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We evaluate the parity-odd part of the effective action due to massive Dirac fermions on a S2 × S1

manifold, minimally coupled to an external Abelian gauge field. We do that for a special class of
gauge-field configurations, which is especially suitable to the study of the behavior of the fermionic
determinant under large gauge field configurations, which are allowed by the space-time geometry.

DOI: 10.1103/PhysRevD.95.105011

I. INTRODUCTION

Physical systems involving topological quantum matter
(see [1] and references therein) have recently aroused much
attention and attracted intense theoretical research, in part
because of the existence of dualities in their effective field
theory model descriptions. The latter usually involve
Chern-Simons (CS) matter theories coupled to scalars
and similar theories coupled to fermions. Originally dis-
cussed in [2–4], these field theoretical investigations were
extended in several directions [5]. In those models, two out
of the three spatial dimensions of the real material are
compactified to the S2 sphere, which is meant to describe a
boundary (the third spatial coordinate is assumed to have a
finite extension). Finally, in order to account for finite-
temperature effects, the remaining, Euclidean time coor-
dinate is an S1 circle of circumference β ¼ T−1, T denoting
the temperature (we adopt units such that Boltzmann’s
constant kB ≡ 1).
In this way, phenomena which take place on the

boundary of topological insulators or superconductors
can be studied using models with bosons or fermions,
coupled to external and dynamical gauge fields, with a CS
action for the former and BF terms for their interaction.
Based on the previous motivation, systems described by

actions defined on a manifold M ¼ S2 × S1, involving
bosonic or fermionic matter minimally coupled to an
external gauge field, have been studied. This has lead us
to consider, in this paper, a particularly interesting object,
namely, the effective action Γ½A� for a massive Dirac field
on precisely that kind of spacetime manifold.
It is a well-known property that Γ½A�, for Dirac fermions

in d ¼ 3 (either Euclidean or Minkowskian) spacetime
dimensions, contains a parity and time-reversal breaking
term Γodd½A�. This is a reflection of the breaking of those
symmetries, explicitly, when there is a finite fermion mass
m at the classical level, or implicitly, by quantum effects,

due to the (unavoidable) regularization. The main differ-
ence between those two contributions, besides their differ-
ent origins, is that the one due to the regularization is local
and independent of m, while the one corresponding to the
explicit introduction of a mass term is local, and propor-
tional to the CS action, only when m tends to infinity.1 The
structure of the mass-dependent, parity-odd term in the
effective action at finite temperature cannot be determined
just by symmetry considerations, but requires an explicit
computation.2 The anomalous and the mass-dependent

contributions to Γodd½A� will be termed Γð0Þ
odd½A� and

Γodd½A;m�, respectively, so that

Γodd½A� ¼ Γð0Þ
odd½A� þ Γodd½A;m�: ð1Þ

The regularization procedure produces a global sign

ambiguity in Γð0Þ
odd½A�. Indeed, within the ζ-function regu-

larization approach, this ambiguity is associated to the
choice of a contour when defining the complex powers of
the Dirac operator on odd-dimensional manifolds [6] and
is independent of m. Using this approach for fermions
coupled to a Uð1Þ gauge field background in three-dimen-
sional Euclidean space, with the effective action defined by

expð−Γ½A�Þ≡
Z

Dψ̄Dψ exp

�Z
R3

ψ̄ð∂þ iAþmÞψ
�
; ð2Þ

the result for the anomalous part has been shown to be [6]

Γð0Þ
odd½A� ¼ � i

2
SCS½A�; ð3Þ

where

*Also at CICBA.

1or, equivalently, when keeping the leading terms in
an expansion in derivatives.

