorization

7: Zn = (Z(n))(n); Mode-n unfolding (n = 1, 2, 3)
8: W = Z

(n)
×n Φn; for any n = 1, 2, or 3

9: Compute pseudo inverses of unfolding matricesW(n) (n = 1, 2, 3)
10: X̂ = W ×1 Z1W

†

(1) ×2 Z2W
†

(2) ×3 Z3W
†

(3),

11: return X̂

1It is noted that the mode-2 unfolding can be used instead as follows: (Z(3))(2) = Y2(I⊗Φ
T
1 ) ∈ R

R2×I3R1 .
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IV. STABLE RECONSTRUCTIONS OFAPPROXIMATELY LOW MULTILINEAR -RANK TENSORS

The reconstruction formula of eqn. (11) is exact for the casewhere the tensor has multilinear-rank-(R1, R2, . . . , RN ).
However, in real world applications, signals usually have not low multilinear-rank, but they admit good low
multilinear-rank approximations. Thus, a more realistic model for a signal should beX = X0 + E whereX0

has exact multilinear-rank-(R1, R2, . . . , RN ) andE is a tensor error with sufficiently small norm, i.e.‖E‖F ≤ ǫ.
In this case, one may ask about the optimal choice for sensingmatricesΦn ∈ R

Rn×In in order to provide
the best low multilinear-rank reconstruction. In the matrix case (N = 2), it is not difficult to see that, if sensing
matrices are constructed using the firstR singular vectors in each mode, then the obtained reconstruction is optimal
(best low-rank approximation). To be more specific, given the SVD of the data matrixX = UΛVT ∈ R

I1×I2 with
U =

(

U1 U2

)

, V =
(

V1 V2

)

andΛ =
(

Λ1 0

0 Λ2

)

whereU1 ∈ R
I1×R andV1 ∈ R

I2×R are the firstR left and
right singular values, respectively, andΛ1 is a diagonal matrix containing the firstR singular values in its main
diagonal in decreasing order, if we define the sensing matrices as follows:Φ1 = UT

1 ∈ R
R×I1 , Φ2 = VT

1 ∈ R
R×I2 ,

then the reconstruction is given by:

X̂ = Z1W
†ZT

2 = (XΦT
2 )(Φ1XΦT

2 )
†(XTΦT

1 ) = (XV2)(U
T
1 XV2)

†(XTU1) =

= (U1Λ1)Λ
†
1(Λ1V

T
1 ) = U1Λ1V

T
1 = X0, (16)

whereX0 is, by definition the truncated SVD which is the best low rank approximation.
However, in practice we do not know the singular vectors because the original dataset is not available so we need

to use sensing matrices that are independent from the dataset, for example, by generating them randomly which
will give us sub-optimal reconstructions, i.e.‖X− X̂‖F ≥ ǫ.

In particular, we say that a reconstruction method is stableif the obtained error‖X− X̂‖F is comparable to the
input errorǫ, i.e. ‖X − X̂‖F ∼ Kǫ for some constantK. As we will show in this section, the formula given by
eqn. (11) may suffer from an unstable behavior, especially in the matrix case (N = 2), i.e. generating large output
errors even when the input errorǫ is small. We will show that we can solve this unstable behavior by using the
truncated pseudo-inverse, as defined in Section II-D, instead of the exact MP pseudo-inverse. In other words, we
define themodified reconstructionformula as follows:

X̂τ = W ×1 Z1W
∗τ

(1)
×2 · · · ×N ZNW∗τ

(N)
, (17)

whereW∗τ

(n) is the truncated pseudo-inverse of matrixW(n) (with the threshold parameterτ ). It is noted that, when
τ ≤ σR(Wn) ∀n, eqn. (17) is equivalent to eqn. (11).

In the next sections we derive theoretical upper bounds for the reconstructions errors forN = 2 (matrix case)
and for a particular case of a 3D tensor (N = 3), where the same 2D sensor is applied to every frontal slice.We
also analyze under which conditions the parameterτ can be chosen in order to provide the minimum upper bound
(optimal valueτopt).

A. Error Upper Bound for the 2D case (N=2)

The following theorem provides an upper bound for the reconstruction of eqn. (17) and shows that the error
bound approaches to zero asǫ → 0 if τ = 0 or τ ∝ ǫ (i.e., τ is proportional to the best approximation errorǫ).

Theorem IV.1. . Let matrixX ∈ R
I1×I2 be approximated by a rank-R matrix X0 ∈ R

I1×I2 , i.e. X = X0 + E

where‖E‖ ≤ ǫ and, given sensing matricesΦ1 ∈ R
R×I1 ,Φ2 ∈ R

R×I2 such thatW = Φ1XΦT
2 is full-rank, then

the following error upper bound holds:

‖X− X̂τ‖ ≤







bǫ+ c ǫ2

σR

, if τ ≤ σR,

aτ + bǫ+ c ǫ
2

τ
, if τ > σR,

(18)

whereσR is theR-th singular value (smallest) of the matrixW and constantsa, b and c are defined below.

