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Abstract—This paper describes a framework for object segmentation
from sidescan sonar acoustic data. The current techniques consume a great
deal of computational resources to accurately carry out object segmen-
tation. They also involve the tuning of many parameters to obtain good
quality images. This is due to the handling of the large data volume gen-
erated by these devices and environmental fluctuations such as salinity,
density, temperature, and others variations. The framework proposed uses
a migration and adaptation of a technique widely used in radar technol-
ogy for detecting moving objects. This radar technique is known as order
statistic-constant false alarm rate (OS-CFAR) applied in 2-D. OS-CFAR
2-D rank orders the samples obtained from a sliding window to make a
segmentation of the image. This segmentation is done into several types
of regions: acoustic highlight, shadow, and different seafloor reverberation
areas. OS-CFAR 2-D is less sensitive than other methods to the presence
of the speckle noise due to the use of order statistics. This proposal was
contrasted experimentally on real images. Likewise, an experimental com-
parison with the results obtained with the undecimated discrete wavelet
transform, active contours, Markov random field, and accumulated cell
averaging CFAR applied in two dimensions technique is also presented.

Index Terms—Image segmentation, order statistic-constant false alarm
rate (OS-CFAR), sidescan sonar (SSS), sonar imagery.

I. INTRODUCTION

A COUSTICAL data may provide high-resolution images of un-
derwater areas, and they are particularly useful in waters with

low transparency for optical waves [1]. Hence, sonars are relevant
sensors for several practical applications, such as marine geology,
commercial fishing, underwater archeology, resources search, extrac-
tion and oil drilling, inspection and maintenance of pipelines, mine or
waste detection, and other types of monitoring [2], [3]. In this sense, a
sidescan sonar (SSS) is an effective tool for high-resolution mapping
of the seabed due to the maturity of its technology and an excellent
cost/quality tradeoff [2].

SSS uses linear arrays of transducers on the port and starboard sides,
emitting and receiving in phase with one to another, or in a controlled
phase relationship. Acquired data are projected on a line traced in the
across-track direction. This scanning line is called beam and each beam
value is known as bin, representing acoustic reverberation power. Thus,
an SSS acoustic image is achieved by placing a sequence of consecutive

Manuscript received July 5, 2016; revised December 16, 2016, May 22, 2017,
and June 17, 2017; accepted June 22, 2017. (Corresponding author: Sebastián
A. Villar.)

Associate Editor: A. Trucco.
The authors are with the Engineering Group INTELYMEC, Argentinean

National Research Council, National Buenos Aires Province Centre Univer-
sity, Olavarria 7400, Argentina (e-mail: svillar@fio.unicen.edu.ar; mariano.
depaula@fio.unicen.edu.ar; fjsolari@fio.unicen.edu.ar; gerardo.acosta@ieee.
org).

Digital Object Identifier 10.1109/JOE.2017.2721058

beams in along-track direction to describe the seafloor in 2-D. For
further details, refer to [2], [4], and [5].

These devices have been proved in deep waters with very satis-
factory results [3], [6]–[10]. However, they need an extra amount of
postprocessing of acoustical data to obtain a useful image. Typically,
in SSS high-resolution images, three types of regions are identified:
highlight, shadow, and seafloor reverberation areas [11]. Separation in
regions is a typical process known as segmentation and it is the bottle-
neck of the postprocessing computational effort. The implementation
of the segmentation process exploits the fact that the objects located
on the seafloor are more reflective than the surrounding sediment. The
acoustic highlight considerably varies according to the relative sonar
orientation with regards to the target. Likewise, objects, which stand
out above the seafloor, generate shadows. The shadow length depends
on the object’s upright height to the seafloor. Given that data collection
is performed from a moving vehicle, the sonar geometry to the target
is variable. Therefore, a shadow may be present even when acoustic
highlight is not. The seafloor reverberation area is complex because it
contains a noise known as speckle [1]. Generally, this noise is present in
all imaging systems with coherent illumination. Speckle noise renders
ineffective the segmentation schemes of the digital image processing
theory [12]. Thus, the ability to segment high-resolution acoustical
images in an efficient and robust way is essential for any practical
application.

