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In the last few decades, special attention has been paid to the optical response of structures composed of periodic
subwavelength slits in thin metallic sheets. Extraordinary transmission and evanescent-to-propagating conversion
are two of the main effects that have been most investigated in these systems. In this paper, we present an alter-
native way of enhancing the intensity diffracted by a grating through morphological electromagnetic resonances.
Unlike nanoslit arrays, in this system the cavities are formed by periodically distributed chains of metallic sub-
wavelength cylinders, which behave like walls that confine the fields and thus show resonant behavior. The set of
cavities is illuminated by an evanescent wave generated by total internal reflection. We show that resonant cou-
pling of cavity modes excited by the inhomogeneous wave produces enhanced transmission of up to 92% and also
that the system has the ability of steering most of the transmitted intensity in a particular direction given by the
diffraction orders. The results are compared with those obtained from a similar structure formed by periodically
distributed perfectly conducting solid walls. © 2017 Optical Society of America

OCIS codes: (050.6624) Subwavelength structures; (290.0290) Scattering; (050.0050) Diffraction and gratings; (050.2230)

Fabry-Perot.
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1. INTRODUCTION

A large variety of electromagnetic effects are produced by reso-
nant coupling between incident radiation and different eigen-
modes supported by a metallic structure with subwavelength
characteristics. Resonant mechanisms such as Fabry–Perot reso-
nances, surface plasmon excitation, Wood–Rayleigh anomalies,
phase resonances, and grating resonances produce remarkable
features in their transmitted responses [1–11]. Metamaterials,
and, more recently, metasurfaces, have been extensively investi-
gated in order to optimize the coupling between the electromag-
netic field and their subwavelength features to achieve different
properties [12–14]. Combination of different resonant mecha-
nisms has also been employed as a means to improve the cou-
pling efficiency and, consequently, the performance of the
structure for a particular response such as enhanced transmission
[1,3]. Only a few authors reported that the coupling between the
light and the resonances of a periodic structure can be signifi-
cantly improved using an evanescent wave [15]. Despite the

growing interest in these phenomena and in their derived appli-
cations, most of the studies investigate the response of the system
under propagating incidence.

On the other hand, interest in the study of physical mech-
anisms that produce evanescent-to-propagating wave conversion
by means of diffractive devices with subwavelength features has
also increased in the past few years. These studies are prompted
by the interest in the possibility of generating optical images with
details much smaller than the operating wavelength, and enabled
the development of near-field superlenses and hyperlenses [16],
which convert evanescent into propagating waves and can
achieve resolutions below λ∕5 [17,18].

In previous works, we have reported evanescent-to-propagating
wave conversion by means of a periodic array of wires near a
dielectric interface at which evanescent waves are generated.
We have shown that the transmitted intensity can be increased
by means of Fabry–Perot resonances within the subwavelength
slits [19,20] and by excitation of eigenmodes within the gap be-
tween the array and the interface (p polarization) [21]. We have
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also explored the performance of a periodic array of cylinder
chains, which converts evanescent into propagating waves and
can steer the transmitted beam into a predetermined direction,
which can be tailored by appropriate choice of geometrical
parameters of the structure [22]. Excitation of cavity modes
as a mechanism to produce transmission enhancement has been
widely investigated for 1D structures with subwavelength slits
[23–25]. However, not many authors studied the case of wider
cavities, i.e., with widths comparable to the incident wave-
length [8,26].

Motivated by recent advances in super-resolution tech-
niques, in this paper we numerically demonstrate a novel
and efficient way of evanescent-to-propagating wave conver-
sion, with optimized transmission and controllable directional-
ity. The proposed physical mechanism is the excitation of
resonances within the cavities formed between the chains of
subwavelength cylinders arranged in a periodic structure.
Unlike the plasmon amplification mechanism, in this structure
the evanescent waves are amplified via morphological resonan-
ces, which provide more degrees of freedom for the system de-
sign. This intensification mechanism is independent of the
material of the periodic structure, the incident wavelength,
and, to some extent, its polarization. This structure could be
employed for super-resolution systems, which rescue high-
resolution information and collect it in the far field.

The paper is organized as follows: in Section 2, we present
the systems under study and briefly outline the numerical
methods used to address each of the scattering problems. In
Section 3, the results obtained for different configurations of
the system are presented, including the case of an isolated
chain, of two chains (a single cavity), and of a larger array com-
prising several cavities. We analyze the resonant behavior of the
structure by computing the far and near fields, and study the
dependency of the transmission enhancement on the number
of chains, the distance between adjacent cylinders, and the total
height of the chains. To better understand the physical mech-
anisms involved in the interaction of evanescent waves with this
system, we compare the results with those corresponding to a
similar but simplified problem: an infinitely periodic structure
in which the wire chains are replaced with solid perfectly con-
ducting wires of rectangular cross section. Also in this case,
far- and near-field plots are presented, which permit a deeper
physical insight on the addressed phenomenon. Finally, con-
cluding remarks are given in Section 4.