Proof. Let X0 = U1ΓU
T
2 be the truncated SVD ofX0, and the factorsA1,A2 ∈ R

I×R are defined by eqn. (12),
then we obtain

X0 = A1GAT
2 with G = W −Φ1EΦT

2 . (19)
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Fig. 2. Matrix Case (N = 2): Illustration of the two possible shapes for the error upper bound function depending on the magnitude of the
singular valueσR. Typical values of parametersa, b c were chosen as in the digital image example of Fig. 3 (I1 = I2 = 512 andR = 256).

The mode-1 measurement matrix isZ1 = X(1)Φ
T
2 = X0Φ

T
2 +EΦT

2 = A1W(1)+F1, with F1 = (I−A1Φ1)EΦT
2

(where we assumed thatΦnAn = I), and using a similar analysis for mode-2, we obtain thatZ2 = A2W(2)+F2,
with F2 = (I−A2Φ2)E

TΦT
1 .

Using the property (8) of the truncated pseudo-inverse, thereconstructed matrix becomes:

X̂τ = Z1W
∗τZT

2 . (20)

Now, by inserting the expressions forZ1 andZ2 into eqn. (20) we obtain:

X̂τ = A1WW∗τWAT
2 +A1WW∗τFT

2 + F1W
∗τWAT

2 + F1W
∗τFT

2 . (21)

Assuming thatWW∗τW = W +H with ‖H‖ ≤ τ if τ > σR, andH = 0, if τ ≤ σR (see Section II-D), and
usingX0 = X−E and equation (19), we obtain:

X̂τ −X = −E+A1Φ1EΦT
2A

T
2 +A1HAT

2 +A1WW∗τFT
2 + F1W

∗τWAT
2 + F1W

∗τFT
2 . (22)

If we apply the spectral norm to the last matrix equation and by using that‖W∗τ ‖ = 1/max (τ, σR), we finally
obtain

‖X− X̂τ‖ ≤







bǫ+ c ǫ2

σR

, if τ ≤ σR

aτ + bǫ+ c ǫ
2

τ
, if τ > σR,

(23)

where constants are identified as follows:

a = ‖A1‖‖A2‖, (24)

b = 1 + ‖A1Φ1‖‖A2Φ2‖+ ‖A1‖(1 + ‖A2Φ2‖)‖Φ1‖+ ‖A2‖(1 + ‖A1Φ1‖)‖Φ2‖, (25)

c = (1 + ‖A1Φ1‖)(1 + ‖A2Φ2‖)‖Φ1‖‖Φ2‖. (26)

It is important to note that the obtained theoretical bound is not tight in general because it is based on matrix
inequalities that usually are not tight, such as the triangular inequality, i.e.‖A+B‖ ≤ ‖A‖+ ‖B‖ and other used
matrix inequalities. However, it still is useful since:

1) The caseǫ = 0 (exact case) is not realistic since always real world datasets are not low multilinear rank,
so a theoretical bound, even if it is not tight is needed to characterize the reconstruction behavior in real
applications;

2) The bound, as a function ofǫ is asymptotically linear, i.e. of orderO(ǫ). So as more precise the model
is (smallerǫ), much better reconstructions, and of the same order, are expected, which is intuitive but can
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be only proved by a theoretical bound. In particular, it proves that, the bound approaches zero as the best
low-rank approximation errorǫ → 0, whenτ = 0 or τ ∝ ǫ, and perfect reconstruction is obtained when the
signal has rank-R, as it was already proved in Theorem III.1;

B. Optimal selection of threshold parameterτ

A quite important question arises here: What is the optimal value of the threshold parameterτ? Since the objective
is to obtain a reconstruction error as small as possible, we can try to minimize the upper bound and hope that the
theoretical bound gets its minimum at a point close to the minimum actual error. After a careful look at eqn. (18)
as a function ofτ , if we define

τ0 = ǫ

√

c

a
, (27)

we can identify two different cases:
• CASE I (small σR): WhenσR < 1

2τ0, the error bound is a convex function attaining its global minimum at
τ = τ0. This means that we should useτopt = τ0. Note that the error bound for the original reconstruction
formula (11) corresponds to the case of settingτ = 0, which gives us a larger error bound (see Fig. 2 (top)).

• CASE II (large σR): On the other hand, whenσR > 1
2τ0, the best choice is to setτ < σR, which corresponds

to using the original reconstruction formula of eqn. (11), i.e., with τopt = 0 (see Fig. 2 (bottom)).
However, it is important to note that, in practice, we are notable to compute the optimal parameterτ0 because

we do not know matricesA1 andA2 which depends on the SVD decomposition of the original unknown signal.
However, we may use a rough overestimated approximation of this parameter by assuming that‖AnΦn‖ + 1 ≈
‖AnΦn‖ and using the fact that‖AnΦn‖ ≤ ‖An‖‖Φn‖ which provides us the following rough estimation:

τ0 / ǫ‖Φ1‖‖Φ2‖. (28)

But, the problem still remains challenging since usually wedo not know exactly the error of the best low-rank
estimationǫ.