Many approaches to acoustic image segmentation are currently avail-
able. They can be categorized as supervised or unsupervised. Su-
pervised algorithms use a classifier trained for region segmentation
[13]–[15]. On the other hand, unsupervised methods perform segmen-
tation through a direct analysis of the input image without any a priori
information. Considering both types of algorithms, we can mention
the following: Multifractal analysis [16], Markov random field (MRF)
[17], [18], local fourier histograms [19], active contours (AC) [20],
Gauss–Markov random field model [11], undecimated discrete wavelet
transform (UDWT) [1], [21], among others. These algorithms require
either a learning stage to automate their processes or computationally
expensive mathematics models to segment an image in a predefined
number of regions.

All of these approaches to segmentation vary in the final quality of
the acoustic image. This quality is related to features such as speed,
efficiency, resource requirements, accuracy, and robustness of the post-
processing algorithm. The quality can be quantified through a com-
parison with manual segmentation by an expert [1]. According to the
application, one feature is more important than other. For instance, in
the perception system of an autonomous underwater vehicle (AUV),
the online feature is prioritized. That is, speed and robustness are more
important than accuracy. There is always a tradeoff between accu-
racy and computer effort for these algorithms. In [4], an approach was
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Fig. 1. Generic architecture of the OS-CFAR 1-D process.

presented for such applications. However, when accuracy is needed in
applications such as seabed classification, a more complex, computer
effort demanding, algorithm is needed, and even further, classification
may need to be done over the final mosaic obtained from several im-
age [22]. In this direction, this paper proposes a framework for sonar
imagery acoustic segmentation that improves quality at the expense of
increasing a little bit the processing time. In this paper, we resort to
the techniques known as constant false alarm rate (CFAR) [23] with
regards to the noise power to make segmentation and then obtain the
detections.

The framework presented in this paper uses a technique known in
radar technology as rank-based or order statistics-constant false alarm
rate (OS-CFAR) applied in 2-D [24], [25]. It represents a detection
technique to obtain estimates of the signal to clutter ratio at each
range increment [25], [26]. This technique is less sensitive than other
CFAR methods to the presence of multiple targets and to nonhomoge-
neous clutter distributions in the reference window [27]. OS-CFAR
2-D applied in sonar technology reduces the speckle noise due to
the bins order to estimate the adaptive threshold. Furthermore, as it
will be demonstrated, OS-CFAR 2-D is able to perform an accurate
and robust acoustic segmentation through low computational resources
consumption and the need of a small set of a few parameters for its
application.

This paper is organized as follows. Section II discusses the basic con-
cepts about OS-CFAR 1-D radar target detection. Section III describes
the proposed framework for acoustic image segmentation adapting the
OS-CFAR 2-D technique. Section IV shows a comparison of this frame-
work with the results obtained from UDWT [1], AC [20], accumulated
cell averaging CFAR applied in two dimensions (ACA-CFAR 2-D)
[4], and MRF [17], [18] segmentation techniques. Finally, Section V
presents the conclusion.

II. RADAR TARGET DETECTION USING ORDER

STATISTICS-CONSTANT FALSE ALARM

RATE IN 1-D

The detection problem in radar technology consists of analyzing any
radar sample with the purpose of detecting the presence or absence of
a target. Detection is usually done through the contextual information
analysis of each sample. In [23], two hypotheses were defined for this
analysis: 1) the sample is the background (H0 ), and 2) the sample
is a combination of interference and echoes of a target (H1 ). If the
detection system decides that H0 is validated (target is not present),
then hypothesis H0 is stated. Otherwise, if the detection system decides

that H1 is validated, then hypothesis H1 is stated, meaning that the
target is present.

Fig. 1 shows a generic architecture of the OS-CFAR 1-D process
[23] applied on a row vector of 1 × Nc samples. Each cell contains an
interference power value β2 . This is a real positive quantity and this is
the reason why it is represented by the squared value β2 . The central
cell xi is called the cell under test and is examined in the detection
process. The total number of cells Nc around the cell under test xi

(including the cell under test) is calculated using

Nc = 2N + 1 (1)

where N represents the number of reference cells and 2N the total
number of neighboring cells.

