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We study the effects of stochastic thermal fluctuations on the instability of the free surface of a flat liquid
metallic film on a solid substrate. These fluctuations are represented by a stochastic noise term added to the
deterministic equation for the film thickness within the long-wave approximation. Unlike the case of polymeric
films, we find that this noise, while remaining white in time, must be colored in space, at least in some regimes.
The corresponding noise term is characterized by a nonzero correlation length, �c, which, combined with the
size of the system, leads to a dimensionless parameter β that accounts for the relative importance of the spatial
correlation (β ∼ �−1

c ). We perform the linear stability analysis (LSA) of the film both with and without the
noise term and find that for �c larger than some critical value (depending on the system size), the wavelength
of the peak of the spectrum is larger than that corresponding to the deterministic case, while for smaller �c this
peak corresponds to smaller wavelength than the latter. Interestingly, whatever the value of �c, the peak always
approaches the deterministic one for larger times. We compare LSA results with the numerical simulations of the
complete nonlinear problem and find a good agreement in the power spectra for early times at different values of β.
For late times, we find that the stochastic LSA predicts well the position of the dominant wavelength, showing that
nonlinear interactions do not modify the trends of the early linear stages. Finally, we fit the theoretical spectra to
experimental data from a nanometric laser-melted copper film and find that at later times, the adjustment requires
smaller values of β (larger space correlations).
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I. INTRODUCTION

The breakup of a flat thin liquid film on a solid substrate is
a fundamental issue in the study of free surface instabilities.
The phenomenon is determined by partially understood effects
acting at the nanometric scale. These effects can be studied, in
some detail, through simulations of molecular dynamics but at
the cost of heavy computational resources and severe limita-
tions on the thickness of the films. An alternative approach
resorts to stochastic descriptions of relevant intermolecu-
lar interactions through appropriate “noisy” hydrodynamical
equations. This type of description was pioneered by Landau
[1], who proposed additional phenomenological fluctuation
terms that were exploited, for instance, by Uhlenbeck and Fox
[2] for Brownian particles. The terms were later justified, from
the microscopical point of view, as corresponding to a long-
wave approximation applied to the deterministic Boltzmann
equation [3]. The resulting equations have been used in the
study of bulk instability phenomena, such as turbulence in
randomly stirred fluids [4], Rayleigh–Benard convection [5],
and Taylor-Couette flow [6].

In general, approaches based on hydrodynamic Navier-
Stokes equations supplemented by stochastic fluctuation terms
have been found to be valid to describe the instability of bulk
matter [7] but to fail for thin-film phenomena. This is because
the framework does not properly account for the thermal
agitation of molecules, known to be relevant for the behavior of
open surfaces at small scales [8–10]. The failure is particularly
evident in thermally triggered phenomena, such as the breakup
of nanojets [9,11] or the glass transition of polymer films
[12]. Nevertheless, the continuum hydrodynamic approach

can be extended to phenomena driven by thermal agitation
by using stochastic differential equations [9]. These equations
are obtained by adding a contribution involving a stochastic
process or field describing the noise, usually assumed to
be uncorrelated (white) noise both in space and time. The
lack of correlations in time is associated with the absence of
memory effects due to thermal fluctuations. The validity of the
hypothesis of no spatial correlation of thermal noise is, in our
opinion, less clear.

In this paper, we apply the noisy hydrodynamic approach
to study the effect of thermal noise on metallic films laterally
much larger (up to microns) than their thicknesses and show
that, at least in some regimes, the noise must be considered
spatially correlated. Our paper has a double objective: On
the one hand, we contribute to the understanding of breakup
instabilities in films used in the design of microfluidic devices.
On the other hand, we present a case study that shows the
limitations of the spatial white noise assumption, together with
a slightly generalized mathematical formalism that can be of
use in other systems with spatially correlated noise.

Thin-film instabilities have been studied mostly for poly-
meric films [13–15]. In particular, pattern analysis procedures
have been proposed—based in Minkowsky invariants—to
compare experiments with theoretical and simulation results
for these films [16] and to test whether patterns correspond
to a Gaussian field [17]. These procedures show satisfactory
agreement between observations and theoretical studies as-
suming space-time white thermal noise. In contrast, unstable
liquid metal films have not been the object of comparably
thorough studies. In these films, the solid coating is melted by
laser and, since the deposition of energy is not strictly uniform
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throughout the illuminated spot, the thermal fluctuations—and
thus the liquid lifetime—may not be the same for all regions. In
such a context, thermal correlations can be expected to become
spatially extended.

Our paper is a contribution towards filling the gap in
the understanding of metallic thin-film breakup. We address
the issue at three different levels. At the theoretical level,
we propose a stochastic version of the thin-film equation—
based on the lubrication approximation for incompressible
hydrodynamic equations [8]—with spatially extended noise
(see Sec. II). In Sec. III, we perform a linear stability analysis of
the film under perturbations with normal modes. This analysis
allows us to compare the influence of the correlation length
of spatial fluctuations on the spectra of unstable modes. In
particular, the amplitudes of these modes are seen to increase
with decreasing correlation length, while the wave number of
the mode with maximum amplitude can be lower or larger than
the deterministic one depending on this length.