2. CONFIGURATION AND METHODS

We consider a finite structure formed by equally spaced chains
of subwavelength wires. To solve the scattering problem with
this system, we employ the integral method. We also compare
the results obtained with those of a periodic grating formed by
rectangular perfectly conducting wires, and use the modal
method to solve this problem. Therefore, in this section we
present both configurations and briefly summarize the methods
employed in each case.

A. Finite Array of Subwavelength Wires

The system under study is a finite array of equally spaced chains
formed by cylindrical metallic wires in vacuum, such that the

space between adjacent chains can be regarded as a cavity. In
this way, the structure forms a finite grating of period d and
height h, as shown in Fig. 1(a). The array is separated by a dis-
tance e from the interface between region 1 (ϵ1) and region 2
(ϵ0) (all media are non-magnetic). The chains are formed by
a pile of n metallic wires of circular cross section. Each wire
has a diameter c and a dielectric permittivity ϵ, and the distance
between the centers of adjacent wires within the same chain
is a. The structure is illuminated from medium 1 by a p- or
s-polarized Gaussian beam of width W and wavelength λ in
vacuum, which forms an angle θ0 with y axis.

The general integral formalism is based on both Green and
extinction theorems [19,27–29]. For systems with translational
symmetry and the incidence wavevector contained in the �x; y�
plane (2D systems), the expressions for the scattered field in
each medium are
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Fig. 1. Systems under study and the configuration of the scattering
problem. (a) Finite array of metallic subwavelength cylinder chains
illuminated by a Gaussian beam, which comes from a dielectric
medium with an angle θ0 larger than the critical angle for the interface
between the incidence and transmission media. The geometrical
parameters are indicated. Inset: planar view of the scattering configu-
ration. (b) Simplified system: infinitely periodic array of perfectly con-
ducting rectangular wires illuminated by a plane wave under total
internal reflection conditions. The geometrical parameters are indi-
cated. Inset: planar view.
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for j � 1;…N , where ϕ�j�
α �r� represents the complex ampli-

tudes of the electric (α � s) or magnetic (α � p) field in the
host medium (j � 0), or within any of the N scatterers
(j � 1;…; N ). d l 0 is a differential element of line over the con-
tour Cj. The superscript (+) in C

���
j represents the cross-section

contour of the jth scatterer when r 0 tends to Cj from the host
medium, and in this case n 0 (the versor normal to this contour)
points toward the interior of the jth medium. Conversely, C �−�

j
represents the cross-section contour of the jth scatterer when r 0

tends to Cj from the interior of the jth medium, and n 0 points
outwards of the jth medium. H �1�

0 is the first-class zero-order
Hankel function.

In 2D problems, the boundary conditions reduce to two
separate scalar equations for each polarization mode −s (electric
field perpendicular to the plane of incidence) and p (electric
field contained in the plane of incidence):
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with ηj�s� � 1 and ηj�p� � ϵ∕ϵ0 (we consider identical cylin-
ders of dielectric permittivity ϵ). To compute the far field, we
make use of the asymptotic expression of the Hankel functions
when jr − r 0j → ∞, and substitute it in the previous equations:
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where kscatt is the propagation vector defined as

kscatt �
ffiffiffiffiffi
ϵ0

p
k0�sin θ; cos θ; 0�; (6)

and θ is the observation angle. Then, the reflected field corre-
sponds to −90° < θ ≤ 90° and the transmitted field corre-
sponds to 90° < θ ≤ 270°.

B. Simplified Model: Periodic Array of Rectangular
Wires

As is well known, an array of closely spaced cylinders performs
very similarly to a flat metallic slab [30]. Consequently, in order
to better interpret the results obtained for the system of cylinder
chains, we compare them with those of an infinitely periodic
grating formed by regularly spaced perfectly conducting wires
of rectangular cross section, as shown in Fig. 1(b). The period
of the structure is d and the wires have a rectangular cross sec-
tion of side c and height h. The system is illuminated by a plane
wave of wavelength λ in vacuum, forming an angle θ0 with y
axis. The array of wires is at a distance e from a dielectric inter-
face, which separates the incidence dielectric medium (ϵ1) from
the wires’ host medium (ϵ0), which is set to be vacuum. Since
the incident wavevector is contained in the main section of the
structure, the vectorial problem can be separated into two scalar

problems corresponding to the basic linear polarization modes s
and p. The diffraction problem is solved separately for each
polarization mode, using the modal method [21], which consists
of dividing the spatial domain into regions in each of which the
fields are expanded into their own eigenfunctions. At the inter-
faces between adjacent regions, the fields are matched by apply-
ing the boundary conditions and the resulting equations are
projected into convenient bases, which lead to a matrix system
for the unknown reflected and transmitted amplitudes. More de-
tails on this formulation are given in Ref. [21].