C. Error Upper Bound for a particular 3D case (N=3)

In this section we consider the recovery of a3-rd order tensorX ∈ R
I1×I2×I3 , for the particular and very important

case where the same sensing operator is applied to every frontal slice of a tensor as considered hyperspectral
CS imaging or video CS [11]. In other words, we assume that matrix Φ3 = I ∈ R

I3×I3 (i.e. R3 = I3) is
the identity matrix, thus the following multi-way projections are available:Z1 = X(1)(I ⊗ Φ2)

T ∈ R
I1×R2I3 ,

Z2 = X(2)(I⊗Φ1)
T ∈ R

I2×R1I3 andZ3 = X(3)(Φ2 ⊗Φ1)
T ∈ R

I3×R1R2 . In this case, the core tensorW defined
in eqn. (4) becomesW = Z(3). The following theorem is the3-rd order counterpart of Theorem IV.1 and provides
an upper bound for the reconstruction error. In order to makethe analysis simpler, we consider that the smallest
singular values of tensorW in mode-1 and mode-2 are the same and it is denoted asσR = σR1

= σR2
.

Theorem IV.2. . Let tensorX ∈ R
I1×I2×I3 be approximated by a multilinear-rank-(R1, R2, R3) tensorX0 ∈

R
I1×I2×I3 , i.e. X = X0 + E where‖E‖F ≤ ǫ and, given sensing matricesΦ1 ∈ R

R1×I1 andΦ2 ∈ R
R2×I2 such

that W = X×1 Φ1 ×2 Φ2 is full-rank, then the following error upper bound holds true:

‖X− X̂τ‖F ≤







bǫ+ c ǫ2

σR

, if τ ≤ σ

aτ + bǫ+ c ǫ
2

τ
, if τ > σ

(29)

whereσR = σR1
= σR2

, σ = max (σR, σR3
) and σ = min (σR, σR3

). (i.e., the maximum and minimum of the
smallest singular values of the mode-n unfolding matricesW(n)), and constantsa, b and c are defined below.

Proof. Following the same line of reasoning as used in the proof of Theorem IV.1, letX0 = Γ×1U1×2U2×3U3

be the truncated HOSVD (i.e., having orthogonal factorsUn ∈ R
In×Rn), which always exists since tensorX0

has multilinear-rank-(R1, R2, R3), by defining new factorsAn ∈ R
In×Rn according to eqn. (12) and noting that

A3 = I, we obtain:
X0 = G×1 A1 ×2 A2, with G = W −E×1 Φ1 ×2 Φ2, (30)
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whereW = X×1 Φ1 ×2 Φ2.
The mode-1 measurement matrix isZ1 = X(1)(I⊗Φ2)

T = (X0)(1)(I⊗Φ2)
T +E(1)(I⊗Φ2)

T = A1W(1)+F1,
with

F1 = (I−A1Φ1)E(1)(I⊗Φ2)
T , (31)

and, using a similar analysis as above, we obtain thatZ2 = A2W(2) + F2, with

F2 = (I−A2Φ2)E(2)(I⊗Φ1)
T , (32)

for mode-2, andZ3 = W(3) for mode-3. Using these expressions, the reconstructed tensor becomes:

X̂τ = Ω×1 (A1W(1) + F1)×2 (A2W(2) + F2)×3 W(3), (33)

whereΩ = W ×1 W
∗τ

(1) ×2 W
∗τ

(2) ×3 W
∗τ

(3). The latter equation can be written in the following way

X̂τ = B1 +B2 +B3 +B4, (34)

with

B1 = Ω×1 A1W(1) ×2 A2W(2) ×3 W(3), (35)

B2 = Ω×1 A1W(1) ×2 F2 ×3 W(3), (36)

B3 = Ω×1 F1 ×2 A2W(2) ×3 W(3), (37)

B4 = Ω×1 F1 ×2 F2 ×3 W(3). (38)

By applying Lemma II.1, we have thatΩ×1 W(1) ×2 W(2) ×3 W(3) = W +H and, taking into account eqn.
(30) and the fact thatX = X0 +E, we obtain that the first term in the right-hand side in eqn. (34) can be written
as follows:

B1 = X−E+E×1 A1Φ1 ×2 A2Φ2 +H×1 A1 ×2 A2. (39)

Now, by renaming
B5 = −E+E×1 A1Φ1 ×2 A2Φ2 +H×1 A1 ×2 A2, (40)

we have thatB1 = X+B5, which implies

X̂τ −X = B2 +B3 +B4 +B5, (41)

thus, we can find an upper bound of the approximation error by bounding from above each of the termsB2,B3,
B4 andB5 in the last equation. Using the bounds developed in AppendixB, we finally arrive at eqn. (29), where
the constantsa, b andc are defined as follows:

a =(
√

R1 +
√

R2 +
√

I3)‖A1‖‖A2‖,
b =1 + ‖A1Φ1‖‖A2Φ2‖+ ‖A1‖(1 + ‖A2Φ2‖)‖Φ1‖+ ‖A2‖(1 + ‖A1Φ1‖)‖Φ2‖,
c =(1 + ‖A1Φ1‖)(1 + ‖A2Φ2‖)‖Φ1‖‖Φ2‖.