In Sec. IV we solve numerically the stochastic thin-film
equation and compare the results with the linear solution
obtained previously. As expected, fluctuations accelerate
breakups and rupture times decrease with the correlation length
of the fluctuations. Fourier spectra of profile thickness are
reasonably well described by the linear stability predictions
both at early and late times. And, finally, in Sec. V we
compare the predictions of our stochastic differential equations
with experimental Fourier spectra previously obtained [18]
from scanning electron microscope (SEM) images of the
instability of a melted copper film. We find that optimal fitting
is not achieved through white spatial noise; rather, it requires
fluctuations of increasing correlation length as the center of the
spot is approached (that is, as the liquid lifetime increases).

II. THIN-FILM EQUATIONS WITH STOCHASTIC NOISE

In order to somehow include the thermal agitation in the
framework of the continuous mechanics, it is considered that
the film molecules modify the surface forces that describe
the interaction between the fluid inside a volume element and
its surroundings. We adopt the lubrication approximation of
the stochastic Navier-Stokes equation [8,19] and introduce an
additional random symmetric term, S, in the expression of the
Newtonian stress tensor. The most relevant component of S
is Siz, where i can be either x or y and indicates a direction
parallel to the substrate while z stands for the normal one.
These components have zero mean,

〈Siz(�x,t)〉 = 0, (1)

and correlations

〈Siz(�x,t)Sjz(�x ′,t ′)〉 = 2μkBT F (�x − �x ′) δ(t − t ′) δi,j , (2)

where i,j = x,y, μ is the fluid viscosity, δ is the Dirac delta
function, and �x = (x,y). Here kB and T are the Boltzmann
constant and fluid temperature, respectively. F stands for
a translation-invariant (generalized) function; the standard
choice of spatial white noise corresponds to F (�x − �x ′) =
δ(�x − �x ′). The form (2) is consistent with the fluctuation-
dissipation theorem which relates the fluctuations of physical
quantifies to the dissipative properties of the system. The theo-
rem assumes the existence of some form of local equilibrium,

hence the resulting hydrodynamical equations are only valid
at scales much larger than the molecular scale. This is a further
argument in favor of considering functions F with extended
support (“colored” space noise). In the same approximation,
the pressure terms in the isotropic part of the stress for a film
of local thickness h(�x,t) are given, as usual, by the capillary
pressure, −γ∇2h (where γ is the surface tension), and the
disjoining-conjoining pressure (van der Waals force), �(h).
Thus, the reduction of the Navier-Stokes equations under the
lubrication approximation leads to [19]:

3μ
∂h

∂t
+ �∇ · [h3 �∇(γ∇2h + �(h))]

−�∇ ·
[∫ h

0
(h − z)S||z(z)dz

]
= 0, (3)

whereS||z = (Sxz,Syz). Note that the new noise term in Eq. (3),
while complicated, has the advantage that it maintains the
conservative form of the equation, incorporating a random
current which acts as another driving force.

Since we can assume that the process is Markovian, the
usual procedure of making a Krammers-Moyal expansion of
the master equation and retaining the first significant terms
leads to a Fokker-Planck equation that is easier to solve but
retains all the meaningful features of the problem [20,21]. The
function h is, in fact, a stochastic process whose distribution
evolution follows the appropriate Fokker-Planck equation [19],
corresponding to the Langevin equation,

3μ
∂h

∂t
+�∇ · [h3 �∇(γ∇2h + �(h))]−�∇ · [

√
3h3�ξ (�x,t)] = 0,

(4)
with a single multiplicative conserved noise vector �ξ (�x,t)
satisfying [2,19]

〈�ξ (�x,t)〉 = 0,

〈ξi(�x,t) ξj (�x ′,t ′)〉 = 2μkBT F (�x − �x ′) δ(t − t ′) δi,j . (5)

The δ-correlated noise in time ensures that the results of
studying of the Fokker-Planck equation are equivalent to those
of the Langevin equation [21]. Assuming symmetry along y

axis, the one-dimensional version of Eq. (4) for h(x,t) is

3μ
∂h

∂t
+ ∂

∂x

[
h3

(
γ

∂3h

∂x3
+ ∂�

∂x

)]
− ∂

∂x
[
√

3h3ξ (x,t)] = 0,

(6)
where, for brevity, ξ (x,t) stands for ξx(x,t).

Since the only characteristic length scale of an infinite film
is its thickness, h0, we define the following dimensionless
variables:

x̃ = x

h0
, ỹ = h

h0
, t̃ = t

t0
, �̃ = h0

γ
�, 	 = ξ√

T 	0

,

(7)
where the scales of time, t0, and noise, 	0, are to be determined
in terms of the characteristic parameters of the problem. Here
we take the capillary pressure, γ /h0, as the scale for the
disjoining pressure, and we have considered the temperature
dependence of the noise amplitude as given by Eq. (5). Thus,
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the dimensionless version of Eq. (6) is as follows:

∂h̃

∂t̃
+ ∂

∂x̃

[
h̃3

(
∂3h̃

∂x̃3
+ ∂�̃

∂x̃

)]
−

√
2σ

∂

∂x̃
[h̃3/2	(x̃,t̃)] = 0,

(8)
where

t0 = 3μh0

γ
, σ = kBT

γ h2
0

, 	0 = γ

√
2σ

3h0
, (9)

and

〈	(x̃,t̃)	(x̃ ′,t̃ ′)〉 = F̃ (x̃ − x̃ ′) δ(t̃ − t̃ ′), (10)

with F̃ = F/h2
0 a dimensionless correlation [for white noise

F̃ (̃�x) = δ(̃�x)]. Note that σ measures the relative importance
of the stochastic term (thermal noise) with respect to the
deterministic part, and it is given by the ratio between the
thermal and surface energies of the system. Since typical
experimental data yield σ of the order of 10−4 (or even less) we
will consider here this parameter within this range of values in
order to look for effects on the film instability.