3. RESULTS

We start our analysis by studying the evolution of the trans-
mitted response of the system as the number of chains in-
creases. In Fig. 2, we show the total transmitted intensity

Fig. 2. Total transmission in p mode as a function of wavelength.
(a) Finite array of Ag subwavelength cylinder chains with
c∕d � 0.12, a∕d � 0.125, h∕d � 1.295, and e∕d � 0.06, illumi-
nated by a Gaussian beam of half-width W ∕d � 6.6 (d � 760 nm).
The red dashed line corresponds to a single chain comprising 10 wires.
The black solid line with open circles corresponds to a structure of two
chains separated by a distance d , which form an isolated cavity, and the
blue solid line corresponds to 20 chains of cylinders separated a distance d
from each other (19 cavities). The dielectric permittivity of Ag is taken
from [31]. (b) Infinitely periodic array of rectangular perfectly conducting
wires of c∕d � 0.12, h∕d � 1.295, and e∕d � 0.06. In both cases, the
incidence angle is θ0 � 42°, which produces evanescent waves by total
internal reflection, ν1 � ffiffiffiffiffi

ϵ1
p � 1.52 and ϵ0 � 1.
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for p polarization (T p) as a function of incident wavelength for
(a) three different structures, namely, a single chain of cylinders
(dashed line with solid red circles), two chains of cylinders
(solid black line with open circles), and 20 equally spaced
chains (solid blue line), and (b) an equivalent perfectly periodic
structure formed by rectangular wires. For Fig. 2(a), the param-
eters of the structures considered are c∕d � 0.12, a∕d �
0.125, h∕d � 1.295, and e∕d � 0.06, with d � 760 nm.
The refraction index of the incident medium is ν1 � ffiffiffiffiffi

ϵ1
p �

1.52 (silica), whereas the host medium is vacuum (ϵ0 � 1), and
the dielectric permittivity of Ag is taken from [31]. In Fig. 2(a),
the structure is illuminated from medium 1 by a Gaussian
beam of half-widthW ∕d � 6.6, which is focused on the inter-
face forming an angle θ0 � 42°, which is larger than the critical
angle of θc � 41.13°, in order to produce an evanescent wave at
the interface. In the case of Fig. 2(b), the incident field is a
plane wave with the same incidence angle.

As can be observed in Fig. 2(a), the transmission spectrum
of the single chain is a slowly growing function, which does not
show any relevant features. However, for a two-chain structure
(solid line with open circles), the transmitted response retains
the increasing character of the single-chain curve, but a set of
peaks starts to emerge. When more chains are added to the
structure, these peaks become more significant and well-
defined (solid curve), and even new peaks appear, with trans-
mission maxima that reach up to 80% for λ∕d � 1.8. Taking
into account that an array of closely spaced cylinders can be
regarded as a flat metallic slab [30], the two-chain structure
forms a single cavity, whereas the 20-chain structure forms
19 adjacent cavities. Then, the correlation between correspond-
ing transmitted spectra becomes clear: the peaks are the result
of cavity resonances that are reinforced by the addition of
cavities. Besides, the addition of chains to the structure gener-
ates new peaks, which result from the coupling between the
fields of adjacent cavities, and also produces an intensification
of the transmitted response for certain resonant wavelengths.
This is consistent with the transmittance curve for the perfectly
periodic system [Fig. 2(b)], which shows a striking resemblance
with the curve corresponding to 20 chains. Even though the
positions of the peaks do not match perfectly, the general shapes
of both curves are very similar. Taking into account that the
systems have many differences (cylindrical wire chains versus
solid rectangular wires, finite structure versus infinitely periodic
structure, Ag versus perfect conductor, Gaussian beam versus
plane wave), it is to expect that the spectral positions of the
resonances would vary. However, the similarity between both
curves suggests that the underlying resonant mechanism is the
same for both structures.

