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Abstract The correction to the Coulomb repulsion between
two electrons due to the exchange of a transverse photon,
referred to as the Breit interaction, as well as the main quan-
tum electrodynamics contributions to the atomic energies
(self-energy and vacuum polarization), are calculated using
the recently formulated relativistic screened hydrogenic
model. Comparison with the results of multiconfiguration
Dirac-Hartree-Fock calculations and experimental X-ray
energies is made.

Keywords Atomic spectra · Relativistic screened
hydrogenic model · Relativistic and QED effects in atoms

1 Introduction

In atomic physics, the method established to obtain the level
structures and other important observables is based on the
central field, independent particle method, generally called
Hartree-Fock (for the non-relativistic case) or Dirac-Fock
model (for the relativistic counterpart). There are advanced
books and well-documented computer codes dealing with
these models. For a non-relativistic (or quasi-relativistic)
treatment, the classic books are those written by Cowan [1]
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and Froese-Fischer [2]. For the relativistic theory, the canon-
ical text was written by Grant [3]. Other modern books are
Johnson’s [4] and Rudzikas’s [5]. As regards the software,
we can cite the quasi-relativistic suite of programs due to
Cowan [6] that use the configuration interaction method
(QR-HF+CI), as well as the fully-relativistic GRASP code,
which is based on the multiconfiguration Dirac-Hartree-
Fock (MCDHF) methodology [3] and the Flexible Atomic
Code [7].

The above-cited methods are intended to solve the
Schrödinger equation based on the Hamiltonian (in atomic
units) [1]

H=−
∑

A

∇2
A−

∑

A

2Z

rA
+
∑

A

∑

B<A

2

rAB

+
∑

A

ξA (rA) (lA·sA)

(1)

or its relativistic counterpart. More subtle corrections, such
as those arising from the Breit interaction and from quantum
electrodynamics (QED), are sometimes incorporated using
hydrogenic expressions with screened charges [7].

In the screened hydrogenic model (SHM), it is assumed
that the wavefunction of an electron in subshell n, l, j can
be described by means of hydrogen-like radial wavefunc-
tions with an effective (screened) nuclear charge Znlj . These
screened charges Znlj < Z arise from the positive bare
nucleus charge, Z, and are reduced by the screening due
to the other electrons [8–11]. The foundational theoretical
works about the SHM are due to Lazyer [12, 13]; later, Kre-
gar [14, 15] developed an alternative approach leading to the
same model. Most of the more recent research on the SHM
has been devoted to the determination of a set of universal
screening constants [9, 11, 16]. Generally, these screen-
ing constants are determined by fitting to atomic data as
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obtained from experiment or from more sophisticated com-
putational methods. In a recent article by the present authors
[17], a relativistic screened hydrogenic model with relativis-
tic hydrogenic wavefunctions (RSHM) was developed. This
method was lightly modified in order to be applied to rela-
tivistic case [18–20]. The main focus of this paper was on
the fundamentals of the method, and an iterative cycle for
the calculation of the screening parameters was necessary.
Our procedure has the advantage of providing an approach
free of adjustable parameters (see the details in Reference
[17]).

The energy levels of hydrogenic atoms are mainly deter-
mined by their Dirac eigenvalues. However, the Breit cor-
rection on the Coulomb repulsion and QED effects such as
radiative self-energy and vacuum polarization, incorporate
non-negligible contributions, specially for highly ionized
atoms as well as in X-ray transitions. In the present paper,
we evaluate the effect of such corrections on the energy lev-
els of complex configurations as obtained in the RSHM. The
rest of this paper is organized as follows: in Section 2, we
present the methodology. In Section 2.1, we review the basic
concepts and equations of the RSHM developed in Ref-
erence [17]; next, we introduce the theoretical framework
used for the calculation of the Breit (Gaunt plus retardation)
interactions (Section 2.2) and of the most important QED
corrections: radiative self-energy and vacuum polarization
(Uehling) (Section 2.3). The results of our calculations are
presented in Section 3, and they are compared with experi-
mental data and with values calculated by different methods.
Finally, the main conclusions are drawn in Section 4.

Note: In all of our equations, we use atomic units (� =
1, e = 1, m = 1, energies in Ry) and conventional symbols.