As regards to the form of �, we take into account both the
attractive and repulsive intermolecular liquid-solid forces, so
it includes both the disjoining and conjoining pressure terms
in the form [22]

�(h) = κf (h) = κ

[(
h∗
h

)3

−
(

h∗
h

)2]
, (11)

where h∗ is the dimensional equilibrium thickness and κ (with
units of pressure) is given by

κ = A
6πh3∗

(12)

with A being the Hamaker constant. Alternatively, it is also
useful to define κ in terms of the contact angle, θ , as [22]

κ = 2γ (1 − cos θ )

h∗
. (13)

In dimensionless variables, κ becomes K = κh0/γ , and then
the final version of Eq. (8) is

∂h

∂t
+ ∂

∂x

[
h3

(
∂3h

∂x3
+ Kf ′(h)

∂h

∂x

)]
−

√
2σ

∂

∂x
[h3/2	(x,t)]

= 0, (14)

where we omit the tilde ( )̃ for brevity here and from now on.
As said before, the stochastic term 	(x,t) is considered to

be white noise with respect to time. Formally, this means that
it is of the form

	(x,t) = ∂W (x,t)

∂t
, (15)

where, for each x, the process W (x,·) is a standard Brownian
motion, namely the translation-invariant continuous process
with independent increments, each of which is normally
distributed:

W (x,t + �) − W (x,t) ∼ N (0,�). (16)

Here N (0,�) is a normal distribution with zero mean and
variance �, and “∼” stands for equality of distributions.

III. LINEAR STABILITY ANALYSIS (LSA) OF
THE STOCHASTIC THIN-FILM EQUATION

A. Linearized equation in Fourier space

The linearized equation is expected to hold at the beginning
of the instability process, when the deviations, δh(x,t) =
h(x,t) − h̃0, from the initial average film height are small (even
if h̃0 = 1, we keep this notation for clarity). By expanding
Eq. (14) up to first order in δh and 	 (assuming that the noise
amplitude is small as well) we obtain the linear stochastic
equation,

∂δh

∂t
+ h̃3

0

[
∂4δh

∂x4
+ Kf ′(h̃0)

∂2δh

∂x2

]
−

√
2σ h̃3

0

∂	

∂x
= 0.

(17)
It is convenient to look for its solution in the Fourier space, so
we use the spatial transform by

δ̂h(q,t) =
∫ ∞

−∞
δh(x,t) e−iqx dx. (18)

Therefore, Eq. (17) becomes

∂δ̂h(q,t)

∂t
= ω(q) δ̂h(q,t) + i

√
2σ h̃3

0 q 	̂, (19)

where we define

ω(q) = 4ωm

[(
q

qc

)2

−
(

q

qc

)4]
(20)

that corresponds to the dispersion relation of the deterministic
case [22]. Here

qc =
√

Kf ′(h̃0), ωm = h̃3
0q

4
c

4
(21)

are the critical (marginal) wave number and the maximum
growth rate, respectively. The wave number of maximum
growth rate is

qm = qc/
√

2. (22)

Since Eq. (19) is an equation of the Langevin type, its
solution is given by [23,24],

δ̂h(q,t) = eω(q)t δ̂h(q,0) + i

√
2σ h̃3

0q

∫ t

0
eω(q)(t−s)dŴ (q,s).

(23)
The process Ŵ (q,·) is the primitive Brownian process of the
time white noise 	̂(q,·) [see (16)]:

	̂(q,t) = ∂Ŵ (q,t)

∂t
. (24)

By (10), the autocorrelation of the Fourier transformed noise
is

〈	̂(q,t)	̂(q ′,t ′)〉

=
∫ ∞

−∞

∫ ∞

−∞
〈	(x,t)	(x ′,t ′)〉e−iqxe−iq ′x ′

dxdx ′

=
∫ ∞

−∞

∫ ∞

−∞
δ(t − t ′)F (x − x ′)e−i(qx+q ′x ′)dxdx ′

= 2πδ(q + q ′)δ(t − t ′)F̂ (q), (25)
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where

F̂ (q) =
∫ ∞

−∞
F (u)e−iqudu (26)

is the Fourier transform of the correlation function F and we
have applied the identity

∫ ∞
−∞ e−iqxdx = 2π δ(q). From (24)

and (26) we obtain that Ŵ has autocorrelations

〈Ŵ (q,t) Ŵ (q ′,t ′)〉 = 2π δ(q + q ′) F̂ (q)(t ∧ t ′), (27)

where t ∧ t ′ stands for the minimum of t and t ′. Here the
symbol ∧ is employed as it is usual in mathematics since it
is consistent with the set theoretical symbol for intersections
(see, e.g., Ref. [25]).