Another interesting aspect to highlight is the interplay be-
tween Rayleigh anomalies and Bragg scattering. In a diffraction
grating, a Rayleigh anomaly occurs when a particular diffraction
transmitted order becomes grazing, that is, when

�1 � sin θ0

ffiffiffiffiffi
ϵ1
ϵ0

r
� nffiffiffiffiffi

ϵ0
p λ

d
(7)

is satisfied, with sin θ0
ffiffiffiffiffi
ϵ1

p ≃ 1.017 and ϵ0 � 1 for the param-
eters used in this paper. When this condition holds, the total
power is redistributed among the remaining propagating (re-
flected and transmitted) orders, and this might produce sudden

variations on their efficiencies. For instance, Eq. (7) is satisfied
for n � 2 and λ∕d ≈ 1 or for n � 3 and λ∕d ≈ 0.67. On the
other hand, the cylinders’ structure can be thought of as a 1D
photonic crystal, whose planar layers are formed by chains of
subwavelength cylinders separated by space gaps of width d , in
which Bragg scattering takes place. The Bragg condition, given
by 2�d∕λ� � n, determines the wavelengths at which destruc-
tive interference takes place, and, therefore, no propagation is
allowed along the structure. Note that for the incidence con-
ditions considered in the present study, the Bragg condition is
approximately equal to the Rayleigh condition given by Eq. (7).
Then, at these particular wavelengths, the grazing order does
not propagate along the structure, and the evanescent-to-
propagating conversion mechanism is modified significantly.
In a perfectly periodic structure, a noticeable decrease in trans-
mission is expected at these wavelengths, as observed in
Fig. 2(b) at λ∕d � 1 and λ∕d � 0.67.

In Fig. 3(a), we show the magnetic field intensity (jH j2)
near the single-cavity structure (two adjacent chains) at the res-
onant peak indicated by an arrow in Fig. 2(a) (λ∕d � 0.64),
and compare it with the corresponding resonance for 19
cavities [20 chains, λ∕d � 0.651; Fig. 3(b)], in which case
the near field is only plotted in the central cavity, i.e., between
the tenth and eleventh chains. We can see that both maps show
very similar field distributions. Two vertical lobes are formed
within the cavity in both cases, suggesting the excitation of a
particular cavity mode. Note the evanescent wave coming from
the left along the dielectric interface in Fig. 3(a). In what fol-
lows, we explore different resonant modes excited within the
cavities formed by the cylinder chains.

In Fig. 4, we show maps of near-field intensity (jH j2) at the
central cavity for several resonant peaks observed in the trans-
mission spectrum for 19 cavities [solid line in Fig. 2(a)], located

Fig. 3. jH j2 in the vicinity of the structure for (a) a single cavity at
λ∕d � 0.64 [indicated by an arrow in Fig. 2(a)] and (b) a system
formed by 20 chains (19 cavities) at λ∕d � 0.651. The color scales
are adapted in each plot in order to highlight the magnetic field dis-
tribution of each resonant mode. In both cases, red (blue) corresponds
to the highest (lowest) intensity.
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at λ∕d � 1.777, 1.25, 0.935, 0.84, 0.71, 0.65, and 0.62. As
can be observed, the corresponding maps show well-defined
patterns, similar to those obtained for a parallel-plate wave-
guide. In all cases, intensification of the magnetic field along
the chains of metallic cylinders can be noticed, which is accom-
panied by a decrease in the electric field within the conductor
(not shown). The resonant field distributions shown in Fig. 4
can be labeled in the same fashion as those of a rectangular
waveguide, i.e., employing indices �i; j�, where i and j are pos-
itive integers, which denote the number of horizontal and ver-
tical lobes, respectively. Within this framework, these near-field
plots are displayed as2

4 �2; 3�
�1; 2� �2; 2� �3; 2�
�1; 1� �2; 1� �3; 1�

3
5;

and these resonant modes are spectrally located at λ∕d given by2
4 �0.71�

�1.25� �0.84� �0.62�
�1.777� �0.935� �0.65�

3
5:

In Fig. 5, we show near-field intensity maps at the peak
wavelengths of the transmission spectrum of a perfectly peri-
odic array of rectangular perfectly conducting wires [see
Fig. 2(b)], which are found at λ∕d � 1.582, 1.318, 0.874,
0.772, 0.694, 0.58, and 0.556. As mentioned above, there
is a correspondence between the peaks of this curve and those
of the transmittance spectrum of the cylinder system [solid
curve in Fig. 2(a)]. This correspondence becomes evident when
comparing the resonant near-field plots in Fig. 5 with those in
Fig. 4. It is clear that the same modes are excited in the perfectly
periodic array of rectangular wires, and this confirms that when
the cylinders in each chain are sufficiently close to each other,
each chain behaves as a solid rectangular wire [30].