2 Methodology

2.1 The Relativistic Screened Hydrogenic Model

In Kregar’s formulation [14, 15, 18] of the non-relativistic
SHM, the Hamiltonian that describes interacting electrons
in a central nuclear field

H =
∑

A

(
p2

A/2m − Z/rA

)
+

∑

A

∑

B<A

1/rAB (2)

is transformed into the Hamiltonian

H 0 =
∑

A

H 0
A =

∑

A

(p2
A/2m − ZA/rA), (3)

based on the decomposition of the two-body coulombian
operator 1/rAB as the sum of two effective one-body oper-
ators:

1

rAB

=gAB

rA
+fBA

rB
. (4)

The solution to Eq. (3) are hydrogen-like single particles
wavefunctions with effective charge ZA. In Eq. (4), it is
assumed that the Ath electron is equally or more strongly
bound than the Bth electron; gAB and fBA are the external
and internal screening parameters, respectively. The effec-
tive charge felt by an electron in a subshell A is related to
the partial screenings due to all the other electrons:

ZA = Z −
(

∑

B<A

wBfBA +
∑

B>A

wBgAB + (wA − 1)kAA

)

(5)

where wA is the occupation number of the Ath orbital.
When A = B, kAA = gAA = fAA is the screening of an
electron in the Ath (sub)shell due to another electron in the
same (sub)shell.

The crucial point in SHM is the calculation of the par-
tial screenings fBA, gAB , kAA. In a recent article written by
the authors [17], a relativistic iterative approach was pro-
posed for the calculation of these screening parameters. In
the relativistic case, there are two radial wavefunctions for
the orbital A: the large and small components, FA(r) and
GA(r), respectively (please note that other articles use the
inverse notation for the large and small components). Such
wavefunctions are characterized by three quantum numbers
(nA, lA, jA). Following the approach due to Kregar [14] and
generalized by one of us [18], the following equations were
used:

gAB = N2
A

ZA

∞∫

0

dqB

∞∫

rB

dqA

rA
(6)

and

fBA = N2
B

ZB

∞∫

0

dqA

∞∫

rA

dqB

rB
; (7)

when A = B, then gAA = fAA = kAA.
In the equations above, NA (NB ) are the apparent princi-

pal quantum numbers [21]

NA =
[
n2

A − 2n′
A (jA + 1/2 − λA)

]1/2

where

n′
A = nA − jA − 1/2

λA =
[
(jA + 1/2)2 − α2Z2

A

]1/2

and α � 1/137.036 is the fine structure constant.
In expressions in Eqs. (6) and (7), dqA (dqB ) is the dif-

ferential charge distribution of an electron in the Ath (Bth)
orbital, and it is related to the square of the radial hydrogenic
wavefunctions:

dqA =
(
|FA(r)|2 + |GA(r)|2

)
dr (8)
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Note that both gAB and fBA, which are necessary for the
calculation of the screened charges ZA in Eq. (5), depend,
on turns, on the value of the ZAs, through Eqs. (6–8), par-
ticularly due to the dependence of the wavefunctions on ZA.
Thus, it is necessary to implement an iterative procedure
to determine these quantities. After the convergence of the
iterative procedure has been achieved, we can obtain the set
of (converged) screened charges ZA, and the corresponding
radial hydrogenic wavefunctions FA(r) and GA(r). These
are used later for the evaluation of the different contribu-
tions to the energy as explained below in this section. More
details about the implementation of the relativistic RSHM
and its comparison with experimental and calculated values
can be found in Reference [17].

Regardless of the method used for the determination of
the screened charges, the energy of a configuration char-
acterized by a set of occupancies {w1, ..., wm} is mainly
determined by means of the sum of Dirac eigenvalues:

ED= 1

α2

m∑

A=1

wA

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎣1+
⎛

⎜⎝
αZA

nA − |κA| +
√

κ2
A − α2Z2

A

⎞

⎟⎠

2⎤

⎥⎦

−1/2

− 1

⎫
⎪⎪⎬

⎪⎪⎭

(9)

where

κA = ±(jA + 1/2) for lA = jA ± 1/2 (10)

is called the angular momentum-parity quantum number.
Corrections on the calculation of this energy arise from
both many-body effects and QED. Among the many-body
effects, the lowest order correction to the electrostatic
Coulombian interelectronic repulsion is the Breit interac-
tion, which is described in the next subsection. The most
important QED corrections are those due to electron self-
energy and vacuum polarization; the corresponding mathe-
matical framework is explained in Section 2.3.