To study the instability evolution in the spectral space we
calculate the autocorrelation

〈 δ̂h(q,t) δ̂h(q ′,t ′) 〉 = C1 + C2 + C3 + C4, (28)

where the terms on the right-hand side are defined as follows:

C1 = 〈 δ̂h(q,0) δ̂h(q ′,0) 〉 eω(q)t eω(q ′)t ′ , (29)

C2 ∝ 〈δ̂h(q,0) dŴ (q ′,t ′)〉, (30)

C3 ∝ 〈δ̂h(q ′,0) dŴ (q,t)〉, (31)

C4 = −2σ h̃3
0q

2

〈 ∫ t

0
eω(q)(t−s)dŴ (q,s)

×
∫ t ′

0
eω(q ′)(t ′−s ′)dŴ (q ′,s ′)

〉
. (32)

To calculate C1 we determine the initial height-height correla-
tion:

〈δĥ(q,0) δĥ(q ′,0) 〉 =
∫ ∞

−∞

∫ ∞

−∞
〈 δh(x,0) δh(x ′,0) 〉

× e−iqxe−iq ′x ′
dx dx ′

=
∫ ∞

−∞

∫ ∞

−∞
F0(u) e−iqu e−i(q+q ′)x ′

dx ′ du

= 2π F̂0(q) δ(q + q ′). (33)

Hence,

C1 = 2π F̂0(q) δ(q + q ′) eω(q)(t+t ′), (34)

where we have considered the symmetry ω(−q) = ω(q). The
two subsequent terms in (28) do not contribute,

C2 = C3 = 0, (35)

because the the initial condition is a random variable indepen-
dent of the Brownian process, W . For the term C4, given in
(32), we note that since a Brownian evolution up to a certain
time is independent of later increments, only the common
interval [0,t ∧ t ′] contributes to the correlation of the product
of the integrals. Besides, due to Eq. (27), only the terms with
q ′ = −q have nonzero correlation. Thus, we obtain

C4 = −2σ h̃3
0q

22πδ(q + q ′)E

×
[∫ t∧t ′

0
eω(q)(t−s)dŴ (s)

∫ t∧t ′

0
eω(q)(t ′−s ′)dŴ (s ′)

]

= −2σ h̃3
0q

2δ(q + q ′)F̂ (q)
∫ t∧t ′

0
eω(q)(t−s)eω(q)(t ′−s)ds.

(36)

The last line above is a consequence of a well-known property
of Ito’s integral [23,24]. Performing the integral and using
t + t ′ − 2(t ∧ t ′) = |t − t ′|, we have

C4 = σ h̃3
02πδ(q + q ′)

q2F̂ (q)

ω(q)
[eω(q)(t+t ′) − eω(q)|t−t ′ |]. (37)

Finally, by replacing Eqs. (34), (35), and (37) in Eq. (28), we
obtain

〈δĥ(q,t)δĥ′(q ′,t ′)〉 = 2πδ(q + q ′)S(q; t,t ′), (38)

where

S(q; t,t ′) = F̂0(q)ew(q)(t+t ′) + σ h̃3
0
q2F̂ (q)

ω(q)

× [eω(q)(t+t ′) − eω(q)|t−t ′ |]. (39)

For the case of noncorrelated noise, we have F̂ (q) = 1, in
which case we obtain the relation given in Ref. [8].

The first term of Eq. (39) corresponds to the spectra
predicted by the deterministic model (σ = 0). In the following
we shall compare the evolution of films with (σ > 0) and
without the stochastic term. In the later case, the film has to
be perturbed at t = 0, otherwise no evolution is triggered. We
shall assume that the originally flat free surface of the film
is slightly modified by a perturbation adding no flow at the
boundaries of a space domain chosen to be the interval [0,L].
Such a perturbation admits a sine Fourier transform

δh(x,0) =
N∑

k=1

Bk sin(2πxk/L), (40)

whence we obtain F0(q) = δ̂h(q,0). The (small) amplitudes Bk

are chosen as random numbers with |Bk| < Bmax = 10−3h̃0.
As a typical case, in the following calculations we

choose a film with h∗ = 0.1 and θ = 30◦, which yields
[22] qm = 0.151, qc = 0.213, and ωm = 5.1910−4. Even if
only a few terms of Eq. (40) are expected to be relevant,
we take N = 50. The quantities λm = 2π/qm = 41.6 and
τm = (1/ωm) ln[(h̃0 − h∗)/Bmax] = 13113.5 give a rough idea
of the spatial extension and time duration of the film breakup
process. We find that L = 500 ≈ 12λm is large enough to
produce results that are independent of the domain size. The
consequences on the stochastic process of using a correlated
noise on a finite domain is analyzed in the next section.

B. Correlated stochastic noise in a finite domain

Here we will assume that the correlation function F in
Eq. (5) is L periodic. Note that it is a matter of convention
whether an L-periodic domain is considered a finite torus or
an infinite domain obtained by subsequently pasting copies of
the fundamental L cell and considering only solutions invariant
under L translations. We prefer the latter visualization.
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In this case the stochastic process 	(x,t) can be expanded
[19] in terms of functions of separated variables in the form

	(x,t) = ∂W (x,t)

∂t
=

+∞∑
k=−∞

χkċk(t)gk(x), (41)

where the coefficients ċk correspond to white-noise processes
obtained as (weak) time derivatives of mutually independent
Brownian motions ck , and the functions gk form the complete
set of orthonormal eigenfunctions

gk(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

2
L

cos (2πkx/L), k > 0√
1
L
, k = 0√

2
L

sin (2πkx/Lx), k < 0

(42)

of the Hilbert-Schmidt operator Q defined by

Qf (x) =
∫ L/2

−L/2
F (x − x ′)f (x ′)dx ′. (43)

The constants χk are the eigenvalues corresponding to each
gk:

Qgk(x) = χkgk(x). (44)

In fact,

χk =
∫ L/2

−L/2
F (u)e−i2πku/Ldu. (45)

Equations (43)–(45) are a consequence of the following simple
calculation. If Gk(x) = e−iqkx with qk = 2πk/L, then

QGk(x) =
∫ L/2

−L/2
F (x − x ′)e−iqkx

′
dx ′

= e−iqkx

∫ L/2−x

−L/2−x

F (u)e−iqkudu = χkGk(x) . (46)

The second equality uses the symmetry property F (u) =
F (−u) and the last one the fact that, by L periodicity, the
x dependence at the limits of integration can be omitted. Note
that Eq. (45) is the finite-size domain version of Eq. (26) for a
discrete spectrum, so the correlated noise effect is embedded
in the discrete spectrum of the Hilbert-Schmidt operator Q.