2Let us note that under certain special conditions, out of our
scope, a regularization involving the η½A� invariant should be
consider [2].
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SCS ¼
1

4π

Z
d3xεμναAμ∂νAα: ð4Þ

Regarding the mass-dependent part of the parity-odd
effective action Γodd½A;m�, one consistently obtains, either
by using the ζ-function approach or a derivative expansion
for the external gauge field, the result,

Γodd½A;m� ¼ i
2

m
jmj SCS½A� þOðm−2Þ: ð5Þ

Note that, by an appropriate choice of signs, one can
cancel the 1=2 factor in Γodd½A� leading to an odd-parity
effective action which is gauge invariant even for large
gauge transformations. It is important to realize that the
leading term in a mass expansion is the most relevant one
when considering topological properties, like invariance
under those large transformations.
In other regularization schemes, the same phenomenon

must and does manifest itself; for instance, in the Pauli-
Villars approach, the breaking may be traced back to the
presence of a regulator, a spinorial field with a Dirac-like
action, but quantized using Bose-Einstein statistics. The
sign of the mass of the regulator is not determined by the
regularization. Removing the regularization at the end of
the calculations amounts, in this case, to letting the
regulator mass tend to infinity. This process yields a finite
limit, the CS action, but with an overall sign which depends
on the sign of the regulator mass.
It is the aim of this paper to evaluate the mass-dependent

term Γodd½A;m� for massive Dirac fermions on the manifold
M ¼ S2 × S1. The anomalous part does indeed exist, and
it is part of Γodd½A�, but is has a well-known form: it is the
integral of the CS 3-form on M, with the same coefficient
as in the T ¼ 0 case.
This paper is organized as follows: in Sec. II, we briefly

review known results for the effective action corresponding
to a massive Dirac fermion on theR2 × S1 manifold. Based
on this approach, in Sec. III we consider the case of
S2 × S1. In Sec. IV, we present a discussion of our results.

II. MASSIVE DIRAC FERMIONS AT
FINITE TEMPERATURE

To study the effective action for a Dirac field in 2þ 1
dimensions at finite temperature, in the Matsubara formal-
ism, one should regard the field as living on Euclidean
R2 × S1 space. In this case, gauge invariance under large
gauge transformations associated to the S1 “time” is
spoiled at any finite order in a perturbative calculation in
powers of the gauge coupling constant. That invariance
under large gauge transformations can, however, be res-
cued, if one follows a nonperturbative approach, like the
ones presented in [7–9].
The key idea in Refs. [8,9] was to first write the gauge

invariant parity-odd part Γodd of the effective action Γ due

to the fermions in the presence of an external gauge field, to
then reduce the problem to the calculation of a set of
Fujikawa Jacobians in R2 space and finally, to obtain Γodd
by summing over Matsubara modes associated to the
discrete Fourier transformations in the “time variable”.
The above “reduction” mechanism, whereby the prob-

lem was essentially reduced to a collection of 1þ 1
systems, was implemented for a certain class of gauge
field configurations,

Ai ¼ AiðxÞ; A3 ¼ A3ðτÞ; ð6Þ

where we have adopted the convention (to be followed in
the rest of this paper) to denote by x just the two spatial
coordinates, namely x ¼ ðx1; x2Þ. We will also assume that
indices from the middle of the Latin alphabet will run from
1 to 2, while if they belong to the Greek one, their range is
from 1 to 3. The third Euclidean coordinate will be
alternatively denoted as τ or x3.
Note that (6) may be regarded as a gauge-fixed version of

the gauge-invariant conditions

F3i ¼ 0; Fij ¼ FijðxÞ; ð7Þ

which correspond to field configurations which, if the
gauge field were determined by a Maxwell Lagrangian in
2þ 1 dimensions, would be those of pure magnetostatics.
Namely, configurations produced by a vanishing charge
density and a solenoidal time-independent current JiðxÞ
which determines Fij via Ampère’s Law,

∂jFjiðxÞ ¼ −JiðxÞ: ð8Þ

Since ∂iJi ¼ 0, we may write it as the curl of a pseudo-
scalar ζðxÞ, namely, JiðxÞ ¼ ϵij∂jζðxÞ. In terms of the
magnetic field BðxÞ ¼ 1

