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A B S T R A C T

The kinetics usually employed for analyzing glow curves are either heuristic or derived from physical models
resorting to approximations. In this article closed expressions for the interactive and non interactive multi-trap
models are derived without approximations, which render the analysis of glow curves more reliable.

1. Introduction

Glow curve analysis is a frequently used procedure for investigating
the kinetics involved in thermoluminescence (TL). Basically it relies on
choosing a model, which is in accordance with experimental results at
hand, and on deriving a theoretical expression for the emitted light
Ith(T,α) from the set of differential equations describing the carrier
traffic among traps and recombination centers. α stands for the set of
parameters characterizing traps and recombination centers and T for
the absolute temperature.

A reliable set of values for α can be found by best-fitting the theo-
retical expression I(T,α) to the set of experimental values Iexp(Ts),
namely, the light intensity measured at each sampling temperature Ts.
The fitting is usually performed by minimizing the expression:
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where Z is the number of sampling temperatures [1].
The most employed algorithm for finding the minimum of S(α) is

the Levenberg-Marquardt algorithm (L-M) [1,2]. For the L-M algorithm
to be employed a closed expression of the theoretical light intensity
must be available, which is iteratively evaluated during the execution
of the fitting routine.

The simplest model for TL, known as one trap-one recombination
center (OTOR), is shown in Fig. 1.

For the model shown in Fig. 1 the set of parameters is
=α E s n A A[ , , , , ]h n0 , where n0 stands for the initial concentration of

trapped electrons. The initial concentration of holes h0 is equal to the

initial concentration of trapped electrons n0 according to Eq. (3) below
because the initial concentration of electrons in the conduction nc,0
band is zero.

If a sample is heated with a constant heating rate β, namely,
= +T t T βt( ) 0 , the equations describing the traffic of electrons are:
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=I T A n T h T( ) ( ) ( )h c (4)

Eq. (3) represents charge neutrality and I T( ) stands for the emitted
light.

The first analytical expression for I(T) has been put forward by
Randall and Wilkins [3]. It is known as first order (FO) kinetics. It is
derived from the set of coupled differential equations by resorting first
to the quasi-equilibrium (QE) approximation. The QE approximation
assumes that ≅ 0dn

dt
c and ≪n nc . As shown in reference [2], the light

intensity is given by:

=
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FO kinetics results if it is assumed that retrapping is negligible
against recombination, i. e., − ≪N n T A hA( ( )) n h,:
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Since the QE approximation entails that ≈n T( ) 0c it results h(T)=n
(T). Taking into account that
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dT
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( ) ( ) , this equation along with Eq. (5-a) yield:
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where T0 stands for the temperature at which the recording of a glow
curve starts.

On the contrary, if retrapping prevails on recombination, i. e.,
− ≫N n T A hA( ( )) n m, the following equation results:
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From this equation one can obtain:
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In Eq. (8) s′ stands for A
NA

n
h
. Garlick and Gibson put forward this

kinetics, called second order (SO) kinetics [4].
Since a closed expression cannot be derived when recombination

does not prevail on retrapping, or retrapping on recombination, May
and Partridge put forward a heuristic expression with the aim of de-
scribing kinetics comprised between first and second order [5]:
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In this equation s" stands for −s n. 0b 1, and b is a parameter loosely
related to the retrapping probability. When b→1 Eq. (9) converges to
FO kinetics, and when b = 2, to SO kinetics. This kinetics is known as
the general order (GO) kinetics, and it is nowadays the most employed
kinetics for analyzing glow curves.

Several authors have investigated the validity of the GO kinetics.
According to the reported results the GO kinetics suffers from several
flaws:

1) Investigations have been carried out to find a connection between b
and physically meaningful models, but a clear relationship could not
been established [6,7].

2) Moharil and Opanowicz found that the kinetic order b is usually not
constant during thermal stimulation and should not be used for
characterization of thermoluminescence [8,9].

3) It has been reported that the GO model has limitations for

determination of the activation energy [10].
4) By resorting to computer simulation Sakurai has shown that the GO

kinetics can yield wrong parameters [11]. Furthermore he states
that one of the defects of the GO kinetics arises from the fact that
traffic of electrons (or holes) among traps is ignored [12].

5) Basun et al. have shown that the interaction among traps affects the
shape of glow curves, thus affecting the parameters given by the GO
kinetics [13].