OS-CFAR rank orders the interference power values
{x1 , x2 , . . . , xN c } to form a new sequence in ascending numer-
ical order denoted by {x(1) , x(2) , . . . , xN c }. The kth element of the
ordered list is called the kth-order statistic. In OS-CFAR, the kth value
is selected as representative of the interference level and threshold T̂
is set applying a multiplier or scale factor αO S

T̂ = αO S x(k ) . (2)

This multiplier αO S is a constant value determined from false
alarm probability Pf a . As OS-CFAR keeps on a constant false alarm
probability, the detection threshold of (2) only varies depending on x(k )

value. Therefore, this technique considers the contextual information
of each cell under test to determine an adaptive detection threshold.

In [28], it is indicated that if the noise is exponentially distributed,
then OS-CFAR does not depend on the interference power value β2 .
Besides, the alpha multiplier αO S is required to get the specified Pf a .
In [23], the notation is simplified to determine the Pf a from three
parameters (k, Nc , and αO S ) as follows:

Pf a = k

(
Nc

k

)
Γ (αO S + Nc − k + 1) Γ (k)

Γ (αO S + Nc + 1)
(3)

where Γ(·) is the gamma function. From (3), using integer values for
αO S and selecting gamma function Γ (n) = (n − 1) !, the false alarm
probability can be computed by

Pf a =
Nc ! (αO S + Nc − k)!

(Nc − k)! (αO S + Nc )!
[αO S integer] . (4)

As Nathanson et al. suggests in [29], the statistical order k1 for OS-
CFAR technique should be 0.75Nc or higher (0.833Nc or 0.875Nc

1Note that the statistical order k must be an integer value, and therefore, it
must be rounded to the nearest integer.
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Fig. 2. General framework for acoustical segmentation using OS-CFAR 2-D.

are also typical values to use [25]). In other words, the selected value
for the estimated threshold should exceed three quarters of the window
samples. Using (4), depending on only two variables (Nc and αO S ),
the following is obtained:

Pf a =
Nc ! (αO S + 0.25Nc )!
0.25Nc ! (αO S + Nc )!

[αO S integer] . (5)

III. FRAMEWORK FOR ACOUSTIC IMAGE SEGMENTATION

USING ORDER STATISTICS-CONSTANT FALSE

ALARM RATE IN 2-D

This section proposes a general framework that adapts and migrates
the basic OS-CFAR 1-D concepts in radar technology (see Section II)
to acoustical environment technology. To carry out this adaptation, dif-
ferent modifications are necessary. They will be explained as follows:
OS-CFAR technique extension to 2-D (see Section III-A); application
of efficient rank-order strategies to reduce computational resources
(see Section III-B); and extension to multiclass segmentation (see
Section III-C). In the acoustical domain, radar interference power is in-
terpreted as digitized acoustical reverberation power. For an acoustical
image I of size h × w (height × width), each digitized acoustical
reverberation power is represented with a relative cell value to a spa-
tial coordinate (i, j). Refer to Fig. 2, where the general framework
for acoustical segmentation using OS-CFAR 2-D is shown. Before
applying the acoustical segmentation process to an SSS image, it is
generally necessary to make some geometrical corrections (i.e., slant
range correction and anamorphosis) and radiometric correction (i.e.,
across-track and along-track correction) [2], [5], [30], [31]. The SSS
acoustic images are prone to have numerous perturbations, geometri-
cal and natural, which interfere in the segmentation process [9]. The
movement of sonar device affects the relative position of features in the
acoustic image and its true location in the seafloor. For instance, the
relative orientation of the pipeline and its real position is a fundamental
system requirement.

Fig. 3. Generic OS-CFAR windows for 1-D and 2-D, with N = 2 reference
cells. The total numbers of cells are Nc = 5 for 1-D and Nc = 25 for 2-D.

A. Order Statistics-Constant False Alarm Rate Extension
to 2-D

OS-CFAR extension to 2-D requires implementing a sliding window
or kernel that moves over the entire acoustical image. This sliding
window consists in a square matrix of size r × r and distance N to
the kernel center, (where N is the number of reference cells), as it is
introduced in [4], [23], and [32].