2
ϵijFijðxÞ, we see that (8) becomes

BðxÞ ¼ F12ðxÞ ¼ ζðxÞ: ð9Þ

Let us now describe the finite temperature calculation. In
the path-integral framework, one works with an Euclidean
time in the interval ½0; β�, imposing antiperiodic boundary
conditions to the fermions in that interval. Hence, the
manifold becomes R2 × S1, and then one sees that invari-
ance under large gauge transformations associated to the S1

domain is spoiled at any finite order in the gauge coupling
constant (see [10] and references therein). This fact has
caused some confusion regarding the CS coefficient dis-
creteness condition, since the coefficient of the CS action
would then satisfy a rather unphysical β-dependent quan-
tization condition in conflict with large gauge invariance of
the effective action.
The problem has been solved by following nonpertur-

bative approaches. We shall briefly describe here the
procedure followed in Refs. [8,9] to perform such
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calculation. The main idea was to reduce the problem to the
calculation of a set of Fujikawa Jacobians on an R2 space,
and then to obtain the complete partition function by
summing over Matsubara modes associated to the
Fourier transformations on S1.
The mass-dependent3 part of Γodd may be obtained by

using the expression,

Γodd½A;m� ¼ 1

2
ðΓ½A;m� − Γ½A;−m�Þ; ð10Þ

for a system defined by the action

S ¼
Z

β

0

dτ
Z
R2

ψ̄ð∂ þ iAþmÞψ : ð11Þ

The result has been shown to be

Γodd½A;m� ¼ i
2π

m
jmj arctan

�
tanh

�
βjmj
2

�

× tan

�
1

2

Z
β

0

dτA3ðτÞ
��Z

R2

d2xF12: ð12Þ

This result, obtained for the class of configurations expli-
cited in (6), has the correct zero-temperature limit,

lim
β→∞

ΓI
odd½A�¼

i
2

m
jmj

1

4π

Z
d3xεμναAμ∂νAα¼

i
2

m
jmjSCS: ð13Þ

The result in Eq. (13) is not invariant by itself under large
gauge transformations, because of the 1=2 factor affecting
the CS term. The same happens in the finite temperature
result as given by Eq. (12). Indeed, if one makes a large
gauge transformation Ωnðx1; x2; τÞ with n ¼ 2pþ 1 that
winds an arbitrary number n of times around cyclic time
direction,

Ωnðβ; xÞ ¼ Ωnð0; xÞ þ 2πn; n ∈ Z ð14Þ

the argument in the tangent of Eq. (12) is shifted by
ð2pþ 1Þπ. Although the tangent is not sensitive to such a
change, one has to keep track of it by shifting the branch
used for the arctan definition so that Γodd½A� changes by the
addition of inπ under a large gauge transformation, and for
odd n ¼ 2kþ 1, one should correct this with an appropriate
gauge invariant regularization.
Note that this gauge noninvariance can be compensated

by a judicious choice of the sign in the anomalous term,
which has an analogous behavior under the same
transformations.
Some properties of Γodd½A;m� may also be studied by

considering its contribution θodd½A;m� to the phase of the
fermionic determinant,

eiθodd½A;m� ≡ e−Γodd½A;m�; ð15Þ

where the angle θodd½A;m� can be written as follows:

θodd½A;m� ¼ nB argðzÞ; ð16Þ
where

z≡ cos
�
1

2

Z
β

0

dτ½A3ðτÞ þ im�
�
; ð17Þ

and nB ≡ 1
2π

R
R2 d2xF12, which is quantized for nonsingular

configurations, namely, nB ∈ Z.
We conclude this review section commenting on the fact

that the previous result for Γodd may be generalized to a
slightly more general class of configurations. Indeed,
having in mind the fact that the ones considered before
were purely magnetostatic ones, we can think about the
generalization to the case of having static magnetic plus
electric fields,

F3i ¼ F3iðxÞ; Fij ¼ FijðxÞ: ð18Þ
In this case, the only change one has to introduce in the
derivation of the previous case is the fact that the anoma-
lous Jacobian corresponds to a space-dependent phase, and
the result becomes the straightforward generalization,

Γodd½A;m� ¼ i
m
jmj

Z
R2

d2xL½A;m; β�; ð19Þ

where

L½A;m;β�¼ 1

2π
arctan

�
tanh

�
βjmj
2

�
tan

�
1

2

Z
β

0

dτA3ðx;τÞ
��

×F12ðxÞ: ð20Þ

We shall discuss in detail this generalization to the case in
which both static magnetic and electric fields are present at
the end of the next section devoted to the computation of
the fermion determinant on an M ¼ S2 × S1 manifold.