2.2 The Breit Interaction

In many-electron systems, the lower order correction to the
electron-electron Coulomb interaction 1/rAB is the Breit
interaction. For a pair of electrons A and B, the Breit
interaction can be written as [21–23]:

HBr = HG + Hret = −
−→αA · −→αB

rAB

+ 1

2

{−→αA · −→αB

rAB

−
(−→
rAB · −→αA

) (−→
rAB · −→αB

)

r3
AB

}
(11)

where −→αA are Dirac matrices and rAB is, as above, the inter-
electronic distance. The first term, HG, is called the Gaunt
(magnetic) term, and represents the unretarded interaction
between two Dirac currents, and it includes spin-orbit, spin-
other-orbit, and spin-spin interactions. The second term,

Hret, accounts for retardation effects. Typically, the retarda-
tion corrections are 1 order of magnitude smaller than the
Gaunt term.

In the following, we will use the treatment given by
Mann and Johnson [22]. The (spherically averaged) Breit
interaction energy for an atomic system is

EBr =
∑

A�=B

wAwB

(
L

G

AB + L
ret
AB

)

+1

2

∑

A

wA (wA − 1)
2jA + 1

jA

L
G

AA (12)

where the first summation accounts for the inter-shell
interactions and the second summation accounts for the
intrashell contributions to the energy shift. As above, wA

and wB are the electron occupancies of subshells A and B,
and jA is the total angular momentum number of electrons
in A. The average values of the (inter- and intrashell) Gaunt
and retardation contributions are given by

L
G
AB =

∑

J

{
�J (κA, κB)

[
J

2J − 1
T

J,J−1
AB + J + 1

2J + 3
T

J,J+1
AB

]

+�J (−κA, κB)
(κA + κB)2

J (J + 1)
T

J,J
AB

}
, (13)

L
G

AA =
∑

J

�J (−κA, κA)
4κ2

A

J (J + 1)
T

J,J
AA (14)

and

L
ret
AB = −

∑

J

�J (κA, κB)

[
J 2

(2J + 1)(2J − 1)
T

J,J−1
AB

+ (J + 1)2

(2J + 1)(2J + 3)
T

J,J+1
AB + J (J + 1)

2(2J + 1)
XJ

AB

]
.

(15)

In the former expressions, the parameters κA are defined
by Eq. (10), and

�J (κA, κB) = 1

2jB + 1
C2 (jA, J, jB; 1/2, 0)� (lA, J, lB)

(16)

with

�(lA, J, lB) =
{

.1; lA + J + lB even
0; lA + J + lB odd

(17)

and C (jA, J, jB; 1/2, 0) are Clebsch-Gordon coefficients.
Due to the presence of these coefficients, the sums are
restricted to values of J such that |jA − jB | ≤ J ≤ jA+jB .
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Table 1 Total energies (ERSHM), and corrections due to Gaunt (EGaunt), retardation (Eretard), radiative self-energy (ESE) and Uehling (EUehling)
for the isoelectronic sequence of He

Z ERSHM EGaunt Eretard ESE EUehling

2 −5.695290 1.2795e − 4 0 3.5772e − 5 −1.0544e − 6

4 −27.198744 1.3353e − 3 0 6.3598e − 4 −2.3688e − 5

6 −64.718274 4.9007e − 3 0 3.0602e − 3 −1.3227e − 4

10 −187.90731 0.024239 0 0.020506 −1.0885e − 3

15 −432.61184 0.084631 0 0.088502 −5.6296e − 3

20 −779.04434 0.20437 0 0.24454 −0.017912

25 −1228.6151 0.40438 0 0.53217 −0.043930

30 −1783.1987 0.70625 0 0.99787 −0.091670

40 −3217.4835 1.7067 0 2.6583 −0.29667

50 −5108.0947 3.4008 0 5.6337 −0.75594

60 −7492.9811 6.0132 0 10.4188 −1.6732

70 −10426.337 9.8139 0 17.8182 −3.3976

90 −18289.600 22.4804 0 48.6661 −12.4010

Please note that there are no retardation correction for this sequence. The energies are measured in Ry

The quantities T
J,J−1
AB , T

J,J+1
AB , T

J,J
AB and XJ

AB are
obtained by integration:

T
J,J−1
AB =

∞∫

0

dr1

∞∫

0

dr2
rJ−1
<

rJ
>

PAB(r1)PAB(r2), (18)

T
J,J+1
AB =

∞∫

0

dr1

∞∫

0

dr2
rJ+1
<

rJ+2
>

QAB(r1)QAB(r2), (19)

T
J,J
AB =

∞∫

0

dr1

∞∫

0

dr2
rJ
<

rJ+1
>

VAB(r1)VAB(r2) (20)

and

X
J,J
AB =

∞∫

0

dr1

r1∫

0

dr2

(
rJ−1
<

rJ
>

− rJ+1
<

rJ+2
>

)
QAB(r1)PAB(r2).