It is to expect that as the number of chains increases, the op-
tical response of the whole system tends to that of a perfectly
periodic diffraction grating, that is, with discrete well-defined di-
rections for the transmitted power. In such a case, the propagation

Fig. 4. Near-field intensity maps (jH j2) at the wavelengths corre-
sponding to the peaks observed in the transmission spectrum for 19
cavities [solid line in Fig. 2(b)], at λ∕d � 1.777, 1.25, 0.935, 0.84,
0.71, 0.65, and 0.62. Since d � 760 nm, they correspond to
λ � 1350.5, 950.5, 710.6, 638, 539.60, 495, and 471 nm, respec-
tively. The color scales are adapted in each plot in order to highlight
the magnetic field distribution of each resonant mode. In all cases, red
(blue) corresponds to the highest (lowest) intensity.

Fig. 5. Near-field intensity maps (jH j2) at the wavelengths corre-
sponding to the peaks observed in the transmission spectrum of a per-
fectly periodic array of rectangular perfectly conducting wires [see
Fig. 2(b)], at λ∕d � 1.582, 1.318, 0.874, 0.772, 0.694, 0.58, and
0.556. The color scales are adapted in each plot in order to highlight
the magnetic field distribution of each resonant mode. In all cases, red
(blue) corresponds to the highest (lowest) intensity.
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directions of the different transmitted orders are given by the gra-
ting equation [32]. If the array is illuminated by an evanescent
wave, the forward transmitted order (0 order in a diffraction gra-
ting) has a grazing direction, i.e., it is parallel to the dielectric
interface. The proposed cylinder system placed near the dielectric
interface allows us not only to convert the evanescent wave into a
propagating wave, but also to optimize the transmitted intensity
and to direct it according to the requirements of the specific ap-
plication. By exciting morphological resonances, it is possible to
produce an enhancement of the intensity of the waves transmitted
to the far field at directions of diffraction orders other than the
zeroth order. For example, as can be observed in Fig. 2(a), at
λ∕d � 0.84 (p mode) the total relative transmission is 0.6,
80% of which is directed to the −2 diffraction order. This situa-
tion is illustrated in Fig. 6.

Since the resonant modes of the cylinders’ structure are re-
lated to cavity modes, the optical response is expected to de-
pend on the number of wires in each chain, that is, on the
total height h of the array. In Fig. 7(a), we show the evolution
of the total transmission (p mode) for the same structure con-
sidered in Fig. 2(a) (20 chains, solid line) for different numbers
of cylinders in each chain (from 2 to 10), which produce total
heights of h∕d � 0.255, 0.515, 0.775, 1.035, and 1.295.
These curves are to be compared with those in Fig. 7(b), which
correspond to a perfectly periodic rectangular wire array. Note
that the location of the Rayleigh anomalies can be clearly iden-
tified in all the curves (vertical dashed lines). As the heights of
the chains increase, the transmission curves showmore features,
associated to the appearance of new cavity modes between the
chains of cylinders. The correspondence between the transmis-
sion curves for the finite and infinite structures confirms the
nature of the resonant mechanism. Maximum transmission
is 92%, which occurs for h∕d � 1.035 (eight cylinders in each
chain) at λ∕d � 0.91.

In Fig. 8, we show the near-field intensity map at the resonant
condition mentioned above (h∕d � 1.035, λ∕d � 0.91), and
the angular distribution of the transmitted far field (inset).

Fig. 6. Angular transmission spectrum at λ∕d � 0.84 for the finite
array of 20 Ag subwavelength cylinder chains considered in Fig. 2(a)
(c∕d � 0.12, a∕d � 0.125, h∕d � 1.295, e∕d � 0.06), illuminated
by a Gaussian beam of half-width W ∕d � 6.6 (d � 760 nm).

Fig. 7. Total transmission (p mode) for the same system considered
in Fig. 2 (solid line), for varying total height of the array. (a) In the case
of the finite subwavelength cylinder array, different numbers of cylin-
ders (from 2 to 10) within each chain are considered. (b) In the case of
a perfectly periodic rectangular wire array, different values of wire
height are considered. The curves are vertically displaced for better
visualization. Vertical dashed lines indicate the spectral location of
Rayleigh anomalies.

Fig. 8. Near-field intensity map (jH j2) at λ∕d � 0.91 for h∕d �
1.035 (see Fig. 7). Red (blue) corresponds to the highest (lowest) in-
tensity. Inset: angular transmission spectrum.
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The near-field distribution evidences a morphological resonance
of type (2,1). Note that more than 90% of the transmitted power
propagates in the direction of the −2 order, approximately at an
observation angle of −60°. Even though the physical mechanism
responsible for redirecting the light beam is grating diffraction,
under this resonant condition, the optical behavior of the struc-
ture as a whole reminds of the response of a metamaterial of
negative refraction index.