III. MASSIVE DIRAC FIELD ON S2 × S1:
THE DETERMINANT

We consider now a massive Dirac field ψ , ψ̄ , living on
the manifold M≡ S2 × S1, where S1 is a periodic (imagi-
nary) time coordinate, while S2 denotes a spatial sphere of
radius R.
The manifold M is equipped with the product metric,

namely

ds2 ¼ ðdτÞ2 þ gijðxÞdxidxj; ð21Þ

which corresponds to a particular case of static space-time.
For a field defined on M, in the presence of an external

Abelian gauge field A, we are interested in evaluating the
3Note that only the mass-dependent part of Γodd may depend

nontrivially on β.
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imaginary part of the Euclidean effective action, ΓðA;mÞ,
where

e−ΓðA;mÞ ¼
Z

DψDψ̄e−Sðψ̄ ;ψ ;A;mÞ; ð22Þ

where the Dirac field is again assumed to be minimally
coupled to an Abelian gauge field AμðxÞ, so that the action
S is defined as follows:

Sðψ̄ ;ψ ; A;mÞ ¼
Z
M

d3x
ffiffiffi
g

p
ψ̄ðxÞðDM þmÞψðxÞ; ð23Þ

where DM denotes the Dirac operator corresponding toM
and coupling to the gauge field Aμ.
Some objects appearing in the action involve the

geometry of M in a more specific way, g≡ detðgμνÞ ¼
detðgijÞ, where gμν may be represented in matrix form,

ðgμνÞ ¼

0
B@

g11ðxÞ g12ðxÞ 0

g21ðxÞ g22ðxÞ 0

0 0 1

1
CA: ð24Þ

Denoting by xi → rðx1; x2Þ a parametrization of the
surface S2,

rðx1; x2Þ ∈ R3; rðx1; x2Þ · rðx1; x2Þ ¼ R2 ð25Þ

(where the dot denotes the Euclidean scalar product in R3),
we have the spatial components gij of the induced metric
tensor,

gij ¼ ∂ir · ∂jr: ð26Þ

Besides, note that, because of the special form of the metric
tensor above, the only nontrivial vierbeins are the two
corresponding to S2 (they are moreover time independent).
Following the strategy of Refs. [8,9] described above, we

shall consider in this paper the case in which the parity odd
part of the effective action is calculated for fermions
on S2 × S1 .

A. Going from S2 × S1 to S2

For the magnetostatic configurations, we see that the
only τ dependence of the Dirac operator comes from A3.
This dependence can, however, be eliminated by a redefi-
nition of the integrated fermion fields. The set of allowed
gauge transformations in the imaginary time formalism is
defined in the usual way,

ψðτ; xÞ → exp½−iΩðτ; xÞ�ψðτ; xÞ;
ψ̄ðτ; xÞ → exp½iΩðτ; xÞ�ψ̄ðτ; xÞ;
Aμðτ; xÞ → Aμðτ; xÞ þ ∂μΩðτ; xÞ; ð27Þ

where Ωðτ; xÞ is a differentiable function vanishing at
spatial infinity jxj → ∞, and whose time boundary con-
ditions are chosen in order not to affect the fields’ boundary
conditions. It turns out that Ωðτ; xÞ can wind an arbitrary
number of times around the cyclic time dimension,

Ωðτ; xÞ ¼ Ωðτ; xÞ þ 2πn; ð28Þ
where n is an integer which labels the homotopy class of
the gauge transformation.
Z½A� must be gauge invariant so that we can compute it

for time independent gauge fields since one can always
perform a gauge transformation A0

μ ¼ Aμ þ ∂μα so that the
A0
μ is time independent. For the particular set of configu-

rations (6), such a transformation renders A0
3 constant. We

see that there is a family of Ω0s achieving this while
respecting the boundary conditions (28),

