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Using Monte Carlo methods we generate time series with the following features: a) series with distributions that are 

the mix of two normal distributions with different variances, b) series that satisfy volatility models, c) series that 

satisfy an AR(1) model but with contaminated errors that follow the same distribution as the mixes given in a) and 

d) series that follow the same distribution as the mixes given in a) but with conditional heterocedasticity. From the 

analysis we see that it is difficult to identify in practical situations the real generating process of the series. In fact, 

the processes that come from distribution mixes have many similar characteristics to the ones that satisfy the 

volatility scheme. We use the corresponding theoretical considerations and also the usual tools in the identifying 

process of any time series; that is, series graphs, histograms, the corresponding sampling distributions, 

correlograms and partial correlograms. 
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Introduction  
Combination of Normal Distributions 

Let´s assume that we have the process { }tu  whose distribution is a mixture of normal densities, that is 

( )2,σµN  and ( )2, σµ kN , where 0,0 2 >∞<σ< k  and without loss of generality we can suppose that .0=µ  

Let´s assume also that the random variables tu  are independent between them. Following Lindsay (1995), this 

mixture can be written as ( ) ( ) ( ) .10,,01,0 22 <<σ−+σ pNpkNp  So the density of tu  is 
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where the parameters are now σ2, p, and k, 0<p<1. We can consider p  as the proportion of “contamination” 

among the variables with ( )2,0 σN  density. 

From above we can see that the process { }tu  is stationary (in the wide sense). According to Durbin and 
Koompan (2001, y 2012), this is a process whose distribution has “heavy tails” and can be used to explain some 
events that can take extreme values with a probability larger than the normal. 

We consider in our case that .12 =σ  
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Volatility 
Volatily can be define as the variance of a random variable, normally a return in economic applications, 

conditional to all past information. As volatility is not measured directly, it can manifest in many ways when 
we study any financial series. 

If tx  is the series under study, let´s set 

( ) ( ),11 ttttt xEFxE −− ==µ                                (1) 
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as the conditional mean and the conditional variance of tx  given the information until the instant 1−t  
contained in .1−tF  

A typical volatily model has the following form 

tttt hx ε+µ=                                      (3) 

where ( ) ( ) 1var,0 11 =ε=ε −− ttttE  and the tε  are independent and identically distributed (IID) with an F  
distribution. The mean and the unconditional variance of tx  will be denoted as ( )tx xE=µ  and 

( )tx xvar2 =σ  respectively, and G  is the distribution of .tx  It is clear that (1) and (2) and F  determine 
Gxx  and , 2σµ  but not the other way. 

Method 
Data Generation of the Mixes 

(1) We generate pseudo random independent numbers ( )1,0N  denoted by .,,1 Tεε   The sequence 
starts with a value automatically provided by the software. This value can also be selected by the user of the 
software. 

(2) We generate ˆ , 1, , ,tp t T= 
 from the uniform distribution in the interval ( )1,0 , that is, from a 

( ).1,0U  
(3) We transform tε  to produce the mixture 
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for ,,,1 Tt =  where the values of k  and p  were given in the process of generating the mixture. In our 
case we took 30.0 and 20,0;15.0,10.0;100 and 25,16,9 == pk  having work with combinations of given ( )pk,  
values. In practical situations we may need to estimate the values of k  and ,p  since they have the unknown 
parameters characteristics. The formula (4) may be written as 

( ) ,ˆ ttt ppkbu ε−=                                  (5) 

where 
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Generation of the volatility data 
We generate the series { }tx  that satisfies the model 

ttt hx ε=                                      (7) 

.,,1,2
110 Ttxh tt =α+α= −                              (8) 

where tε  is generated according to what was stated above and 0α  and 1α  were given in the process of 
generating the series. In our case we consider 10 =α  and .5.01 =α  It is clear that (7) together with (8) 
define a series that follows an ARCH(1) model. 