2. Derivation of the light intensities for the IMTS and NMTS
models

A more general model is that depicted in Fig. 2. It is known as the
interactive multitrap system (IMTS). This model includes a deep trap
(also known as thermally disconnected trap). This trap can capture
electrons but cannot release electrons for the temperature range the
glow curve is recorded. If the deep trap is fully occupied the model is
called Non-interactive multitrap system (NMTS).

The equations describing the carrier traffic are:
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Am is the trapping probability at a deep trap, m is the concentration
of occupied deep traps, and M is the concentration of deep traps.

Eq. (14) is the thermoluminescent light, and Eq. (13) represents
charge conservation. If a probe is heated with a constant heating rate β,
namely, = +T t T βt( ) 0 , then Eqs. (10)–(14) read:
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Conduction Band

An p = s exp(-E/kT)

N, n

h

Ah

Valence Band

Fig. 1. OTOR model. Ah is the recombination probability, h is the concentration of holes
in the recombination centers, An is the retrapping probability, N is the concentration of
traps, n is the concentration of trapped electrons, s is the frequency factor, E the activation
energy, and k is the Boltzmann constant. The product s exp(-E/kT) is the escape prob-
ability of an electron from a trap.

Conduction Band

M, m

An p

N, n

h

Ah

Valence Band

Am

Fig. 2. IMTS and NMTS are an extension of the model shown in Fig. 1 by adding a deep
trap having concentration M.
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Integration of Eq. (19) yields:
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T

0 (20)

For T = T0 Eq. (18) reads:

= + =h T n m C( )0 0 0 (21)

where m0 stands for the initial concentration of occupied deep traps.
Then Eq. (20) becomes:
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Eq. (15) can be rearranged as follows:
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From Eqs. (17) and (22) the following relationship can be derived:

∫
=

⎡
⎣

+ − ⎤
⎦

n T I T

A n m I u du
( ) ( )

( )
c

h β T
T

0 0
1

0 (24)

By inserting this relationship into Eq. (23) it results:
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where F(T) stands for ∫=F t I u du( ) ( )T
T
0

.
By defining G(T) as follows:
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, then Eq. (25) becomes:
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If U(T) is defined as:
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and multiplied by both sides of Eq. (27) the derivation of the following
relationship is straightforward:

=
+ −

d U T n T
dT

U T R
β

N I T
n m

[ ( ) ( )] ( ) ( )n
F T

β0 0
( )

(29)

Integration of Eq. (29) yields:
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from which the following relationship results:
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In a similar fashion, an expression for m(T) can be found by defining
the following expressions:
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and:
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By resorting to Eq. (16), Eq. (32) and Eq. (33) it results:
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Now we can find an expression for the thermoluminescence in-
tensity. Indeed, from Eqs. (17) and (19) the following relationship re-
sults:
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If we take into account that = − −n T h T n T m T( ) ( ) ( ) ( )c and
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1 , it results:
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Where, as before, ∫=F T I u du( ) ( )T
T
0

, and n(T) and m(T) are given by
Eqs. (31) and (34) respectively. In this case, the set of parameters
characterizing the model is:

=α A A A N n M m s E[ , , , , , , , , ].IMTS h n m 0 0

For the NMTS model the deep traps are fully occupied, namely, m=
m0 = M. The equations describing the model are:
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Following a similar procedure as that employed for deriving Eq.
(36), it is easy to show that the light intensity I T α( , ) is given by:
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In this case, the set of parameters characterizing the model is:

=α A A N n M s E[ , , , , , , ]h nNMTS 0

As aforementioned most materials show more than one trap. For
two or more traps Eq. (24) reads:
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And Eq. (36) turns into:
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Following the same steps for deriving Eq. (42) we obtained:
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In Eq. (46) it is supposed that there are k traps and l deep traps. For
the NMTS model Eq. (46) becomes:
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In this case, the set of parameters is given by:
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In Eq. (49) ni(T) is given by:
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3. NMTS model applied to glow curve analysis

Let us suppose that a sample is successively irradiated with the same
dose and that each time the glow curve is recorded. If the glow curve
does not show changes of its shape and area, then we can assume that
deep traps, if present, are fully occupied. In this case the NMTS model
could hold. In what follows we will suppose that the glow curve is made
up of a single peak. Under these conditions expression (41) can be
employed as the theoretical expression I(T,α) to fit the glow curve by
resorting to the L-M algorithm. Extrapolation to a multi-peak situation
is straightforward by resorting to Eq. (49) as the fitting expression
corresponding to I(T,α).