ΩðτÞ ¼ −
Z

τ

0

d~τA3ð~τÞ þ
1

β

�Z
β

0

d~τA3ð~τÞ þ 2πn

�
τ: ð29Þ

The freedom to choose n could be used to further restrict
the values of the constant A0

3 to a finite interval. In this
sense, the value of the constant in such an interval is the
only “essential” i.e., gauge invariant, A3-dependent infor-
mation contained in the configurations (6), describing the
gauge connection holonomy expði R β

0 d~τA3ð~τÞÞ.
Let us, for the time being, disregard the case of large

gauge transformations [i.e., we restrict to the case n ¼ 0 in
(28)] in order to avoid any assumption about large gauge
invariance of the fermionic measure in (22) and then
discuss this issue on the final results. Thus, the constant
field A0

3 simply takes the mean value of A3ðτÞ,
~A3 ¼ 1

β

R β
0 d~τA3ðτÞ. Concerning the spatial components

Ai, they remain τ independent after this transformation.
At this point, we proceed to perform a Fourier trans-

formation in the fermion variables,

ψðτ; xÞ ¼ 1

β

Xn¼∞

n¼−∞
eiωnτψnðxÞ;

ψ̄ðτ; xÞ ¼ 1

β

Xn¼∞

n¼−∞
e−iωnτψnðxÞ; ð30Þ

where ωn ¼ ð2nþ 1Þπ=β is the usual Matsubara frequency
for the case of fermion fields. With this, the Dirac action
takes the form of an infinite series of decoupled two-
dimensional Euclidean Dirac actions

SD ¼ 1

β

Xn¼∞

n¼−∞

Z
S2
d2x

ffiffiffi
g

p
ψ̄nðxÞðD2 þm

þ iγ3ðωn þ ~A3ÞÞψnðxÞ: ð31Þ
Here, D2 denotes the two-dimensional Dirac operator
acting on fermions living in the sphere S2; it is given by
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D2 ¼ γaeka

�
∂k þ

1

4
γcγdωkcd þ iAkðxÞ

�
: ð32Þ

Parametrizing S2 in terms of angular coordinates
ðx1; x2Þ ¼ ðθ;φÞ, the induced metric becomes diaggij ¼
ðR2; R2 sin2 θÞ, while the vierbeins eai (a, b ¼ 1, 2) adopt
the form,

e1θ ¼ R cosφ; e1φ ¼ −R sinφ sin θ

e2θ ¼ R sinφ; e2φ ¼ R cosφ sin θ: ð33Þ
The only nontrivial component of the spin connection is
ωφ12 ¼ ð1 − cos θÞ so that

D2 ¼ γaeka

�
∂k þ

1

4
iδφk γ3ð1 − cos θÞ þ iAkðxÞ

�
: ð34Þ

Thus, the action SD in (31) can be written in the form

SD ¼ 1

β

Xn¼∞

n¼−∞

Z
S2
d2x

ffiffiffi
g

p
ψ̄nðxÞðD2 þ ρn expðiγ3ϕnÞÞψnðxÞ;

ð35Þ
where

ρn ¼ ðm2 þ ðωn þ ~A3Þ2Þ1=2;

ϕn ¼ arctan

�
ωn þ ~A3

m

�
: ð36Þ

Again, the path-integral measure factorizes,
Z

Dψ̄Dψ ¼
Yn¼∞

n¼−∞
Dψ̄nðxÞDψnðxÞ ð37Þ

so that the partition function becomes a product

e−Γ½A;m� ¼
Yn¼∞

n¼−∞
DψnDψne

−
R
S2

d2x
ffiffi
g

p
ψ̄nðxÞðD2þρneiγ3ϕn ÞψnðxÞ

≡ Yn¼∞

n¼−∞
detðD2 þ ρneiγ3ϕnÞ: ð38Þ

Now one can make in each pair of integrals in the infinite
product the change of variables,

ψnðxÞ ¼ exp½ð−iϕn=2Þγ3�ψ 0
nðxÞ;