(21)

In Eqs. (18–21), r< (r>) is the smaller (larger) of the two
radial variables r1 and r2, whereas the following combina-
tions of radial hydrogenic wavefunctions were introduced

PAB(r) = UAB(r) + κB − κA

J
VAB(r), (22)

QAB(r) = −UAB(r) + κB − κA

J + 1
VAB(r), (23)

UAB(r) = FA(r)GB(r) − GA(r)FB(r) (24)

Table 2 Total energies (ERSHM), and corrections due to Gaunt ( EGaunt), retardation (Eretard), radiative self-energy (ESE) and Uehling (EUehling)
for the isoelectronic sequence of Ne

Z ERSHM EGaunt Eretard ESE EUehling

10 −256.817923 0.029634 −6.0327e − 4 0.020632 −1.0876e − 3

15 −669.831958 0.11904 −4.1625e − 3 0.091294 −5.7438e − 3

20 −1285.22213 0.31118 −0.013303 0.25725 −0.018591

25 −2105.01517 0.64672 −0.030577 0.56840 −0.046187

30 −3132.08186 1.1674 −0.058544 1.0791 −0.097353

40 −5823.93748 2.9389 −0.15687 2.9343 −0.31988

50 −9402.59796 5.9966 −0.32915 6.3324 −0.82486

60 −13929.0713 10.760 −0.59673 11.917 −1.8458

70 −19490.3397 17.727 −0.98153 20.725 −3.7894

90 −34275.3808 40.960 −2.1938 58.066 −14.185

The energies are measured in Ry
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and

VAB(r) = FA(r)GB(r) + GA(r)FB(r), (25)

where FA(r) and GA(r) are the large and small components
of the Dirac radial wavefunctions for orbital A, respectively.

The previous equations allow calculating the Breit cor-
rections to the Dirac energy given by Eq. (9). After the
iterative cycle of the RSHM has converged, the ZA (and the
corresponding radial hydrogenic wavefunctions) are used to
compute numerically the integrals (Eqs. 18–21). The numer-
ical values of these integrals are used to compute each
contribution to the Breit correction through Eqs. (13–17),
and the total Breit correction by means of Eq.(12).

2.3 QED Corrections

Within the framework of QED perturbation theory, the low-
est order one-electron corrections are the one-electron self
energy and the vacuum polarization [24, 25]. The self-
energy correction is due to the emission and reabsorption
of a photon by a bound electron. The vacuum polarization
energy shift is due to the creation of a virtual electron-
positron pair by the photon that mediates the interaction of
the bound electron with the nucleus; the leading contribu-
tion to the vacuum polarization is known as the Uehling
correction, whereas higher order terms are included in
the Wichmann-Kroll correction. Next, we describe simple
methods to include the self-energy and Uehling corrections
in the RSHM.

2.3.1 Self-energy Correction

According to Curtis [26], the radiative self-energy correc-
tion ESE

A for an electron in the nA, lA, jA subshell is written
factoring out the dominant Z and n dependences, and is
given by

ESE
A (Z) = α3Z4

πn3
A

FA(αZ) (26)

where the function FA(αZ), the reduced splitting factor,
obeys analytical expressions that are modifications of the
ones previously proposed by Garcia and Mack [27] and by
Ericksson [28]. For ns1/2, np1/2 and np3/2 orbitals, these
functions are given by

Fns1/2(αZ) = 8

3
ln

(
1

αZ

)
− An + 9.6184 · (αZ) − (αZ)2

×
[

4 ln2
(

1

αZ

)
− Bn ln

(
1

αZ

)
+ 25.442

]

+	ns1/2(αZ), (27)

Fnp1/2(αZ) = −Cn + Dn (αZ)2 ln

(
1

αZ

)
+ 	np1/2(αZ)

(28)

and

Fnp3/2(αZ)=Fnp1/2(αZ)+0.2496− 3

16
π(αZ)3−En(αZ)2

×
[

2 ln

(
1

αZ

)
+ 11

24
− 7.476 · (αZ)

]

+	nf s(αZ) (29)

being 	ns1/2(αZ) and 	np1/2(αZ) corrections introduced
by Curtis [26], and 	nf s(αZ) the reduced shift of the fine
structure of the np term. All these corrections are the dif-
ferences between exact (numerical) calculations and the
perturbative expansions.

a

b

Fig. 1 a The RSHM energies and the corrections due to Gaunt
(EGaunt) , self-energy (ESE) and Uehling

(
EUehling

)
for the isoelec-

tronic sequence of He. Please note that there are no retardation
correction for this sequence. The energies are measured in Ry. (The
lines are merely to guide the eye). b The RSHM energies as well
as the corrections: Gaunt (EGaunt) , retardation (Eretard) , self-energy
(ESE) and Uehling

(
EUehling

)
for the isoelectronic sequence of Ne.