As mentioned, the L-M algorithm is an iterative procedure. For this
reason, computation times should be as low as possible in order to make
the fitting algorithm feasible. After substituting the term W u
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in Eq.
(47) it results:
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The double integration requires high accuracy, which means long
computational times.

From Eq. (44) we have:
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According to Balarin [14], the first integral on the right side can be
approached by:
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In what follows the term on the right hand-side in Eq. (56) will be
indicated by

D T E( , ).

If we take into account that =I T( ) dF
dT it is easy to show that:
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Introducing this result into Eq. (55), and after minor algebra, one
obtains:
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This relationship for each trap along with Eq. (49) allows the ana-
lysis of glow curves by assuming that the NMTS. It is worth mentioning
that in Eq. (58) I(T) is actually Iexp(T), namely, the glow curve recorded
experimentally. In the same way, ∫=F t I u du( ) ( )T

T
exp0

. Thus Eq. (49) is
a self-consistent equation.

4. Analysis of the glow curve BeO (Thermalox 995) compounds

In order to evaluate the performance of the expressions derived
above, a glow curve of BeO (Thermalox 995) was analyzed. The sample
was irradiated with an ophthalmic 90-Sr beta source and its glow curve
was recorded with a Harshaw 3500 TL reader at a heating rate of
1 K s−1. The dose amounted to 0.27 Gy. (Fig. 3)

Fig. 4 shows three glow curves obtained with three heating rates,
namely, 1, 3 and 5 K/s.

From Fig. 4 it is clear that the area of the glow curve decreases as
the heating rate increases. This means that BeO is affected by thermal
quenching. Indicating with A1, A2, and A3 the area of the glow curves
recorded with heating rates of 1, 3 and 5 K/s respectively, the following
relationships were found:

= =A
A

and A
A

2
1

0.774, 3
1

0.663.
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Yukihara reported the thermal quenching function [15]. The func-
tion, known also as luminescence efficiency, is given by:

= +η T( ) C E kT
1

1 exp( / )q
where C = 2.66 107, and Eq = 0.568 eV.

The corrected glow curve is given by:

=I T I T
η T

( ) ( )
( )corr

meas

Fig. 5 shows the corrected glow curve, and that resulting from the fit
of Eq. (49) to the corrected glow curve.

ESR-TL correlation studies on BeO samples (Thermalox 995) show
the presence of two traps giving rise to the glow curve [16]. There is a
third trap but its contribution is negligible. Thus, two traps have been
considered for the glow curve analysis (k= 2 in Eq. (49)). The resulting
parameters are shown in Table 1.

Since most of the articles reporting analyses of glow curves em-
ployed the GO kinetics [2], in particular the expression put forward by
Kitis et al. [17], it is worthwhile to compare the parameters obtained
with the new equation with those obtained with the GO kinetics. For
two traps the light intensity is given by [2]:

∫

∫

=
−

⎡⎣ + − ⎤⎦

+
−

⎡⎣ + − ⎤⎦

− −

− −

I T
s n

b n du

s n

b n du

( )
. 0 . exp( )

1 ( 1) 0 exp( )

. 0 . exp( )

1 ( 1) 0 exp( )

E
kT

T
T E

ku

b
b

E
kT

T
T E

ku

b
b

1 1

1 1 0

1
1 1

2 2

2 2 0

2
2 1

1

2

2

In Table 2 the parameters computed with the GO kinetics are listed.
From the comparison of the set of parameters shown in Tables 1 and

2 it can be concluded:

a) the energies differ significantly.
b) the new kinetics gives the concentration of active traps, and the

concentration of deep traps, while the GO kinetics does not.
c) The new kinetics gives the parameter R of each trap.
d) For b = 1 the GO kinetics becomes first order kinetics, which means

that retrapping is negligible, namely, Ri = 0 for i = 1,2, but ac-
cording to the new kinetics for the second trap R = 0.5, i. e., the
retrapping of trap 2 is not negligible against recombination.

e) For low doses the filling of the traps during irradiation is propor-
tional to Ni. Ri. From Table 1 N1. R1 = 5.4 104, and N2. R2 = 4.3
105. Therefore for low doses trap 2 will capture more electrons than
trap 1. Thus, the second peak will be higher than the low tem-
perature peak for low doses. For higher doses trap 2 approaches
saturation (N2<N1), and trap 2 starts to capture more electrons. As
a consequence, the low temperature peak grows more than the high
temperature peak at higher doses, as can be seen in Fig. 1 of re-
ference [16]. This information cannot be obtained from the GO ki-
netics.

f) The new kinetics takes into account interaction among traps, while
the heuristic GO kinetics does not.

g) In Table 1 the quotient N1/N2 is nearly 7, result that agrees with the
concentration of traps 1 and 2 measured with ESR (see Figs. 7 and 8
of reference [16].