ψ̄nðxÞ ¼ ψ̄n
0ðxÞ exp½ð−iϕn=2Þγ3�; ð39Þ

which can be seen as a a two-dimensional “chiral rotation”
with γ3 identified as the d ¼ 2 γ5 matrix. Such changes
eliminates the phases ϕn in the Dirac operators at the cost of
a nontrivial Fujikawa Jacobians Jn associated to the chiral
anomaly. Indeed, each Dirac operator determinant in (38)
is a product of eigenvalues that grow with no bound thus
requiring a regularization. One can use, for example, the
heat-kernel regularization which consists in introducing the
identity

I ¼ lim
Λ→∞

expð−ðD2Þ2=Λ2Þ ð40Þ

using as regulating operator the one in the action that
ensures gauge invariance. One can easily see that the
presence of the spin connection contribution does not
change the result of the Jacobian with respect to the flat
space case so that one finds

Jn ¼ exp

�
−i

eϕn

2π

Z
S2

d2xεjk∂jAk

�
ð41Þ

so that finally one ends up with

expð−Γ½A;m�Þ ¼
Yn¼∞

n¼−∞
Jn detðD2 þ ρnÞ: ð42Þ

Since the determinants in this formula do not depend on m
and our method to calculate Γodd½A;m� consists in sub-
tracting the positive and negative mass results, they do not
contribute to the parity odd effective action. In contrast,
ϕn evidently depends on the sign of the mass. We
then have

Γodd ¼ −
X∞
−∞

log Jn ¼
i
2π

X∞
−∞

ϕn

Z
S2

d2xεjk∂jAk: ð43Þ

Performing the summation of the series, we obtain

Γodd ¼
i
2π

m
jmj arctan

�
tanh

�
βjmj
2

�
tan

1

2

Z
β

0

dτA3ðτÞ
�

×
Z
S2

d2xεjk∂jAk; ð44Þ

which is the main result of this note.
Note that, again, invariance of the full effective action

under large gauge transformations may be achieved, by
taking into account the anomalous term with the proper
sign. Equation (44) not only does have the proper zero-
temperature limit, but it also produces a θ-vacua term in the
opposite, high-temperature limit, an object known to be
present in the massive Schwinger model [11]. Indeed, we
see that, when βm tends to zero, the leading nontrivial
term is

Γodd½A;m� ∼ iθ
Z
S2

d2xεjk∂jAk; ð45Þ

with the dimensionless angle θ≡ β2m ~A3

8π . This behavior is to
be expected, since one should obtain a result corresponding
to massive fermions in two dimensions.
As advanced in the previous section, the result for Γodd

can be generalized to the case of having static magnetic
plus electric fields. Indeed, in this case, one can show that
there is always a gauge choice such that A3 ¼ A3ðxÞ and
Aj ¼ AjðxÞ. Then, Fourier transforming the Dirac fields as
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in the purely magnetostatic case, one finds again a
collection of decoupled 1þ 1-dimensional actions,

SD ¼ 1

β

Xn¼∞

n¼−∞

Z
R2

d2x
ffiffiffi
g

p
ψ̄nðxÞ

× ðD2 þ ρnðxÞ expðiγ3ϕnðxÞÞÞψnðxÞ; ð46Þ
where now ρn and ϕn depend on the spatial coordinates

ρnðxÞ ¼ ðm2 þ ðωn þ ~A3ðxÞÞ2Þ1=2;

ϕn ¼ arctan

�
ωn þ ~A3ðxÞ

m

�
; ð47Þ

and D2 is, as before, the Dirac operator in two spatial
dimensions.
This time, the parity-odd part of the effective action may

be extracted by performing the finite axial transformation

ψnðxÞ ¼ exp½ð−iϕnðxÞ=2Þγ3�ψ 0
nðxÞ;

ψ̄nðxÞ ¼ ψ̄n
0 ðxÞ exp½ð−iϕnðxÞ=2Þγ3�; ð48Þ

which produces, for each mode, essentially the same parity-
odd anomalous Jacobian as in the magnetostatic case, but
with an x-dependent ϕn, which cannot be extracted out of
the spatial integral of F12. The sum over the Matsubara
modes of those Jacobian produces the generalized result.
As a caveat, note that, performing the finite axial trans-
formation above does generate also terms which are
quadratic in the derivatives of ϕnðxÞ. Those terms are,
however, parity-even since they are even in m and can
therefore be disregarded.