The energies are measured in Ry. (The lines are merely to guide the
eye)
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The coefficients An, Bn, Cn and En are tabulated up to
n = 4 in Reference [29], and the additional terms are given
by

	1s1/2(αZ) = 0.2164 + 22.49(αZ)3, (30)

	ns1/2(αZ) = 0.1820 + 23.44(αZ)3, (31)

	np1/2(αZ) = −0.0057−0.3634(αZ)2 +2.018(αZ)4 (32)

and

	nf s(αZ) = 0.0068 − 2.593(αZ)4 (33)

for n > 1.

The calculation of the self-energy correction to the Dirac
energy (9) is easily performed from Eqs. (26–33) using the
converged screened charges obtained in the RSHM.

2.3.2 Uehling Correction

The Uehling correction is given by [30]:

EUeh
A = mc2

(mr

m

)3 α

π

(Zα)4

n3
A

F Ueh
A (Zα) (34)

where mr is the reduced mass of the electron. The function
F Ueh

A (Zα) was calculated differently according to the prin-
cipal quantum number nA. For nA = 1 and nA = 2, we

Table 3 Total energies of neutral atoms according to the SHM (ERSHM), and Gaunt (EGaunt) and retardation corrections (Eretard)

Z ERSHM EGaunt Eretard EGaunt + Eretard

This work

2 −5.6953 1.3E − 4 0 1.3E − 4

4 −29.18 0.00137 −7.3432E − 7 0.00137

10 −256.879 0.02963 −6.033E − 4 0.0290

18 −1056.954 0.22222 −0.00883 0.2134

30 −3582.1374 1.23167 −0.06446 1.1672

36 −5569.0538 2.28109 −0.12933 2.1518

48 −11146.6583 6.01654 −0.37409 5.6425

54 −14831.2283 8.9558 −0.5739 8.3819

62 −20743.7446 14.29642 −0.94439 13.3520

70 −27930.623 21.56946 −1.45069 20.1188

74 −32054.6501 26.11344 −1.76817 24.3453

80 −38935.1499 34.2189 −2.33152 31.8874

82 −41423.828 37.3052 −2.54454 34.7607

86 −46707.8798 44.11245 −3.01104 41.1014

Mann and Johnson

2 −5.7236 1.3E − 4 0 1.3E − 4

4 −29.1518 0.00141 −8E − 6 0.00141

10 −257.3838 0.03508 −0.0018 0.0129

18 −1057.3673 0.28686 −0.02214 0.2647

30 −3589.2244 1.6763 −0.15345 1.5229

36 −5577.7193 3.15621 −0.30272 2.8535

48 −11186.6381 8.55182 −0.86784 7.6840

54 −14893.797 12.88098 −1.3308 11.5502

62 −20858.7635 20.78612 −2.17872 18.6074

70 −28135.4602 31.63882 −3.34297 28.2958

74 −32312.6826 38.46143 −4.07289 34.3885

80 −39298.1672 50.70659 −5.37678 45.3298

82 −41827.9999 55.39151 −5.87256 49.5190

86 −47204.9084 65.75845 −6.96351 58.7949

Our results are compared with the results by Mann and Johnson [22]. Energy units are Ry
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Fig. 2 RSHM energies, (ERSHM) as well as Gaunt (EGaunt ) and retar-
dation corrections (Eretard). Our results are compared with the results
by Mann and Johnson [22]. Energy units are Ry. (The lines are merely
to guide the eye)

employed the numerical approach by [31]. The method is
based in the numerical evaluation of integrals of the form

F Ueh
A (Zα) = −1

3

( nA

Zα

)3
1∫

0

(1 − x)2 2 + 2x − x2

2x − x2

×LA

[
2√

2x − x2

]
dx (35)

where the functions LA(u) for the states 1s1/2, 2s1/2, 2p1/2,
2p3/2 are

L1s1/2(u) = Zα

1 − δ

[
1 + u

2Zα

]2δ−2
, (36)

L2s1/2(u) = Zα

4E(1 − δ)

[
1 + 4E(1 − E2)

u

Zα

+E(1 + E)(2E − 1)
( u

Zα

)2
]2δ−4

, (37)

L2p1/2(u) = Zα

4E(1 − δ)

[
1 + 4E(1 − E2)

u

Zα

+E(1 − E)(2E + 1)
( u

Zα

)2
]2δ−4

(38)

and

L2p3/2(u) = Zα

2(2 − δ′)