D. Reconstruction Sensitivity to threshold parameterτ

Theorem IV.2 shows that the Frobenius error bound of the approximation of a 3D tensor has exactly the same
flavor as the bound of the spectral norm for the reconstruction of matrices (Theorem IV.1). However, when we apply
the method to natural images using random sensing matrices (see section V), the reconstructions of 2D datasets
are always more unstable and more sensitive to the choice of threshold parameterτ , compared to the case of 3D
datasets. This distinctive behavior is because, in the 2D case, the truncated MP pseudo inverse is applied to a matrix
that is usually much more ill-conditioned than the ones considered in the 3D case. To be more specific, in the 2D
case,W is a square random (R×R) matrix, thus it tends to be ill-conditioned compared to therectangular random
matrices used in the 3D case:W(1) ∈ R

R1×R2I3 , W(2) ∈ R
R2×I3R1 andW(3) ∈ R

I3×R1R2 .
As a consequence and, in agreement with the observed behaviors in the experiments of section V, in the 2D case

it is very important to use the proper threshold parameterτ0 6= 0 defined in eqn. (27) in order to provide the smallest
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reconstruction error and low variability of the results. Onthe other hand, in the 3D case, the method is always
very stable with small reconstruction errors obtained withτ = 0, i.e. computing the standard MP pseudo inverse
without truncation. This is a clear advantage of considering a number of dimensionsN > 2 because, usually, the
truncation parameterτ does not need to be tuned and optimal results are obtained by using justτ = 0.

V. NUMERICAL SIMULATIONS OF CS USING REAL-WORLD DATASETS

Here, we analyze various aspects of the proposed CS reconstruction method through numerical simulations and
compare the performance with 2D and 3D datasets. All the simulations were performed using Matlab software on
an iMac desktop computer, equipped with an Intel Core i5 processor (2.2 GHz) and 8 GB RAM. Matlab codes
to reproduce the simulation results are available at http://web.fi.uba.ar/∼ccaiafa/Cesar/Low-Rank-Tensor-CS.html.
In order to evaluate the quality of the reconstructions we use the Peak Signal to Noise Ratio defined as follows:
PSNR (dB)= 20 log10 (max(X)/‖X̂ −X‖F ).

A. Selected illustrative examples for 2D and 3D signals

First, we consider the 2D digital image “Lena” encoded in matrix X ∈ R
512×512 and assume that compressive

Gaussian samples are collected for rows and columns as follows: Z1 = XΦT
2 andZT

2 = Φ1X with Φ1,Φ2 ∈
R

256×512 being matrices with independent Gaussian entries. Note that, in this case, we haveI1 = I2 = 512,
R = 256 and the core matrixW = Φ1XΦT

2 can be computed from the available measurement matrixZ1 or Z2

multiplying it by the appropriate sensing matrixΦ1 or Φ2, respectively. In Fig. 3, the original digital image is shown
in the top-left panel, and right down below, its best rank-R approximation (truncated SVD) and the reconstructions
obtained withτ = 0 and τ = τ0, as defined in eqn. (27), are also shown. It is clear that the optimal result is
obtained withτopt = τ0 = 0.19 with PSNR=31.9dB, which is considerably much higher than the value obtained
with τ = 0 = 0.19 (PSNR=17.6dB).

We also considered a 3D hyperspectral tensor imageX ∈ R
128×128×32, which is actually a patch extracted from

“Ribeira”, a large hyperspectral image included in a publicdataset used in [32]. We also assumed Gaussian sensing
matricesΦ1,Φ2 ∈ R

64×128 which provides us with the following measurement matrices:Z1 = X(1)(I ⊗ Φ2)
T ,

Z2 = X(2)(I⊗Φ1)
T andZ3 = X(3)(Φ2⊗Φ1)

T . Note that, in this case,W(3) = Z(3). In Fig. 3, the original tensor
is shown in the top-right panel as a color RGB display, and right down below, its best multilinear-rank-(64, 64, 32)
approximation is shown, which was obtained by applying the Tucker Alternating Least Squares (ALS) algorithm of
the Tensor Toolbox [33]. We also show that the obtained reconstructions usingτ = 0 (PSNR=37.1dB) is slightly
better than the one obtained withτ = τ0 = 0.2 (PSNR=33.2dB).

As it is illustrated in these examples, in general, we can saythat, working with higher dimensions is an advantage
because involved matrices tend to be better conditioned avoiding the difficulty of estimating the optimalτ and
allowing us to use justτopt = 0 (regular MP pseudo inverse).

B. Sensitivity to parameterτ analysis in the 2D and 3D cases

In order to analyze the behavior of the reconstructions as a function of the threshold parameterτ in the 2D and 3D
cases, we have generated a matrix signal by using the best rank-R approximation of “Lena” image (512×512) and
a tensor signal by using the best multilinear-rank-(R,R, I3) approximation (Tucker-ALS) of a tensor patch used in
the previous section. By adding some Gaussian noise to thesebase signals, we obtained our models:X = X0+ ǫE
(2D case) andX = X0+ ǫE (3D case), where‖E‖ = ‖E‖F = 1 andǫ can be controlled by adjusting the variance
of the added noise. We have normalized the matrixX and tensorX in order to have‖X‖ = ‖X‖F = 1.