We use { }tx  to estimate the values of 0α  and .1α  

Generation of the data for the AR(1) model 
For a given value of the parameter φ  we generate the series { }ty  that follows the model 

,,,11 Ttuyy ttt =+φ= −                              (9) 
where { }tu  was defined in (5) and (6). In our case we suppose that .6.0=φ  

We use ty  to obtain the estimates φ̂  of .φ  These estimates are obtained using maximum likelihood under 

the assumption of normality. 
We define the residuals te  of the series { }ty  that satisfies (9) as 

.ˆˆ  where,ˆ 1−φ=−= ttttt yyyye                            (10) 

Generation of the data for the mixes with conditional heterocedasticity 
From the Tεε ,,1   generated in a) and the ,ˆ tp 1,,1,0 −= Tt   generetaded in b) we create the series 

( ) ttt ppckw ε−= −1ˆ                                (11) 

where 
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and the values of k  and p  were given in c). 

Sample 
When we work with a single series, without replications, we consider a sample of size .2000=T  When 

we make n replications, we take a sample of size 200=T  and the number of replications is n = 1000. From 
this, we generate emprical time series of size T  using the steps specified on the previous sections. 

Discussion 
Series analysis and final remarks 

The structure of the mixes defined in (5) and (6) is similar to a typical volatility model like the one in (3); 
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but when we analyse the correlograms and the partial correlograms of { }tu  and }{ 2
tu  we see that in both cases 

we can accept the hypothesis of lack of serial correlation, which matches the theory and the generating process of 

the series. The only thing that captures our attention is that for }{ 2
tu  when k  and p  take high values, the 

autocorrelation and the partial autocorrelation of a certain order (9 in the case of 100=k  and 30.0=p  as we 
see in Figure 4), or close to it, lead us to reject the hypothesis that their parameters are zero, and this does not 
have a theoretical explanation. This kind of situation could lead us identify for { }tu  an ARCH model of higher 
order with some of its coefficients of lower order equal to zero and its errors proportionally distributed as a 2

1χ  
When we estimate the ARCH model, the obtained residuals satisfy the hypothesis that they come from a process 
of random variables independent and identically distributed with a constant mean and variance. We can also see 
that when p and k increase, the respective distributions of { }tu  have a higher probability for extreme values, that 
is, they become variables with “heavy tails” distributions, which in some cases can be indistinguishable with the 
corresponding volatility models. All of this is seen in Figure 1, Figure 2, Figure 3 and Figure 4. 

The series in (7) and (8) were generated following an ARCH(1) model. When we analyze the correlogram 
and the partial correlogram of { }tx  as it is seen in Figure 5 we can accept the hypothesis of lack of serial 

correlation. On the other side, when we consider { }2
tx  as it is seen in Figure 6 we may identify an AR(2) 

model, when the generating process corresponds to an AR(1) model, with errors proportionally distributed as 
2
1χ  This feature matches the theory. As for the estimation of 0α  and ,1α  despite we consider normality and 

it is done by maximum likelihood, we find that the empirical distributions of those estimators obtained by 
Monte Carlo methods are centered around the true value of the parameters. A further analysis of the 
distributions for the estimators of 0α  and 1α  is left for the future.  

The series in (11) and (12) satisfy the definition of volatility and they fulfill everything in (1) and (2). 
Apart from that, the series { }tw  is, from a practical point of view, indistinguishable from { }tu defined in (5) 
and (6) which corroborates the fact that mixture of distributions with different variances and volatility are 
closely related that in some cases can be indistinguishable one from the other. 

The series { }ty  defined in (9) corresponds to an AR(1) model with errors whose ditribution is a mixture 
of normals with different variances. Those errors {ut} were generated from (4). The estimations of the 
parameter ϕ  despite we consider normality and they are done using maximum likelihood, show that the 
empirical distribution of the estimator done by Monte Carlo methods is centered in the true value of the 
parameter. In Figure 7 we see  { },ty  its sample density function, its sample autocorrelation function and its 
partial sample autocorrelation function for 10.0=p  and ,9=k  and in Figure 8 we see the same for 

30.0=p  and .100=k  It is clear that despite the generating model for { }ty  is an AR(1), this is not the one 
we identify from looking at the figures. Even so, we can see that when p  and k  from the mixes increase, it 
becomes harder to identify the AR(1) model, and we can even accept that the generating process is white noise. 
Analyzing the residuals { }te  of the series { }ty  presented and described before, we see that probably we can 

identify them as an AR(2) model. For the series { }2
te  the autocorrelation and the partial autocorrelation of a 

certain order (3 in our case as we see in Figure 11 and Figure 12), or close to it, can lead us to reject the 
hypothesis that the respective parameters are zero. This last thing may also lead us to identify in practical cases 
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for the errors { }tu  of the AR(1) process in (9), an ARCH model of higher order with some of its coefficients 
of lower order equal to zero and with its errors distributed as a 2

1χ  This will make us think again as before that 
we can confuse models with “heavy tails” with volatily models. 