[
1 + u

Zα

]2δ′−4
(39)

with

δ=1 −
√

1 − (Zα)2; E=√
1 − δ/2; δ′ =2 −

√
4 − (Zα)2

(40)

as can be seen in Reference [31]. For nA > 2, we used the
expansion [30]

F Ueh
A (Zα)=

[
− 4

15
+ 5

48
π(Zα)− 2

15
(Zα)2 ln

[(
m

mr

)
(Zα)−2

]]
δl,0

+(Zα)2GUeh
A (Zα). (41)

with δl,0 the Kronecker’s delta. In turns, according to Mohr
and Taylor [32], the superior order remnant GUeh

A (Zα) can
be expressed as the sum of two terms:

GUeh
A (Zα) = G

(1)
V P,A(Zα) + G

(R)
V P,A(Zα) (42)

Table 4 Comparison of Coulombian total energies, Gaunt, retardation, radiative self-energy and Uehling corrections as obtained with our code
and the results by Rodrigues et al. [34]

Li-like Na-like

Z = 15 Z = 55 Z = 95 Z = 15 Z = 55 Z = 95

Rodrigues et al.

Coulomb −477.9008 −6996.0785 −23420.1228 −675.4306 −11844.3262 −40178.3915

Gaunt 0.092308 5.0738 30.2125 0.1490 10.9728 67.4027

Retardation −8.7059e − 4 −0.05898 −0.4088 −0.01033 −0.9659 −5.6310

Self-Energy 0.1016 8.5958 65.1820 0.1104 9.6438 77.3532

Uehling −0.006143 −1.2236 −17.7072 −0.006223 −1.3060 −17.7970

This work

Coulomb −477.5467 −6983.7225 −23365.7793 −674.8841 −11795.8821 −39836.8457

Gaunt 0.08833 4.8218 28.6896 0.1194 8.2205 50.0479

Retardation −3.6626e − 4 −0.02809 −0.1965 −0.004146 −0.4569 − 2.6729

Self-Energy 0.09244 8.3019 68.1520 0.09136 8.9075 76.5148

Uehling −0.005854 − 1.2101 −18.4378 −0.005745 −1.2587 − 19.7052
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Table 5 X-ray energies (in eV) for the transitions Kα3, Kα2 and Kα1 for the noble gases

Z Line Eour EM Eexp |	E(%)|our-exp |	E(%)|M-exp

10 Kα3 823.9 822.9 817.7 0.85 0.64

10 Kα2 856.2 856 849.1 0.94 0.81

10 Kα1 856.3 856.2 849.2 0.94 0.81

18 Kα3 2882.2 2890 2880.1 0.21 0.35

18 Kα2 2963 2960 2955.6 0.40 0.15

18 Kα1 2964.2 2975 2957.7 0.37 0.58

36 Kα3 12380.3 12460 12402.6 0.07 0.46

36 Kα2 12584.3 12614 12598.0 0.15 0.13

36 Kα1 12625.4 12689 12649.0 0.08 0.32

54 Kα3 29063.2 29321 29112.8 0.20 0.71

54 Kα2 29415.9 29554 29458.0 0.23 0.33

54 Kα1 29683.1 29884 29799 0.01 0.29

86 Kα3 80171.8 Not available 80351.3 0.36 NA

86 Kα2 80886.7 Not available 81070.7 0.38 NA

86 Kα1 83228.5 Not available 83788.6 0.07 NA

Eour are our values, whereas Eexp are from Ref. [35] and EM are the values obtained with the screening constants of Mendoza et al. [16]. 	E(%)

represents the relative porcentual differences of the experimental values with our results and with those from [16]

here, G
(1)
V P,A(Zα) can be obtained numerically. In the

present work, since this term represents higher order correc-
tions with small impact on the energy levels for l � 2 [33], it
has not been included in the calculations. On the other hand,
the leading terms for G

(R)
V P,A(Zα) can be easily calculated

as [32]

G
(R)
V P,A(Zα)=

[
19

45
− 1

27
π2+

(
1

16
− 31

2880
π2

)
π(Zα)

]
δl,0

(43)

3 Results

3.1 Breit and QED Corrections for the Isoelectronic
Series of He and Ne

In Tables 1 and 2, we present the total (RSHM) energies for
several ions along the isoelectronic series of He and Ne,
respectively. Corrective terms due to the Breit interaction
(Gaunt and retardation) and the QED corrections due to self-
energy and Uehling are also shown. It should be emphasized
that such corrections were calculated from the screened
charges (and corresponding hydrogenic radial wavefunc-
tions) obtained after the iterative procedure involved in
the RSHM has converged. The total energies, indicated as
ERSHM, were obtained after adding such corrective terms to
the sum of the Dirac eigenvalues.