In Fig. 4 (a), the reconstruction errors‖X − X̂τ‖, obtained for a fixedǫ = 3.1 × 10−4, over a total number
of 500 simulations (with different sensing matrices in each simulation) are shown for the 2D case and compared
against the best low-rank approximation (truncated SVD). We can see that the actual error has a convex shape
attaining its minimum approximately atτopt = τ0 = 0.19 (optimal choice). In this case, we obtained an average
σR = 4.02 × 10−4 which means that matrixW is usually ill-conditioned andσR ≪ 0.5τ0.

In Fig. 4 (b) the reconstruction errors for the 3D case,‖X− X̂τ‖, for a fixedǫ = 6.2 × 10−3 and the best low
multilinear-rank, are shown. In the latter, we observe a totally different behavior compared to the 2D case, instead
of a convex function, now the minimum error is obtained by choosingτopt = 0, which is also slightly lower than

http://web.fi.uba.ar/~ccaiafa/Cesar/Low-Rank-Tensor-CS.html
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Original "Lena" (512x512)

Best Low−rank Approx.

(truncated SVD), PSNR=46.4dB

Reconstruction with τ =0,

PSNR=17.6dB

 

Reconstruction with τ=τ
0
,

PSNR=31.9dB

 

Original hyperspectral image patch

(128x128x32) - RGB display

Best Low−rank Approx.

(Tucker-ALS), PSNR=41.1dB

Reconstruction with τ =0,

PSNR=37.1dB

Reconstruction with τ=τ
0
,

PSNR=33.2dB

Fig. 3. Original 2D and 3D datasets (top), their best low-rank approximations (2nd row) and the reconstructions obtained by our method
usingτ = 0 (3rd row) andτ = τ0 (bottom). It is highlighted that, unlike in the 2D case, we can useτopt = 0 as the optimal value (lower
error bound) in the 3D case.

usingτ = τ0 = 0.2. It is noted that, in this case, the average smallest singular value wasσR = 0.03, which means
that matricesW(1) andW(2) are better conditioned than in the 2D case.

Another remarkable property of the proposed reconstruction method is that it provides very low variance of the
results (robustness). In the 2D case, the standard deviation s.d. is minimal atτopt = τ0 (s.d. = 3.0 × 10−4) and
increases significantly forτ < τ0. On the other side, the standard deviation of the errors obtained in the 3D case is
very small (s.d. = 3.0×10−4) and approximately constant for all the range of the parameter τ values. This means,
that our method is robust to the actual random sensing matricesΦ1 andΦ2 and, the results in the 2D case is very
sensitive to the choice of parameterτ opposed to the 3D case.
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Fig. 4. Approximation errors computed on 500 simulations for “Lena” (512 × 512) (a) and a (128 × 128 × 32)-patch of “Ribeira”. The
range of obtained values are shown as shaded areas. It is highlighted that the standard deviation of the error, at the minimum, is3.0e− 4 in
both cases ((a) and (b)), which means that the method is very robust to the actual choice of random sensing matricesΦ1 andΦ2. Averaged
σR andτ values are also indicated.

 

 

(a) 2D digital image (Lena) 

Best LR Approx Error (trunc. SVD)

Reconstruction Error with τ=τ
0

Reconstruction Error with τ=0

10
0

10
-1

10
-2

10
-3

10
-4

10
−4

10
−2

10
0

10
2

10
4

10
6

10
-6

(b) 3D hyperspectral tensor image

 ε (best LR approx. error (Tucker-ALS))

10
-4

10
-3

10
-2

10
-1

10
0

 ε (best low−rank approx. error (trunc.SVD))

Best LR Approx Error (Tucker-ALS)

Reconstruction Error with τ=τ
0

Reconstruction Error with τ=0

10
0

10
-1

10
-2

10
-3

10
-4

Fig. 5. Approximation errors versusǫ for 2D case (a) and 3D case (b). It is highlighted that, whileτ = 0 gives poorer results (large errors
and large deviations) compared toτ = τ0 for the 2D case, in the 3D case, similar good results (small errors and deviations) are obtained
for both, τ = 0 andτ = τ0.

C. Reconstruction error versus model errorǫ

In Fig. 5, using the same model as in the previous section for generating 2D and 3D signals, the performance
of the reconstructions usingτ = τ0 is compared against the case of usingτ = 0, as a function ofǫ (best low-rank
approximation error). In the 2D case (a), the original reconstruction formula (eqn. (11)) gives always poorer results,
i.e., larger errors, and less robust behavior (larger deviations over repeated simulations). On the other side, when
using the modified formula (eqn. (17)) with the optimal threshold parameterτopt = τ0 = ǫ

√

c/a, the reconstruction
errors are robust and much smaller, in fact they are close to the case of the best low-rank approximation given by
the truncated SVD forǫ > 0.003, approximatelly.

On the other hand, in the 3D case (b), robust (small deviations over repeated simulations) and small errors are
obtained withτ = 0, as well as withτ = τ0. Thus, our method is less sensitive to the choice of parameter τ in
the 3D case compared to the 2D case. Also, for a very small model noise (ǫ < 3.1× 10−4), better reconstructions
are obtained withτ = τ0 while, for a larger model noise (ǫ > 3.1 × 10−4), using τ = 0 provides slightly better
reconstructions.