Fig. 2 shows a sliding window (dark gray cells) with its center in
the cell under test xi,j (light gray cell). The size of this kernel radius
is r = 5 (N = 2) and, therefore, it contain Nc = 25 cells. The
calculation of the total number of cells according to the reference cells
for each estimation is obtained as follows:

Nc = (2N + 1)2 . (6)

Fig. 3 compares two windows, one in 1-D and another in 2-D. In
this example, there are the same number of reference cells than that
in Fig. 2, providing a total of Nc = 5 for 1-D and Nc = 25 for
2-D, based on (1) and (6). The extension to 2-D offers more contextual
information to estimate the threshold T .
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Fig. 4. Relation between false alarm probability (Pf a ) and alpha multiplier (αO S ).

Note that the size of the sliding window depends on the specific
problem to solve and on the acoustical image resolution provided by
the acoustical device. This represents a tradeoff situation between a
desired result and the processing time.

B. Application of Efficient Rank-Order Strategies

OS-CFAR 2-D implementation requires applying a rank order to
the Nc digitized samples for each cell under test xi,j to estimate the
threshold T (see Fig. 2). This sorting process involves high computa-
tional resources, being the bottleneck of the OS-CFAR 2-D method.
There are different sorting methods [33], which generally vary in al-
gorithmic complexity per cell under test. For instance, the bubble sort
method complexity for worst-case performance is quadratic O(Nc

2 )
per cell under test (where Nc is the total number of cells being
sorted), thereby OS-CFAR 2-D algorithmic complexity is the same.
Note that the complexity is computed per cell under test [however,
if the bubble sort method was applied to an image of, e.g., h × w
(height × width), it can be shown that its global complexity would be
in fact of O(h × w × Nc

2 )].
An efficient sorting alternative is utilized the Huang classic method

[34]. This method is commonly used to calculate the statistical median
(k = 0.5Nc order statistic) to remove different types of noise [35],
[36]. In this work, the Huang method is applied using a different order
statistics k = 0.75Nc or higher [29]. Note that this efficient alternative
presents an O(r) algorithmic complexity per cell (where r is the sliding
windows radius).

The Huang method uses a partial kernel histogram Hp of size 1 ×
b, where b denotes the image bit-depth (with b = 2image bit−depth, the
number of scale levels), e.g., for a 8 bits cells, the variable b has a
256 size. The partial kernel histogram stores frequencies f1 , . . . , fb of
repeatability of acoustic reverberation power values from the current
window (see Fig. 2). The histogram Hp contains all neighboring cells

values centered in the cell under test xi,j (dark gray cells). The sliding
window has a size of Nc = 25 (N = 2); therefore, the histogram
contains 25 values in total.

The order statistic x(k ) is computed by mean of accumulating his-
togram frequencies from 0 to b and stopping when the cumulative sum
is reached. In this paper, the cumulative sum must exceed 0.75Nc .
Note that other quintile or percentile can be calculated in the same way
modifying this cumulative sum.

Huang method’s efficiency is achieved because only a part of the
histogram Hp is modified when the sliding window displaces. Fig. 2
shows an example where the window center shifts one pixel to the
right, e.g., from xi,j to xi,j+1 . Then updating Hp requires remov-
ing those values from xi−2 ,j−2 , . . . , xi+2 ,j−2 and adding them to
xi−2 ,j+2 , . . . , xi+2 ,j+2 . Thus, 2N + 1 removals and 2N + 1 addi-
tions need to be carried out to update the kernel histogram. In this way,
histogram Hp is updated to calculate the new statistic order x(k ) for
the new cell under test xi,j+1 used to estimate the threshold T . Thus,
the method’s algorithmic complexity per under test cell is O(r).

To estimate the threshold T, it is also necessary to compute αO S .
This may be done resorting to (3) or to (4). It was decided to use
this approach to obtain αO S from Pf a , Nc , and k using a linear
interpolation of the integer values of (4), once the Pf a was selected,
according to the segmentation performance obtained. This approach
is depicted in Fig. 4, taking, as an example, three different sliding
windows choices with Nc : 9 (red line), 49 (blue line), and 121 (green
line). Likewise, the statistics order k utilized for 0.75Nc is 6, 36, and 90,
respectively. The red dot shows a Pf a = 0.02, Nc = 121 (N = 5)
cells, and order statistics k = 90, the alpha multiplier value will shed a
αO S = 2.98.