Another interesting question that can be asked is how far
apart adjacent cylinders can be, while still maintaining the res-
onant behavior. To address this issue, we computed the far and
near fields for structures comprising 6, 8, and 10 cylinders per
chain, while keeping the same total height of the structure, i.e.,
for different distances between adjacent cylinders. These results
are shown in Fig. 9. On one hand, note that although the perio-
dicity and total height of the structure are the same for all three
cases, the spectral positions of the transmission peaks slightly
shift to shorter wavelengths and their transmission intensities
decrease as the separation between cylinders increases. This can
be explained taking into account that as the cylinders are sep-
arated farther from each other, each chain as a whole becomes
more permeable to the electromagnetic field, and this modifies
the highly conductive boundary condition, which prompts the
cavity resonances between the cylinder chains. In other words,
the effective dielectric permittivity of each chain becomes less
conductive, and this produces a gradual disappearance of the
resonant mode. This can be clearly appreciated in the insets
in Fig. 9, where we show near-field plots at resonance for
the three cases. Note that, as a consequence of the variation
of the total transmission, the angular intensity distribution also
changes. In all cases, a small peak is observed near θ ≈ 90°,
which corresponds to the incident grazing wave. Although the
directions of the diffraction orders change only slightly—due
to a slight shift in the resonant wavelength—the relative in-
tensities change dramatically. Note that in the case of 10 cylin-
ders per chain, the distance between the centers of adjacent
cylinders is approximately λ∕5, whereas for the case of six

cylinders, it is about λ∕3. Then, it is to expect that the equiv-
alence between a cylinder array and a flat metallic slab would be
gradually lost.

For completeness, in Fig. 10 we show the transmitted re-
sponse of the same 20-cylinder structure considered through-
out the paper, but illuminated by an s-polarized beam. The
general shape of the curve is quite similar to that for p polari-
zation [Fig. 2(a), solid curve], although the overall intensity is
lower than that in the p case. Several peaks can be identified,
which can also be associated with morphological resonances. As
an example, near-field plots at two of the resonant wavelengths
are included as insets in Fig. 10, where typical cavity modes can
be appreciated. The near-field map at λ∕d � 0.92 corresponds
to a (2,1) mode, whereas that at λ∕d � 0.59 shows a (3,1)
mode distribution. Note that, as expected, the electric field van-
ishes along the metallic cylinder chains. These results suggest
that the intensification mechanism is, to some extent, indepen-
dent of the incident polarization.

4. CONCLUSIONS

This paper theoretically demonstrates resonant optical coupling
of a set of cavities illuminated by an evanescent wave, which
excites the eigenmodes of the system. Light emission or scatter-
ing from objects comprises both propagating and evanescent
components, corresponding to low and high wavevectors, re-
spectively. Propagating waves carry large-feature information
and reach the far field, whereas evanescent waves contain
the information of the details. Since the evanescent compo-
nents are non-propagating in a usual material environment,
they are confined to the near field. In general, the realization
of a hyperlens for far-field super-resolution imaging relies on

Fig. 9. Total transmission (p mode) for the same system considered
in Fig. 2 (solid line), for 6, 8, and 10 cylinders comprising each chain,
while keeping the total height of the array fixed at h∕d � 1.295. Near-
field intensity maps (jH j2) at the central cavity and the angular inten-
sity distribution at the resonances are shown as insets.