Finally, Azorin Nieto et al. report the energy for the highest tem-
perature trap lying in the interval between 1.07 and 1.12 eV, and the
frequency factor lying between 9 1010 and 2.2 1011 1/s. These values

Fig. 3. Recorded glow curve for a dose of 0.27 Gy.

Fig. 4. Glow curves obtained for the three heating rates indicated in the figure.

Fig. 5. Corrected glow curve (solid line), and fitted curve (dot line). Heating rate β =
1 K/s. FOM = 3.5%.

Table 1
Computed parameters. The concentration of active traps and deep traps are given in units
of area (see Appendix A). FOM = 3.6%.

Trap E (eV) s (1/s) n,0 N R M

1 0.91 6.0 1011 360 6.0 106 0.009 1 107

2 1.23 6.1 1012 18190 8.5 105 0.500

Table 2
Trap parameters computed with the GO kinetics. The concentrations of trapped electrons
are given in units of area (see Appendix A). FOM = 2.0%.

Trap E (eV) S (1/s) n1,0 b

1 1.06 2.4 1010 397 1
2 1.62 7.0 1012 17930 1
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differ from those obtained with the new kinetics [20].

5. Summary

The kinetics employed so far for analyzing glow curves are either
heuristic (GO kinetics), or are derived from a physical model by re-
sorting to the quasi-equilibrium approximation (first order, second

order, mixed order). Recently an expression based on the OTOR model
was derived, which resorts to approximations and for only one trap, i.
e., ignoring the interaction among traps [18,19]. On the contrary, the
closed expression put forward in this article was derived for the IMTS
and NMTS models without resorting to any approximation and taking
into account interaction among traps, which renders more reliable the
parameters characterizing traps and recombination centers.

Appendix A. Some aspects of the glow curve analysis

A remark should be made about how Eq. (46) should be employed in order to find the set of parameters α. The mentioned equation renders the
intensity in counts per second. Since usually the TL readers give the light intensity in Amperes, to perform a fitting Eq. (46) should be written as:

∑⎜ ⎟⎜ ⎟= ⎛
⎝

− − ⎞
⎠

⎛
⎝

+ − ⎞
⎠=

I T α CA N
β

F T n T N M
β

F T( , ) 1 ( ) ( ) 1 ( )h i

k

i0 1 0
(59)

The constant C takes into account the proportionality between the intensity given by counts per second and the recorded intensity given by the TL
readers in Amperes.

Eq. (59) can be rewritten:

∑⎜ ⎟⎜ ⎟= ⎛
⎝

− − ⎞
⎠

⎛
⎝

+ − ⎞
⎠=

I T α λ CN
β

CF T Cn T CN CM
β

CF T( , ) 1 ( ) ( ) 1 ( )
i

k

i0 1 0
(60)

where λ = Ah/C.
Constant C can be chosen so that the concentration of trapped electrons just before the recording of a glow curve, namely, CN0, be given in units

of area. Thus CN0 is the area of the glow curve. By the same token Cn0,i is the initial concentration of trapped electrons in trap #i, which is also given
in units of area. Indeed, this is the parameter actually indicated as n0 in Tables 1 and 2. Because of this change of units the concentration M of deep
traps is also given in units of area, and ∫=CF T I u du( ) ( )T

T
0 exp is the area of the recorded glow curve I T( )exp between the temperatures T0 and T.

This metric for giving the concentration of carriers in units of area is not new. It has been reported in reference [21]. The advantage of this metric
is that the initial concentration of trapped electrons n0 is known, namely, it is given by the area of the glow curve.

It should also be mentioned that fitting algorithms, such as the L-M method, require that I(T) and

∫=CF T I u du( ) ( )
T

T
exp

0

be continuous and differentiable functions. TL readers give Iexp(T) at sampling points. Continuous and differentiable functions for I(T) and C.F(T) can
be obtained by approximating them with cubic spline, or another function, as for instance, the equations describing the GO kinetics.
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