According to our calculations, both the total RSHM
energy and the corrective terms closely follow power laws
of the type E = AZβ . The different exponents for He are

the following: βERSHM = 2.09; βEGaunt = 3.134; βESE =
3.637; and βEUehling = 4.181. The total RSHM energy and
corrections are plotted in Fig. 1a.

For Ne (Table 2), the corresponding exponents are
βERSHM = 2.21 ; βEGaunt = 3.268; βEretard = 3.648;
βESE = 3.563; and βEUehling = 4.247. The total energy and
corrections are plotted in Fig. 1b.

3.2 Neutral Atoms

In Table 3, we compare the total atomic energies and the
Gaunt and retardation corrections of neutral atoms (Z =
2−102) as obtained in the RSHM, with the results by Mann
and Johnson [22]. These authors used the Dirac-Hartree-
Fock (DHF) method to obtain the radial wave functions FA

and GA. In Fig. 2, we plot the Gaunt and retardation cor-
rections as function of the nuclear charge. The general trend
of our results is in good agreement with the results reported
by [22]. According to Mann and Johnson , the total energy,
the Gaunt term and the retardation correction (for high Z)
follow a law of the type E(Z) = AZβ . These authors obtain
exponents βEDHF ≈ 2.4, and βEG ≈ βEretard ≈ 3.6. Our
present results give βERSHM ≈ 2.4, βEG ≈ 3.4, and, for high
Z, βEretard ≈ 3.4.

3.3 Comparison with Other Authors for Highly Ionized
Atoms

In Table 4, we compare Coulombian total energies, and
Gaunt, retardation, radiative self-energy, and Uehling cor-
rections as obtained within the RSHM, and the results given
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by Rodrigues et al. [34], that used a MCDHF code. The
average ratio R = Rodrigues/Ours for all contributions
is R = 1.06 ± 0.11.

3.4 X-ray Energies

In Table 5, we show the X-ray energies (in eV) for the tran-
sitions Kα3, Kα2 and Kα1 for the noble gases. Eour are
our values, whereas Eexp are from Ref. [35] and EM are the
values obtained with the screening constants of Mendoza et
al. [16]. 	E (%) represents the relative porcentual differ-
ences between the experimental values with our results and
with those from [16].

4 Conclusions

In this work, we have shown a scheme to incorporate the
Breit interaction and the most important QED corrections
to the energy levels of atomic configurations as obtained
from a recently formulated relativistic hydrogenic model.
Our results indicate that, both for neutral atoms and for iso-
electronic series, these contributions follow a power law
of the type AZβ . Our values for the Breit (Gaunt and
retarded) interaction as well as the dominant contributions
to the Lamb shift (self-energy and Uehling) in complex
atoms favourably compare with those obtained using more
elaborated methods. Table 4 shows that, for highly ionized
atoms, the accuracy of our values increases since compar-
isons with MCDF calculations are in the order of 6 %.
Besides, the results of our model favourably compare with
those obtained with other formulations of the screened
hydrogenic model in which the screening parameters were
determined by fitting to large databases containing experi-
mental atomic data. On the other hand, the values obtained
for the energies of the Kα group of transitions in the X-
ray spectra of the noble gases agree with experimental
results. Certainly, these very good agreements are due to the
paramount importance of the inner subshells for the total
energy of the atoms, and the accurate description of these
inner subshells given by the relativistic screened hydrogenic
model.

Therefore, although the computational capabilities avail-
able nowadays allow the use of more elaborate and accurate
methods as those depicted in the introduction of this paper,
for some practical applications, the SHM is a valid option.
For example, for atoms immersed in plasmas, when these
vary in a wide range of density and temperature (e.g. warm
dense matter).

Acknowledgments The authors acknowledge the support of Fac-
ultad de Ciencias Exactas, Universidad Nacional del Centro, and
the Consejo Nacional de Investigaciones Cientı́ficas y Técnicas,

Argentina. We are also very grateful for the assistance Mariana Di
Rocco has offered us in the translation of the paper into English.