We choose the particular correlation function [19]

F (u,�c) =
{

Z−1 exp
[− 1

2

(
L
�c

sin
(

πu
L

))2]
, �c > 0

δ(u), �c = 0,
(47)

where �c is the correlation length and Z is such that∫ L

0 F (u,�c)du = 1. This function represents the equilibrium
distribution of the height of an oscillating surface subjected
to a (linear) surface tension L/�c. For this correlation, the
eigenvalues in Eq. (45) (see Appendix) are

F̂ (qk) = χk = Ik(α)

I0(α)
, (48)

where

α =
(

L

2�c

)2

=: β2. (49)
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ω
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FIG. 1. Linear spectrum of eigenvalues for several values of β

obtained from Eqs. (48) and (49). The vertical lines indicate the values
of qc and qm, while the dashed curve corresponds to the deterministic
dispersion relation, ω(q), given by Eq. (20). Here we take L = 500
to evaluate k = qL/(2π ).

We show in Fig. 1 this eigenvalue spectrum for several values
of β = L/(2�c). Note that for β → ∞ (i.e., �c → 0), we have
χk → 1 for all k, which leads to the limiting case of white
(uncorrelated) noise. For decreasing β (larger �c’s) the width
of the spectrum curve diminishes monotonically. The effect of
the correlation region (i.e., not negligible values of χk) on the
film instability can be put in evidence by comparing it with
the dispersion relation ω(q) as given by the deterministic LSA,
Eq. (20) (see dashed line in Fig. 1). For β � 8, all modes (stable
and unstable ones) are affected by the noise with increasing
effect on stable ones as β increases. On the other hand, for
β � 8 only unstable modes are affected by the thermal noise.
Note that this limiting value is related to the value of �c, so
both the periodicity of the problem, L, and the wavelength of
maximum growth, λm, play a role in the determination of these
regions.

The actual effect of �c on the evolution of the instability
is clearly observed in the power spectrum of the perturbation,
S(q,t), as predicted by the linear stability analysis in Sec. III.
Figure 2 shows S versus q at t = 200 and t = 2000 as given by
Eqs. (39) (t = t ′) and (40). As expected from the analysis of
Fig. 1, the inclusion of stochastic noise increases the amplitude
of the modes with q > qc (dotted vertical line) which are
otherwise stable in the deterministic case. This effect increases
with β, as the noise becomes closer to a white noise (�c → 0).

In Fig. 3 we show the time evolution of the wave number
of the maximum of the spectra, qmax(t), for different values
of β. Note that for β � 9, we find qmax < qm, while we have
qmax > qm for larger β. Therefore, qmax approaches qm from
below for β � 9 and from above for larger β.

In order to understand this behavior, we first analyze what
determines the value of qmax0 = qmax(t = 0). To do so, we
consider the derivative of Eq. (39) with respect to q for small
times (i.e., ωt � 1) and find that qmax0 is given simply by the
maximum of q2χ (q). By using the approximate expression

Ik(α) ≈ eα

√
2πα

(
1 − 4k2 − 1

8α
+ . . .

)
(50)
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FIG. 2. Power spectrum at two different times for σ = 5 × 10−5, and several values of β as given by the linear prediction in Eq. (39) and
the initial perturbation in Eq. (40). The vertical dashed and dotted lines correspond to the wave number of maximum growth rate (qm = 2π/λm)
and marginal stability (qc = 2π/λc), respectively.

for large α, we find

qmax0 = 2
√

2π
β

L
. (51)

Thus, the condition qmax0 = qm yields βc = 8.492 for L =
500, as shown in Fig. 3. Interestingly, this expression points
out that this condition occurs when �c = λc for any value of
L. Therefore, the maximum of the spectrum S(q,t), qmax(t),
remains below qm when the correlation length, �c, is less than
the critical wave number and vice versa. In the white-noise
case, this maximum is always above qm, and qmax0 = ∞.

IV. NUMERICAL IMPLEMENTATION IN A
FINITE DOMAIN

In order to understand the nonlinear effects in the film
instability, we perform numerical simulations of the evolution
of the film governed by the nonlinear Eq. (14). The calculations
are carried out in a computational domain defined by 0 � x �
L, which is divided into cells of size �x. Typically, we use
�x = 0.1 = h∗, which assures convergence of the numerical
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q
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10

6

12
q
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FIG. 3. Time evolution of the wave number of the maximum of
the spectra, qmax, for different values of β. Note that all the stochastic
timelines of qmax asymptote the deterministic value qm for long times.

scheme [26], and by setting L = 500 as mentioned above, we
have 5000 cells.