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 15

2D-1: “Paint”

(1024x1024)

3D-3: “Tomato Video” [18] 

(256x256x128)

Central frame

3D-1: “Hyperspectral”  [32]

(1024x1024x32)

RGB display

2D-2: “Mondrian”

(512x512)

3D-2: “Brain MRI” [18]

(128x128x128)

Central Slice

2D-3: “Facade” [18]

(512x512)

Fig. 6. 2D - images (top) and 3D tensors (bottom) used in our simulations. 3D-1 hyperspectral image corresponds to the scene “’Farme’
included in a public dataset (http://personalpages.manchester.ac.uk/staff/david.foster/)[32]. 3D-2 Brain MRI and 3D-3 Tomato Video datasets
were used in the paper [18] and can be obtained from the author’s webpage.
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Fig. 7. Performance of reconstructions for 2D (a) and 3D (b) datasets. Mean values plus/minus the standard deviations over 100 Monte
Carlo simulations are shown. PSNRs associated with the bestlow rank (truncated SVD) and the best multilinear-rank (obtained through the
Tucker-ALS algorithm) approximations are also shown for reference.

D. Reconstruction error versus sampling ratioδ

In Fig. 7, we analyze, through100 Monte Carlo simulations, the approximation errors obtained by our method
and we compare it to the best possible low-rank approximation as a function of the sampling ratioδ, i.e. the size of
the non-redundant measurement data divided by the size of the original dataset, for several 2D (I × I) images (see
Fig. 6-top) and different types of 3D (I × I × I3) data tensors: a hyperspectral image [32], a Magnetic Resonance
Image (MRI) of a brain [18], and a video squence [18] (see Fig.6-bottom).

We note that, to compute the reconstruction, matricesZ1, Z2 andW are redundant, in fact matrixW can be

http://personalpages.manchester.ac.uk/staff/david.foster/
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computed directly from measurementsZ1 as follows:W = Φ1Z1. Also, by assuming the following block notation:
ZT
1 = (Z1,1,Z1,2), ZT

2 = (Z2,1,Z2,2), Φ1 = (Φ1,1,Φ1,2) andΦ2 = (Φ2,1,Φ2,2), with Z1,1,Z2,1,Φ1,1,Φ2,1 ∈
R

R×(I−R) andZ1,2,Z2,2,Φ1,2,Φ2,2 ∈ R
R×R, it is not difficult to prove that, in the 2D case,Z1,2 can be actually

computed fromZ2 andZ1,1 as follows:

Z1,2 = (Φ2Z2 − Z1,1Φ
T
1,1)(Φ

−1
1,2)

T , (42)

where matrixΦ1,2 is assumed to be invertible. Thus, the size of the minimal non-redundant measurement data
required is given by2RI −R2 (i.e. the sum of the sizes of matricesZ2 andZ1,1), which means that the sampling
ratio can be defined as follows:

δ = 2
R

I
−
(

R

I

)2

. (43)

It is easy to see that, the same sampling ratio formula is alsovalid for the 3D case when the sensing matrix in the
mode-3 is equal to the identity matrix.

In Fig. 7 (a), the obtained PSNRs usingτ = τ0 for all the 2D datasets are shown while, in Fig. 7 (b), the
obtained PSNRs usingτ = 0 for all the 3D datasets are shown. These results demonstratethe robustness of the
method regarding the actual selection of sensing matricesΦ1,Φ2, since the observed variance of PSNR is very
small. It is noted that, the gap between the actual PSNR and the best (ideal) Low-Rank (LR) approximation is
much smaller in the 3D case compared to the 2D case. In particular, dataset 3D-2 (Brain MRI), showed a very
strong low rank structure allowing us to obtain very good reconstructions compared to the other two datasets. For
instance, forδ = 0.4, the obtained PSNR is around60dB for dataset 3D-2,45dB for dataset 3D-1 (hyperspectral
image) and28dB for dataset 3D-3 (video sequence).

E. Comparison against state-of-the-arts sparsity based algorithms

Here we compare our proposed reconstruction method againststate-of-the-arts sparsity based CS algorithms for
multidimensional datasets using random sensing matrices of types: a) Gaussian, and b) Bernoulli, i.e. with entries
being+1 or −1 with equal probability.

In Table II (rightmost columns), we show the obtained PSNRs by applying our method to all the 2D datasets
shown in Fig. 6 (top) usingR = 0.2I, and we compare them against the results obtained by applying the Kronecker-
CS (leftmost columns), consisting in using the SPGL1 algorithm [11], [26] and taking into account the Kronecker
structure using Daubechies Wavelet bases. At first glance, it would seem that our proposed method uses more
measurements than Kronecker-CS algorithms because we use two tensor measurements, i.e.Z(1), Z(2), instead of
only one tensorW ∈ R

R×R. In order to make a more complete and fair comparison, in the central columns of
Table II, we show the results of applying the Kronecker-CS method using a largerR in order to attain the same
sampling ratioδ = 0.36 as in our method. It is interesting to note that, even in the case of having the same
sampling ratio, our method gives the best results in all cases except with the 2D-1 “Paint” dataset, indicating that,
its sparse model is richer than its low-rank model. On the other hand, datasets 2D-2 and 2D-3 have stronger low
rank structures, which allows our proposed method to obtainbetter reconstructions.