References

1. R.D. Cowan, The Theory of Atomic Structure and Spectra (Uni-
versity of California Press, Berkeley, 1981). (revised October
2001)

2. C. Froese Fischer, T. Brage, P. Jönsson, Computational Atomic
Structure (IOP Publishing, Bristol and Philadelphia, 1997)

3. I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules
(Springer-Verlag, Berlin and Heidelberg, 2007)

4. W.R. Johnson, Atomic Structure Theory (Springer-Verlag, Berlin
and Heidelberg, 2007)

5. Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge Uni-
versity Press, Cambridge, 1997). (revised 2007)

6. The A. Kramida’s version for Windows are from http://www.nist.
gov/pml/div684/grp01/Kramida.cfm

7. M.F. Gu. AIP Conf. Proc. 730, 127–136 (2004)
8. J.G. Rubiano, R. Florido, R. Rodrı́guez, J.M. Gil, P. Martel,

E. Mı́nguez, J. Quant. Spectrosc. Radiat. Transfer 149, 1–7
(2004)

9. G. Faussurier, C. Blancard, P. Renaudin, High Energ. Dens. Phys.
4, 114–123 (2008)

10. L.M. Upcraft, High Energ. Dens. Phys. 6, 332–344 (2010)
11. C.C. Smith, High Energ. Dens. Phys. 7, 1–5 (2011)
12. D. Layzer, Ann. Phys. 8, 271–296 (1959)
13. D. Layzer, J. Bahcall, Ann. Phys. 17, 177 (1962)
14. M. Kregar, Phys. Scr. 29, 438 (1984)
15. M. Kregar, Phys. Scr. 31, 246 (1985)
16. M.A. Mendoza, J.G. Rubiano, J.M. Gil, R. Rodrı́guez, R.

Florido, P. Martel, E. Mı́nguez, High Energ. Dens. Phys. 7, 169
(2011)

17. F. Lanzini, H.O. Di Rocco, High Energ. Dens. Phys. 17, 240–247
(2015)

18. H.O. Di Rocco, Braz. J. Phys. 22, 1–10 (1992)
19. H.O. Di Rocco, Il Nuovo Cim. D 20, 131–140 (1998)
20. J. Pomarico, D.I. Iriarte, H.O. Di Rocco, Braz. J. Phys. 35, 530–

535 (2005)
21. M. Mizushima, Quantum Mechanics of Atomic Structure and

Atomic Spectra, W. A. Benjamin (1970)
22. J.B. Mann, W.R. Johnson, Phys. Rev. A 4, 41–51 (1971)
23. M.G. Kozlov, S.G. Porsev, I.I. Tupitsyn, arXiv:physics/0004076v1

(2000)
24. P.J. Mohr, G. Plunien, G. Soff, Phys. Rep. 293, 227–369

(1998)
25. O.Yu. Andreev, L.N. Labzowsky, G. Plunien, D.A. Solovyev,

Phys. Rep. 455, 135–246 (2008)
26. L.J. Curtis, J. Phys. B: At. Mol. Phys. 18, L651–L656

(1985)
27. J.D. Garcia, J.E. Mack, J. Opt. Soc. Am. 55, 654–85 (1965)
28. G.W. Ericksson, J. Phys. Chem. Ref. Data 6, 831–69 (1977)
29. J.M. Harriman, Phys. Rev. 101, 594–598 (1956)
30. V.A. Yerokhin, V.M. Shabaev, arXiv:1506.01885v1[physics.

atom-ph] (2015)
31. P.J. Mohr, Phys. Rev. A 26, 2338–54 (1982)
32. P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 72, 351 (2000)
33. S. Kotochigova, P.J. Mohr, B.N. Taylor, Can. J. Phys. 80, 1373–

1382 (2002)
34. G.C. Rodrigues, P. Indelicato, J.P. Santos, P. Patté, F. Parente,

Atom Data Nucl. Data. 86, 117 (2004)
35. G. Zschornack, Hanbook of X-Ray Data (Springer-Verlag, Berlin

and Heidelberg, 2007)

Author's personal copy

http://www.nist.gov/pml/div684/grp01/Kramida.cfm
http://www.nist.gov/pml/div684/grp01/Kramida.cfm
http://arxiv.org/abs/physics/0004076v1
http://arxiv.org/abs/1506.01885v1[physics.atom-ph]
http://arxiv.org/abs/1506.01885v1[physics.atom-ph]

	Breit and Quantum Electrodynamics Energy Contributions in Multielectron Atoms from the Relativistic Screened Hydrogenic Model
	Abstract
	Introduction
	Methodology
	The Relativistic Screened Hydrogenic Model
	The Breit Interaction
	QED Corrections
	Self-energy Correction
	Uehling Correction


	Results
	Breit and QED Corrections for the Isoelectronic Series of He and Ne
	Neutral Atoms
	Comparison with Other Authors for Highly Ionized Atoms
	X-ray Energies

	Conclusions
	Acknowledgments
	References