Equation (14) is discretized in space using a central finite
difference scheme with periodic boundary conditions. Time
discretization is performed using implicit Crank-Nicolson
scheme with relaxation factor equal to 1/2. Thus, the time
evolution of the stochastic term is performed according to
Stratonovich rules. In fact, symmetry considerations imply that
Ito and Stratonovich calculus are equivalent for the integration
of Eq. (14) [19]. We note that all the results presented in this
paper are fully converged, as verified by grid refinement; more
details about numerical issues can be found in Ref. [27]. Note
that the minimum possible value of the correlation length is
�c = �x (=0.1 in our case), since the discretized equations
cannot distinguish any correlation below this length scale.
Thus, the limiting case of white noise, which corresponds
to �c = 0 (i.e., β = ∞ and χk = 1), cannot be calculated
numerically with accuracy, and, consequently, this limit is
studied by observing the trends as β increases.

To represent the time-Wiener processes in the framework
of Ito calculus using a discrete form, we replace ċk(tn) at a
time step tn by the forward difference quotient

ċk(tn) ≈ �c

�tn
= ck(tn+1) − ck(tn)

tn+1 − tn
. (52)

The difference �c is normal distributed and the variance
is given by the time increment �tn. Thus, we approximate
Eq. (52) by

�c

�tn
= N n

k√
�tn

, (53)

where N n
k is a computer-generated random number which is

approximately N (0,1) distributed, i.e., its histogram is close
to a Gaussian with mean zero and unity standard deviation
(we used the GASDEV routine from Ref. [28]). Altogether, the
space-time discrete noise term, Eq. (41), is given by

	(x,t) = 1√
�tn

N−1
2∑

k=− N−1
2

χkN n
k gk(x), (54)
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FIG. 4. Space-time plot of h(x,t) for (a) the deterministic case (σ = 0) and stochastic cases (σ = 5 × 10−5) with spatially correlated noise
(b) β = 4, (c) β = 6, and (d) β = 12 (very close to white noise). Darker regions correspond to smaller thicknesses.

where χk is given by Eq. (48) and gk(x) by Eq. (42).
Thus, Eq. (54) is used to calculate the noise term in
Eq. (14).

Each realization of the stochastic process requires a given
seed for N . Then some of the numerical results presented
below correspond to a single realization and others to the
average of 60 realizations (different seeds). A typical example
of the evolution of a film for a single realization (i.e., a given
seed) is shown in the space-time plots shown in Fig. 4 for
σ = 0 and increasing values of β for σ = 5 × 10−5. Here

darker regions correspond to smaller thicknesses. Even for
these single realizations, some effects of the noise can be
observed. For instance, we notice that an important effect is to
decrease the duration of the breakup process with respect to the
deterministic case (σ = 0). Note also that the final number of
drops is reduced when spatially correlated noise is important,
i.e., β < βc (=8.492 in our case). This reduction is due to
merging of thickness peaks as the instability evolves, and this
effect is more frequent as σ increases (not shown for brevity).
The final pattern for β > βc is very similar to that shown
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FIG. 5. (a) Average maximum, hmax, and average minimum, hmin, of film thickness versus time for several values of �c and σ = 5 × 10−5

over 60 realizations. (b) Average maximum thickness, hmax, versus the shifted time t − tb, where tb = 8250, 9062, and 10 020 for β = 12, 8,
and 6 (�c = 4.16, 6.25, and 8.33.)

in Fig. 4(d) for β = 12, so this case is representative of the
white-noise limit.

In order to study how the correlated noise affects the time
evolution of the instability we first concentrate on the time it
takesfor the first rupture of the film to appear. By first rupture
time, we mean the moment when the film first reaches its
possible smallest value, which is h∗. Figure 5(a) shows the
time evolution of the average of the minimum of h(x,t), namely
hmin(t). Clearly, as β decreases the breakup time, tb, increases,
such that as β → 0 (�c → ∞) tb tends to the value given by
the case without noise (σ = 0), which has the largest time. On
the contrary, tb decreases as β → 0, and the noise becomes
less correlated and tends to white noise in space. For σ > 0,
this time decreases for increasing σ .

A parameter of interest for the drop formation problem after
the first breakup is the evolution of the maximum thickness as
the final static configuration is reached. In Fig. 5(a) we show
the average of hmax(t) for different values of β. We also plot
hmin(t) for reference and define the corresponding breakup
times, tb, as h(tb) = 1.05h∗ = 0.0105. Figure 5(b) shows that
in fact the evolution of hmax(t) is very weakly dependent on

β (i.e., �c), since the curves hmax versus t − tb are practically
superimposed. This result implies that the noise does not have
any effect on the drop formation process after the breakup of
the film, that is, during the dewetting stage following the pinch
off.

Now we aim to study the effects of the correlation length
in both linear (early) and nonlinear (late) stages of the
instability. To do so, we calculate the Fourier spectra of
the thickness profiles for different times. In Fig. 6 we show
the evolution of the spectra with β = 12 (�c = 4.16) for both
early and late times. All spectra correspond to an average
over 60 realizations, and no adjusting parameter has been
used (the scales for S differ from those used in previous
sections because a different normalization was employed in
the Fourier transform of the numerical results). For early
times, the agreement between numerics and the linear stability
prediction, Eq. (39), is very good. For larger times, the peaks
of both spectra approach qm though the numerics show higher
and a bit wider spectra than those predicted by LSA. A similar
situation is observed for smaller values of β as shown in
Fig. 7.
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FIG. 6. Numerical power spectra, S(q,t) (solid lines), for (a) early and (b) late times for σ = 5 × 10−5 and β = 12 (�c = 4.16) averaged
for 60 realizations of the problem defined in Fig. 4(d). The dashed lines are the corresponding predictions of the LSA, and the error bars show
the standard deviation of the mean. The vertical dashed line corresponds to the wave number of maximum growth in the deterministic case,
qm = 0.151, while the dotted one corresponds to the marginal value, qc = 0.215.
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FIG. 7. Numerical power spectra, S(q,t) (solid lines), for σ = 5 × 10−5 and (a) β = 6 (�c = 8.33) and (b) β = 8 (�c = 6.25) averaged for
60 realizations. The thick red lines correspond to moving average curves of the gray lines (raw data). The dashed lines are the corresponding
predictions of the LSA, and the error bars show the standard deviation of the mean. The vertical dashed line corresponds to the wave number
of maximum growth in the deterministic case, qm = 0.151, while the dotted one corresponds to the marginal value, qc = 0.215.