In Table III, we show the obtained PSNRs by applying our method to the 3D datasets shown in Fig. 6 (bottom),
and we compare them against the results obtained by applyingthe N-Way Block Sparse Orthogonal Matching
Pursuit (NBOMP) algorithm developed in [13] for the sameR = 0.125 (leftmost columns) and same sampling
ratio δ = 0.23 (central columns). Note that, for example, the hyperspectral image in dataset 3D-1 is so large that
it is almost impossible to apply other CS algorithms, even Kronecker-CS methods using a standard computer.

In Table IV and Table V, we compare the computation times required in each case showing that our direct method
provides an extremely faster computation. For a fixed sampling ratioδ, our method is 5 orders of magnitude faster
in the 2D case, and 2 orders of magnitude faster in the 3D case.For example, dataset 2D-1 “Paint” required almost
one hour to be reconstructed by using the Kronecker-CS algorithm and our method takes only 41 milliseconds to
build the reconstruction.

VI. CONCLUSIONS ANDDISCUSSION

We have provided a new CS reconstruction formula for multidimensional signals assuming that a set of multi-way
projections are available and that a good low multilinear-rank approximation exists. Compared to existing sparsity
based CS methods, our model does not require to assume sparsity neither a dictionary based representation.
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TABLE II
RECONSTRUCTION QUALITY(PSNR)OF THE PROPOSED METHOD AND THEKRONECKER-CSALGORITHM [11] FOR 2D SIGNALS USING

GAUSSIAN AND BERNOULLI SENSING MATRICES.

Kronecker-CS Kronecker-CS New Method

R = 0.2I R = 0.6I R = 0.2I

δ = 0.04 δ = 0.36 δ = 0.36

Data Gaussian Bernoulli Gaussian Bernoulli Gaussian Bernoulli

2D-1 22.8dB 22.3dB 31.7dB 30.6dB 28.3dB 28.4dB

2D-2 9.8dB 12.6dB 26.8dB 26.6dB 32.5dB 32.3dB

2D-3 13.9dB 12.7dB 21.9dB 21.7dB 24.0dB 24.2dB

TABLE III
RECONSTRUCTION QUALITY(PSNR)OF THE PROPOSED METHOD ANDN-WAY BLOCK-SPARSEOMP (NBOMP)ALGORITHM [11] FOR

3D SIGNALS USINGGAUSSIAN AND BERNOULLI SENSING MATRICES.

NBOMP-CS NBOMP-CS New Method

R = 0.125I R = 0.48I R = 0.125I

δ = 0.016 δ = 0.23 δ = 0.23

Data Gaussian Bernoulli Gaussian Bernoulli Gaussian Bernoulli

3D-1 21.9dB 22.4dB 39.8dB 39.9dB 40.6dB 40.5dB

3D-2 6.3dB 6.1dB 27.7dB 29.2dB 33.0dB 34.4dB

3D-3 3.6dB 3.6dB 23.1dB 22.2dB 25.8dB 25.7dB

TABLE IV
COMPUTATIONAL TIME COMPARISON BETWEEN THE PROPOSED METHOD AND KRONECKER-CSALGORITHM [11] FOR 2D SIGNALS.

Kronecker-CS Kronecker-CS New Method

R = 0.2I R = 0.6I R = 0.2I

δ = 0.04 δ = 0.36 δ = 0.36

Data Time (sec.) Time (sec.) Time (sec.)

2D-1 5.4× 102 3.5× 103 4.1× 10−2

2D-2 1.2× 102 6.7× 102 8.8× 10−3

2D-3 1.2× 102 7.7× 102 9.3× 10−3

TABLE V
COMPUTATIONAL TIME COMPARISON BETWEEN THE PROPOSED METHOD AND N-WAY BLOCK-SPARSEOMP (NBOMP)ALGORITHM

[13] FOR 3D SIGNALS.

NBOMP-CS NBOMP-CS New Method

R = 0.125I R = 0.48I R = 0.125I

δ = 0.016 δ = 0.23 δ = 0.23

Data Time (sec.) Time (sec.) Time (sec.)

3D-1 6.8 4.0× 103 1.1× 101

3D-2 8.2 1.8× 101 4.4× 10−1

3D-3 4.1 × 101 2.4× 102 1.8
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In sparsity based CS, [26], [11], [13], available theoretical guarantees are based on sparsity levels and properties
of the sensing/dictionary matrix such as RIP (restricted isometry property) and coherence. It is known that, if a
signal has an exact sparse representation, then classical CS algorithms such as Matching Pursuit (MP) or Basis
Pursuit (BP) are able to provide an exact reconstruction and, if the signal has an approximate sparse representation,
then MP and BP provide reconstructions that are stable, i.e., they are close to the original signal with high
probability. In our approach, we prove that, if the signal has an exact low multilinear-rank representation, then the
proposed reconstruction is exact and, in the realistic casethat the signals have only approximate low multilinear-rank
representations, the reconstruction error has an upper bound that is of orderO(ǫ) whereǫ is the model error.