Fig. 10. Total transmission in s mode as a function of wavelength,
for the same cylinder structure considered in Fig. 2(a) for 20 chains.
Near-field intensity maps (jE j2) at the central cavity at λ∕d � 0.59
and λ∕d � 0.92 are shown as insets. The color scales are adapted
in each plot in order to highlight the magnetic field distribution
of each resonant mode. In both cases, red (blue) corresponds to
the highest (lowest) intensity.
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two basic requirements: a material that supports wave propa-
gation with high wavevectors and a magnification mechanism,
that is, conversion of high-wavevector waves to low-wavevector
waves so that the super-resolution information can be sent to
the far field. We have shown that an evanescent wave can be
converted into a propagating wave and, at the same time, the
conversion efficiency can be maximized by means of structural
resonances, which provide more degrees of freedom for the sys-
tem design than plasmon resonances. This intensification
mechanism is independent of the material of the periodic struc-
ture, the incident wavelength, and, to some extent, its polari-
zation. This structure could be employed for super-resolution
systems, which rescue the high-resolution information and
collect it in the far field. The reported resonances have a mor-
phological origin and, in principle, do not depend on the metal
of the cavity walls. The resonant modes follow typical wave-
guide mode patterns and are robust in the sense that slight var-
iations in the shape of the cavity walls, which could be
produced by manufacturing defects, do not significantly alter
the excitation of these modes, which occur for both polarization
cases. One of the most interesting results is that a high percent-
age of the transmitted intensity is directed at a well-defined
angle and in a direction opposite to the incidence direction.
Hence, we have shown that this kind of metastructures formed
by optically coupled cavities support eigenmodes similar to
those of a waveguide. In addition, the resonant excitation of
these morphological eigenmodes allows not only very efficient
evanescent-to-propagating conversion for both polarization
modes, but also redirection of the transmitted intensity to a
particular region of space. This effect resembles that of an an-
tenna array emitting in phase and in directional form. However,
further research on the underlying mechanism is still necessary.
It is important to remark that the phenomenon reported in this
paper does not require a nanometric structure. As long as the
metallic cylinders are good conductors, the system is scalable to
any region of the electromagnetic spectrum. Therefore, the per-
formance of the system is independent of the typical lengths
involved (cylinder radius, total height of the structure, distance
between adjacent cylinders, period, etc.), but it only depends
on the ratio between these lengths and the incident wavelength.
In the nanometer scale, structures similar to the one proposed
have been fabricated using inverse techniques or controlled wire
growth. For instance, arrays of cylinders on a substrate are being
employed for new designs of photoelectric cells or photonic
devices [33–35]. Recently, other techniques involving UV ra-
diation have been proposed for the fabrication of nanometric
structures, which show even more complexity than those con-
sidered in this paper [36,37].

Funding. Universidad de Buenos Aires (UBA)
(20020150100028BA); Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET) (PIP 112-201101-
00451); Universidad Nacional del Centro de la Provincia de
Buenos Aires (UNICEN).

Acknowledgment. D. S. acknowledges partial support
from CONICET and UBACyT. M. L. acknowledges partial
support from UNICEN.

REFERENCES

1. J. W. Lee, M. A. Seo, D. J. Park, S. C. Jeoung, Q. H. Park, C. Lienau,
and D. S. Kim, “Terahertz transparency at Fabry–Perot resonances of
periodic slit arrays in a metal plate: experiment and theory,” Opt.
Express 14, 12637–12643 (2006).

2. M. R. Gadsdon, I. R. Hooper, and J. R. Sambles, “Optical resonances
on sub-wavelength silver lamellar gratings,” Opt. Express 16, 22003–
22028 (2008).

3. A. T. M. Anishur Rahman, P. Majewski, and K. Vasilev, “Extraordinary
optical transmission: coupling of the Wood–Rayleigh anomaly and the
Fabry–Perot resonance,” Opt. Lett. 37, 1742–1744 (2012).

4. S. H. Kim, C. M. Lee, D. W. Park, S. K. Noh, S. B. Sim, J. Kim, G. H.
Kim, K. J. Ahn, D. S. Kim, and K. J. Yee, “Evolution of surface plasmon
resonance with slab thickness in hybrid nanostructures of Au/InGaAs
slab waveguide,” Appl. Phys. B 115, 77–83 (2014).

5. D. C. Skigin and R. A. Depine, “Transmission resonances in metallic
compound gratings with subwavelength slits,” Phys. Rev. Lett. 95,
217402 (2005).

6. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles,
“Microwave transmission of a compound metal grating,” Phys. Rev.
Lett. 96, 257402 (2006).

7. I. Bendoym, A. B. Golovin, and D. T. Crouse, “The light filtering and
guiding properties of high finesse resonant compound gratings,”
Opt. Express 20, 22830–22846 (2012).

8. H. Lochbihler and R. A. Depine, “Properties of TM resonances on
metallic slit gratings,” Appl. Opt. 51, 1729–1741 (2012).

9. F. J. Garca de Abajo, “Colloquium: light scattering by particle and hole
arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).

10. D. M. Natarov, V. O. Byelobrov, R. Sauleau, T. M. Benson, and A. I.
Nosich, “Periodicity-induced effects in the scattering and absorption
of light by infinite and finite gratings of circular silver nanowires,”
Opt. Express 19, 22176–22190 (2011).

11. T. L. Zinenko, M. Marciniak, and A. I. Nosich, “Accurate analysis of
light scattering and absorption by an infinite flat grating of thin silver
nanostrips in free space using the method of analytical regularization,”
IEEE J. Sel. Top. Quantum Electron. 19, 9000108 (2013).

12. H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces:
physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).

13. Z. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, and H. Li, “Highly efficient
beam steering with a transparent metasurface,” Opt. Express 21,
10739–10745 (2013).

14. H. Kurosawa, B. Choi, Y. Sugimoto, and M. Iwanaga, “High-
performance metasurface polarizers with extinction ratios exceeding
12000,” Opt. Express 25, 4446–4455 (2017).