IV. DISCUSSION

We have computed the exact mass-dependent parity-odd
effective action for fermions coupled to a Uð1Þ gauge field
for a S2 × S1 manifold. Once the standard anomalous
Γð0Þ½A� ¼ 1

2
SCS½A� contribution is incorporated, gauge

invariance holds even when large gauge transformations
are considered. Interestingly enough, the results coincides
with the one obtained in [8] since the inclusion of the spin
connection in the Dirac operator does not affect the result.
Concerning the extension to the case of non-Abelian

gauge symmetries, the issue of large gauge invariance in
non-Abelian finite temperature effective actions for the case
of an R2 × S1 manifold has been discussed in [12], and the
explicit calculation of Γodd½A� for fermions in the funda-
mental representation of SUðNÞ presented in [9] so that we
expect that the extension of the present analysis to the non-
Abelian case will follow the same steps for the S2 × S1

manifold and lead to similar results as those presented here.
Note that the flux quantization condition, namely, that

ΦB
2π ∈ Z can be altered when one considers a path integral
involving the insertion of matter field operators with

half-integer spins, since now the usual argument leading
to Dirac’s quantization condition has to be applied to a field
which is double valued, i.e., changes sign under 2π
rotations. Thus, one can expect the value of ΦB

2π to be a
half integer in some cases. Of course, a full consideration
has to be made of the contributions of the gauge field action
itself, when that field is dynamical, since it can also put
constraints on the allowed values of the flux (for example,
by requiring finite energies). Even in a situation when the
flux is a half integer times 2π, large gauge invariance may
be restored by the presence of the anomalous term with the
proper sign and coefficient. In the context of Pauli-Villars
regularization, that would correspond to having three,
rather than one, regulator fields. This number of regulators,
is not required in the calculation of the fermion loop (where
one is sufficient); rather, it is needed in order to regulate
diagrams with operator insertions, where the superficial
degree of divergence is increased.
It is important to note that the reduction of the 2þ 1

dimensional system to a collection of two-dimensional
ones, for the case of a static metric like the one in (21), can
certainly be generalized to spatial manifolds different from
the sphere. Indeed, the main properties we relied upon to
achieve the reduction still hold true, in particular, the fact
that the vierbeins are effectively two dimensional, they do
not mix with the timelike coordinate.
Let us conclude by pointing out that the knowledge of

the fermionic determinant is an essential ingredient in the
path-integral approach to bosonization in d ≥ 2 dimen-
sions, as developed in Refs. [13,14]. Indeed, in three space-
time dimensions, the fermionic action and its ψ̄γμψ current
become related, by a duality transformations, to an effective
low energy Chern-Simons action and a conserved dual
current on the bosonic side. Thus, we believe, the issue of
having nonperturbative results for the fermionic determi-
nant may be relevant to the correct implementation of the
bosonization/duality programs at a finite temperature,
within the context of condensed matter physics. We have
shown that the fermionic determinant leads to a nonlocal
gauge action which reduces to a CS action solely in the
T → 0 limit, and this takes place both for the spatial
coordinates taking values in R2 or S2. Moreover, it
becomes a θ-vacua term when the opposite, high temper-
ature limit is considered.
Finally, note also that the program of extending the study

of dualities to different manifolds could also be considered
in higher dimensions: indeed, in d > 3 dimensions, it has
been shown that the dual current involves a d − 2 Kalb-
Ramond field [15]. Regarding the massless fermion case,
different dualities connect the fermionic theory with vector
and scalar fields theories [16], and one can even consider
the case in which fermions are coupled to a gravitational
background [17]. We hope to report on the result of that
extension, as well as on the consequences for condensed
matter applications, in future works.
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