Our simulation results showed that, the present method has the following significant advantages:

1) It is super fastbecause it does not involve iterations making it potentially suitable for large-scale problems;
2) It is stable, in the sense that tensors which are well approximated by a Tucker model, are also well

reconstructed by the proposed method,
3) It is robust because the reconstruction performance is not sensitive tothe used Gaussian/Bernoulli sensing

matrices.

Moreover, we have shown that, working with higher dimensions (N > 2), in particular withN = 3, gives us
additional advantages because the involved matrices are better conditioned compared to the 2D case, providing
more stable results and allowing us to use the standard MP pseudo inverse, i.e. without truncation.

We have shown the applicability of our method to the case of hyperspectral compressive imaging for which the
technology is already available [11], [25] and applied it also to other kinds of 3D datasets such as MRI images
and video sequences.

Our model is presented in a general setting which makes it hopefully applicable to next generation of multi-
dimensional sensors and new methods for big-data processing under the assumption of the existence of a good
multilinear rank representation and the availability of multilinear compressive measurements.

APPENDIX A: PROOF OFLEMMA II.1

Let us consider the mode-1 unfolding of the left-hand side of eqn. (10), and apply the property (7) to matrix
W(1), i.e. W(1)W

∗τ

(1)W(1) = W(1) +P(1), then we obtain:

W(1)W
∗τ

(1)W(1)(W(3)W
∗τ

(3) ⊗W(2)W
∗τ

(2))
T =

W(1)(W(3)W
∗τ

(3) ⊗W(2)W
∗τ

(2))
T +P(1)(W(3)W

∗τ

(3) ⊗W(2)W
∗τ

(2))
T .

The mode-2 representation of the last equation is as follows:

W(2)W
∗τ

(2)W(2)(W(3)W
∗τ

(3) ⊗ I)T +W(2)W
∗τ

(2)P(2)(W(3)W
∗τ

(3) ⊗ I)T .

Now, by applying the property (7) to matrixW(2), i.e. W(2)W
∗τ

(2)W(2) = W(2) + Q(2), and using the mode-3
representation of the last equation, we arrive at:

W(3)W
∗τ

(3)W(3) +W(3)W
∗τ

(3)Q(3) +W(3)W
∗τ

(3)P(3)(W(2)W
∗τ

(2) ⊗ I)T .

Using again the property (7), i.e.W(3)W(3)W
∗τ

(3) = W(3) +R(3), and writing the last equation in tensor format,
we finally obtain:W +H, with

H = R+Q×3 W(3)W
∗τ

(3) +P×2 W(2)W
∗τ

(2) ×3 W(3)W
∗τ

(3),

which, by using elementary properties of the Frobenius and spectral norms and the fact that‖P(1)‖, ‖Q(2)‖,
‖R(3)‖ ≤ τ (τ > σ) and‖P(1)‖ = ‖Q(2)‖ = ‖R(3)‖ = 0 (τ ≤ σ), implies that‖H‖F ≤

√
R3τ +

√
R2τ +

√
R1τ

if τ > σ, andH = 0 if τ ≤ σ.
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APPENDIX B: BOUNDS FOR TENSORSB2, B3, B4 AND B5

By considering the mode-2 unfolding of eqn. (36) we have that

‖B2‖F = ‖F2W
∗τ

(2)W(2)(W(3)W
∗τ

(3) ⊗A1W(1)W
∗τ

(1))
T ‖F ,

from which, by applying the property (9) of section II-D, andusing the fact that‖AB‖ ≤ ‖A‖‖B‖F , that spectral
norm is a sub-multiplicative norm, and that the spectral norm of the Kronecker product ofA andB is equal to
the product of the norm ofA and that ofB, namely,‖A⊗B‖ = ‖A‖‖B‖, we obtain that‖B2‖F ≤ ‖A1‖‖F2‖F .
Now, using the definition of matrixF2 (see eqn. (32)), we have that‖F2‖F ≤ ‖I−A2Φ2‖‖I ⊗Φ1‖‖E‖F which
implies the following bound forB2

‖B2‖F ≤ ‖A1‖(1 + ‖A2Φ2‖)‖Φ1‖ǫ. (44)

Analogously, we obtain the following bound forB3:

‖B3‖F ≤ ‖A2‖(1 + ‖A1Φ1‖)‖Φ2‖ǫ. (45)

By considering the mode-1 representation of eqn. (38) we obtain the following inequality:

‖B4‖F ≤ ‖F1W
∗τ

(1)
W(1)‖F ‖W(3)W

∗τ

(3)
⊗ F2W

∗τ

(2)
‖F ,

and using properties of the MP pseudo-inverse and the already obtained bounds for‖F1‖F and‖F2‖F we finally
arrive at:

‖B4‖F ≤ (1 + ‖A1Φ1‖)(1 + ‖A2Φ2‖)
‖Φ1‖‖Φ2‖ǫ2
max(τ, σR)

.

From the definition ofB5 in eqn. (40) and by using Lemma II.1, we derive the following bounds:‖B5‖F ≤
ǫ(1 + ‖A1Φ1‖‖A2Φ2‖) + τ(

√
R1 +

√
R2 +

√
I3)‖A1‖‖A2‖, if τ > σ, and‖B5‖F ≤ ǫ(1 + ‖A1Φ1‖‖A2Φ2‖), if

τ ≤ σ.
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