15. P. Quemerais, A. Barbara, J. Le Perchec, and T. López-Ríos,
“Efficient excitation of cavity resonances of subwavelength metallic
gratings,” J. Appl. Phys. 97, 053507 (2005).

16. D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q.-H. Park,
M. S. Jeong, and D.-K. Ko, “Experimental verification of surface plas-
mon amplification on a metallic transmission grating,” Phys. Rev. B
77, 115451 (2008).

17. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmis-
sion properties of an optical far-field superlens for imaging beyond the
diffraction limit,” J. Opt. Soc. Am. B 23, 2383–2392 (2006).

18. X. Hao, C. Kuang, Y. Li, and X. Liu, “Evanescent-wave-induced frequency
shift for optical superresolution imaging,”Opt. Lett. 38, 2455–2458 (2013).

19. M. Lester and D. C. Skigin, “Coupling of evanescent s-polarized
waves to the far field by waveguide modes in metallic arrays,” J.
Opt. A 9, 81–87 (2007).

20. D. C. Skigin and M. Lester, “Enhanced transmission via evanescent-
to-propagating conversion in metallic nanoslits: role of Rayleigh
anomalies,” J. Opt. 16, 045004 (2014).

21. D. Skigin and M. Lester, “Study of resonant modes of a periodic met-
allic array near a dielectric interface: evanescent-to-propagating cou-
pling via surface plasmon excitation,” J. Opt. A 8, 259–267 (2006).

22. M. Lester and D. C. Skigin, “An optical nanoantenna made of plas-
monic chain resonators,” J. Opt. 13, 035105 (2011).

23. J. A. Porto, F. J. Garca-Vidal, and J. B. Pendry, “Transmission reso-
nances on metallic gratings with very narrow slits,” Phys. Rev. Lett.
83, 2845–2848 (1999).

Research Article Vol. 34, No. 12 / December 2017 / Journal of the Optical Society of America B 2631



24. E. Popov, M. Neviére, S. Enoch, and R. Reinisch, “Theory of light
transmission through subwavelength periodic hole arrays,” Phys.
Rev. B 62, 16100–16108 (2000).

25. S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through
metallic channels much smaller than the wavelength,” Opt. Commun.
175, 265–273 (2000).

26. J. Fiala and I. Richter, “Mechanisms responsible for extraordinary op-
tical transmission through one-dimensional periodic arrays of infinite
subwavelength slits: the origin of previous EOT position prediction
misinterpretations,” Plasmonics (to be published).

27. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendez,
“Enhanced backscattering of light from a random grating,” Ann.
Phys. 203, 255–307 (1990).

28. A. Madrazo and M. Nieto-Vesperinas, “Scattering of electromagnetic
waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am.
A 12, 1298–1302 (1995).

29. M. Lester, D.C.Skigin, andR.A.Depine, “Control of the diffracted response
of wire arrays with double period,” Appl. Opt. 47, 1711–1717 (2008).

30. D. Deslandes and K. Wu, “Single-substrate integration technique
of planar circuits and waveguide filters,” IEEE Trans. Microwave
Theory Tech. 51, 593–596 (2003).

31. E. Palik, Handbook of Optical Constants of Solids (Academic,
1998).

32. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag,
1980).

33. L. Wen, Z. Wang, Y. Mi, R. Xu, S. Yu, and Y. Lei, “Designing hetero-
geneous 1D nanostructure arrays based on AAO templates for energy
applications,” Small 11, 3408–3428 (2015).

34. Q. Xu, R. Perez-Castillejos, Z. Li, and G. M. Whitesides, “Fabrication
of high-aspect-ratio metallic nanostructures using nanoskiving,” Nano
Lett. 6, 2163–2165 (2006).

35. V. J. Cadarso, N. Chidambaram, L. Jacot-Descombes, and H. Schift,
“High-aspect-ratio nanoimprint process chains,” Microsyst. Nanoeng.
3, 17017 (2017).

36. S. Tawfi, M. De Volder, D. Copic, S. J. Park, C. Ryan Oliver, E. S.
Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and
nanostructured surfaces with anisotropic geometries and properties,”
IEEE Adv. Mater. 24, 1628–1674 (2012).

37. L. Romano, J. Vila-Comamala, M. Kagias, K. Vogelsang, H. Schift, M.
Stampanoni, and K. Jefimovs, “High aspect ratio metal microcasting
by hot embossing for X-ray optics fabrication,” Microelectron. Eng.
176, 6–10 (2017).

2632 Vol. 34, No. 12 / December 2017 / Journal of the Optical Society of America B Research Article


	XML ID funding