 
Figure 1. Series tu  generated according to formula (4) as a mixture of normal random variables, with 10.0=p  

and .9=k  Original series (a), its sample density function (b), its sample autocorrelation function (c) and its sample 
partial autocorrelation function (d). 

 

 
Figure 2. Series tu  generated acccording to formula (4) as a mixture of normal random variables, with 30.0=p  

and .100=k  Original series (a), its sample density function (b), its sample autocorrelation function (c) and its 
sample partial autocorrelation function (d). 
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Figure 3. Series 2

tu  where tu  was generated according to formula (4) as a mixture of random normal variables 
with 10.0=p  and .9=k  Original series (a), its sample density function (b), its sample autocorrelation function 
(c) and its sample partial autocorrelation function (d). 

 

 
Figure 4. Series 2

tu  where tu  was generated according to formula (4) as a mixture of random normal variables 

with 30.0=p  and .100=k  Original series (a), its sample density function (b), its sample autocorrelation 

function (c) and its sample partial autocorrelation function (d). 
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Figure 5. Series tx  generated according to formulas (7) and (8) as a series that satisfies an ARCH(1) model, with  

10 =α  and .5.01 =α  Original series (a), its sample density function (b), its sample autocorrelation function (c) 

and its sample partial autocorrelation function (d). 
 

 
Figure 6. Series 2

tx  generated according to formulas (7) and (8) as a series that satisfies an ARCH(1) model, with  

10 =α  and .5.01 =α  Original series (a), its sample density function (b), its sample autocorrelation function (c) 

and its sample partial autocorrelation function (d). 
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Figure 7. Series ty  generated according formula (9) with errors ut generated according to formula (4) as a mixture 

of random normal variables with 10,0=p  and .9=k  Original series (a), its sample density function (b), its 

sample autocorrelation function (c) and its sample partial autocorrelation function (d). 
 

 
Figure 8. Series ty  generated following formula (9) with errors ut generated according to formula (4) as a  mixture 

of normal random variables with 30.0=p  and .100=k  Original series (a), its sample density function (b), its 

sample autocorrelation function (c) and its partial sample autocorrelation function (d). 
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Figure 9. Residuals te  satisfying (10), of the series ty  generated according to formula (9) with error ut generated 

according to the formula (4) as a mixture of normal random variables with 10.0=p  and .9=k  Original series of 

residuals (a), its simple density function (b), its sample autocorrelation function (c) and its simple partial 
autocorrelation function (d). 

 

 
Figure 10. Residuals te  that satisfy (10), from the series ty  generated according to formula (9) whose errors  tu  

were generated following formula (4) as a mixture of normal random variables, with 30.0=p  and .100=k  

Original series of resuduals (a), its sample density function (b), its sample autocorrelation function (c) and its sample 
partial autocorrelation function (d). 
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Figure 11. Series 2

te  of residuals te  that satisfy formula (10), of the series ty  generated according to formula (9) 

with errors tu  generated following formula (4) as a mixture of normal random variables with 10.0=p  and 

.9=k  Original series of squared residuals (a), its sample density function (b), its sample autocorrelation function (c) 
and its sample partial autocorrelation function (d). 

 

 
Figure 12. Series 2

te  of residuals te  that satisfy (10), from the series ty  generated following formula (9) with 

errors tu  generated according to formula (4) as a mixture of normal random variables with 30.0=p  and 

.100=k  Original series of squared residuals (a), its sample density function (b), its sample autocorrelation function 
(c) and its sample partial autocorrelation function (d) 
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