V. COMPARISON WITH EXPERIMENTS

Previous comparisons between experiments and stochastic
models have studied the instability of polymeric films on
silicon oxide substrates [15,16]. However, these comparisons
were made without considering spatial correlation, i.e., assum-
ing both spatial and temporal white noise. Also, they mainly
employed the integration of the spectra S(q) for all possible
values of q and derived quantities from it. Here, instead, we
apply the theoretical model described above to experimental
results for unstable liquid metal films to evaluate the im-
portance of spatial correlations when considering stochastic
instabilities. In order to do this, we do not restrict ourselves
to some integrals of the spectra but employ their complete
profiles as a function of the wave number, q.

Our experimental data correspond to copper thin films of a
few nanometers thick that are melted by the illumination with
pulses of an excimer laser that last some tens of nanoseconds.
During these pulses, the metal is in a liquid state, and thus
the present hydrodynamic model can be applied. In this
configuration, the liquid lifetime of the melted copper is
related with the local temperature of the film, i.e., with the
spatial distribution of the laser intensity, which spans in a
radially symmetric Gaussian profile. After the pulse, the metal
solidifies, leaving a distinct pattern of holes, drops, and/or
ridges depending on how long the metal has been in the liquid
state. More information about this setup configuration and
details on the technique can be found elsewhere [29–33].

Since the outer regions of the laser spot have shorter liquid
lifetimes, one can associate these regions with earlier times
of the evolution and, consequently, central regions with later
times. Since the laser spot is relatively large, the SEM images
of these experiments have the advantage of offering more
spatial information than other setups [15]. Nevertheless, they
have the drawback that the times corresponding to every
stage of the evolution are unknown, even if it is possible
to order the time sequence in connection with the distance
of the image respect to the center of the laser spot [18].
The goal of the following comparison is to show that the
experimental observations represented by the spectra require
not only a stochastic temporal evolution but also some spatial

correlation in the thermal noise in order to reproduce the full
results.

In particular, we will concentrate here on the data reported
in Ref. [18], where the SEM images of the evolving melted
metal were analyzed by using bidimensional (2D) discrete
Fourier transform (DFT). Since the 2D spectra turned out to
be radially symmetric in the wave-number space, (qx,qy), the
results in Fig. 5 of Ref. [18] were reported as amplitudes
A2D versus k = (q2

x + q2
y )1/2. Therefore, the corresponding

1D correlation is obtained as S = kA2
2D (see the symbols

in Fig. 8). The symbols for both small k and amplitudes
(S < 0.15) are an artifact of the finite length of the sample in
the Fourier calculation. Note that this effect does not change
in time. Its importance decreases when the evolution of the
instability yields a peak with a characteristic length and, as a
consequence, this part of the spectrum close to q = 0 becomes
less relevant. Therefore, the fittings can be done without taking
into account these data for very small k, since the main peaks
are not affected in any meaningful way by them.

The parameters for liquid copper are γ = 1.304 N/m
and μ = 4.38 mPas. Assuming T = 1500 K as a typical
temperature of the film with thickness h0 = 8 nm, we have
σ = 2.48 × 10−4 and t0 = 0.08 ns. Regarding the intermolec-
ular interaction with SiO2 we use h∗ = 0.1 nm and A =
2.58 × 10−18 J (as suggested in Ref. [18]). Thus, we have
qc = 63.4 μm−1 and qm = 44.8 μm−1 (dotted and dashed
lines in Fig. 8).

In order to perform the comparison of the experimental and
theoretical spectra [see Eq. (39)] we choose a constant value
for the unknown F̂0(q), namely F̂0(q) = 2 × 10−4, and use the
same normalization factor for the DFT as in Ref. [18]. Thus, we
are left only with t and β as adjustable parameters. The fitting
values for the spectra in Fig. 8 are given in Table I. The low
local maximum for k ≈ 100 μm−1 is related to the size of the
drops, which is smaller than the distance between them [18].

Interestingly, we find not only increasing values of time
as one moves from inner to outer regions (as expected) but
also a decrease of the corresponding values of β required for
the fitting. This implies that the stochastic noise somehow
differs at the sampled regions which, in turn, correspond to
distinct liquid lifetimes. However, the relatively large values of
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FIG. 8. Experimental power spectra, A1D(k,t), (symbols) from Fig. 5 of Ref. [18], and theoretical spectra (solid lines) obtained with the
present stochastic model with spatial correlation. The experimental spectra are organized in decreasing order of their distance to the center of
the laser spot.

β for the first three images suggest that the noise is practically
white at the beginning and that spatial correlation becomes
important only for larger times when β decreases significantly.
In general, it is then expected that the spectrum for earlier
times (i.e., near the outer borders of the laser spot) correspond
to a quasi-white noise, but the noise becomes more and more
spatially correlated as one goes to the center of the spot (i.e., as
the liquid lifetimes increase). In fact, the correlation length, �c,
can be estimated considering the value of β and the length of
the image, which can be assumed as the periodicity length, L.
For the images corresponding to Fig. 8 we have L = 2.13 μm,
so we obtain �c = L/(2β) as shown in Table I. Moreover, note
that �c finally approaches λm (= 144 nm), which is also very
close to λ

exp
m (=165 nm). Thus, �c turns out to be very close to

the average distance between drops.

TABLE I. Best fit values from the comparison of the stochastic
model with spatial correlation with experimental spectra of unstable
liquid metal films. Here we have λm = 144 nm.

Fig. 8 t (ns) β �c (nm) λm/�c λexp
m (nm) λexp

m /�c

(a) 0.08 175 6.1 22.9 62.8 10.3
(b) 0.48 160 6.6 21.0 99.7 14.9
(c) 0.97 140 7.6 18.4 125.6 16.5
(d) 6.21 7.4 144.1 0.97 165.3 1.15

VI. SUMMARY AND CONCLUSIONS

In this work we have considered the effect of correlated
thermal noise on the instability of a liquid thin film under
the action of viscous, capillary, and intermolecular forces
by adding a stochastic term in the lubrication approximation
equation for the film thickness. This term depends on the noise
amplitude that is spatially self-correlated within a characteris-
tic microscopic distance, �c. The LSA of the resulting equation
shows that this yields a new factor in the stochastic part of the
instability spectrum [or dispersion relation, ω(q)], which is
given by the Fourier transform of the correlation function that
can be expressed in terms of the eigenvalues of the Hilbert
operator associated with it.

In order to observe the nonlinear effects on the evolution of
the instability, we also perform numerical simulations of the
full lubrication equation using different seeds to generate the
random sequence of amplitudes for the stochastic term (so a
realization corresponds to each seed) and average the resulting
power spectra to obtain a representative spectrum to be
compared with the one predicted by the LSA. As expected, we
find a good agreement with LSA for early times. Interestingly,
for late times we obtain that the wave number of the maximum
of the spectra tends to approach the deterministic value, qm,
corresponding to the LSA without stochasticity. Since the LSA
with stochasticity also tends to qm, we can conclude that

013120-10



METALLIC-THIN-FILM INSTABILITY WITH SPATIALLY . . . PHYSICAL REVIEW E 93, 013120 (2016)

the typical lengths of the patterns in advanced stages of the
instability with stochasticity seem to be close to the length of
maximum growth rate of the linear deterministic modes.

Encouraged by this result we also compare the LSA
prediction with the experimental data from the instability of
laser-melted copper films on a silicon oxide substrate. These
data correspond to the early stages, where the holes start
to grow, as well as to the stages of drop formation, i.e.,
after having passed through the processes of film breakup
and dewetting. A special feature of these data is that they
come from different spatial regions of the laser spot and thus
received distinct illuminations. Thus, different times of a single
evolution can be attributed to each region. These times were
estimated here by fitting each experimental power spectrum to
the corresponding LSA prediction. As a result, we found that
the early stages of this experiment evolved with a noise that
was almost white in space, while a strong spatial correlation
appeared in the spectra for later times. Thus, correlated noise
seems to be an important factor in the central regions of the
laser spot, i.e., those with larger liquid lifetimes.

Taken together, our results provide a clear indication that
the stochastic differential framework for metallic thin-film
phenomena at the nanometric scale requires the inclusion of
thermal noise with extended spatial correlations. We consider
the present study only a first step towards the understanding
of thermal noise in nonpolymeric films. We believe that our
results justify further testing with more detailed experimental
data and for a variety of film material.
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APPENDIX: EIGENVALUES OF THE
CORRELATION FUNCTION

Here we calculate the eigenvalues of the Hilbert-Schmidt
operator Q as defined by Eqs. (45) and (47). By using

the variable v = πu/L, the eigenvalues can be written
as

χk = A(α,k)

A(α,0)
, (A1)

where

A(α,k) =
∫ π

0
e−2α(sin v)2−2ikvdv, (A2)

and α is given by Eq. (49). In order to perform the above
integral, we make the change of variables 2v = θ + π

2 , which
leads to the following expression:

sin2 v = 1
2 (1 − cos 2v) = 1

2 (1 + sin θ ).

This one allows us to write Eq. (A2) in terms of sin θ , as

A(α,k) = 1

2
e−αe−ıkπ/2

∫ 3π
2

− π
2

e−α sin θ e−ıkθ dθ

= (−ı)k

2
e−α

∫ 3π
2

− π
2

e−α sin θ e−ıkθ dθ. (A3)

The above substitution is convenient in view of the relation

eıx sin θ =
∞∑

−∞
eımθJm(x), (A4)

which becomes useful here on defining x = iα. Thus, we have

e−α sin θ =
∞∑

−∞
eımθJm(ıα), (A5)

where Jm(ıα) is the Bessel function of order m. Now, we can
also use the property

Jm(ıα) = ımIm(α), (A6)

where Im(α) is the modified Bessel function of order m. By
replacing Eqs. (A5) and (A6) into Eq. (A3), we obtain

A(α,k) = (−ı)k

2
e−α

∞∑
−∞

ımIm(α)
∫ 3π

2

− π
2

eı(m−k)θdθ. (A7)

Since the above integral yields 2πδkm, we finally have

A(α,k) = πe−αIk(α), (A8)

so the eigenvalue in Eq. (A1) becomes

χ (qk) = χk = Ik(α)

I0(α)
, (A9)

which is the expression in Eq. (48).
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