Note that if the Pf a decreases, then αO S increases, and therefore,
threshold T will be amplified, increasing the separation among different
types of region and the noise filtering feature. On the other hand, if Pf a

increases, then αO S decreases and threshold T will be attenuated.
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C. Multiclass Segmentation

In the standard OS-CFAR version (see Section II), the estimated
detection threshold is compared with the cell under test to determine
whether the target is present or not. In the proposed framework, it is
the estimated detection threshold that is used to segment the predefined
types of regions (see Fig. 2). This provides a filtered cell value decreas-
ing speckle noise, as it has been experimentally demonstrated. Thereby,
this output T is compared to the limits Lc 1 , . . . , Lcn −1 to segment a
finite group of n regions c1 , . . . , cn . According to the literature, in
acoustical imagery, segmentation can be binary or ternary. When it
is binary, it distinguishes two classes of regions: acoustic highlight
(c1 ) and seafloor (c2 ). When it is ternary, it distinguishes a third class
known as acoustic shadow (c3 ). Anyways, the proposed framework can
be extended to the segmentation of n regions.

In the first step to estimate the segmentation limits, it is needed to
calculate a global histogram Hg (size 1 × b, where b denotes the image
bit depth) with frequencies f1 , . . . , fb of repeatability of the acoustical
reverberation power values. This global histogram Hg represents a
global description of the acoustical image, offering useful information
to determine separation limits. Even when these limits Lc 1 , . . . , Lcn −1

can be used to segment directly the acoustical image under study, the
final result will be an image of a very low quality or directly wrong. For
this reason, limits Lc 1 , . . . , Lcn −1 and the estimated threshold T are
combined to determine which region c1 , . . . , cn contains the cell under
test xi,j . An estimator L̂c is needed to obtain these limits. As it may be
seen in Fig. 2, its inputs are the global histogram Hg and the different
percentages %p1 , . . . , %pn−1 . These percentages %p1 , . . . , %pn−1

are constant values representing an overall proportion of types of re-
gions c1 , . . . , cn . They are established a priori from the observation
of the global histogram, and this is why we called them region class
percentages, depending on the acoustical data acquired by a particular
sonar device features.

Fig. 5 shows in detail the pseudocode of the general framework
for acoustical segmentation using OS-CFAR 2-D. This pseudocode
contains all modifications to use OS-CFAR technique in the acoustic
environment. The internal functions determine_limits Lc 1 , . . . , Lcn −1

(see line 2 in Fig. 5), initialize Hp (see line 5 in Fig. 5), calcu-
late_statistic_order xk (see line 14 in Fig. 5), and calculate_alpha αO S

(see line 15 in Fig. 5) are described in the appendix.
The pseudocode input parameters are (see Fig. 5) acoustic image

I of size h × w reference cells N and false alarm probability Pf a .
The output represents a synthetic image O of size h × w that con-
tains the segmentation of input image I . Besides, the pseudocode has
different set constants: region classes c1 , . . . , cn and global percent-
ages %p1 , . . . , %pn−1 constant statistic order k used, and the image bit
depth b of the digitized acoustical reverberation power. Finally, differ-
ent auxiliary variables are needed for storage as: segmentation limits
Lc 1 , . . . , Lcn −1 , partial kernel histogram Hp of size b × 1, auxiliary
v representing the digitized acoustical reverberation power for each
position in image I , total number cells Nc , and value x(k ) . A set of
basic steps can then be distinguished in the pseudocode process.

1) Determine_Limits Lc1 , . . . , Lcn −1 : This function is in
charge of estimating the segmentation limits Lc 1 , . . . , Lcn −1 from a
global histogram Hg (see line 2 in Fig. 5). The pseudocode of this
function is detailed in the appendix.

2) Create Histogram Hp : In this step, the data structure to store
the partial kernel histogram Hp (see line 3 in Fig. 5) is created and the
memory needed for an array of size b × 1 is reserved, where b denotes
the image bit depth.

3) Initialize Histogram Hp : This function gives partial kernel
histogram Hp its initial values (see line 5 in Fig. 5), an action that must

Fig. 5. Pseudocode of the general framework for acoustical segmentation
using OS-CFAR 2-D.

be repeated for every row. The pseudocode of this function is detailed
in the appendix. It can be further split into two substeps: 1) The kernel
histogram Hp is initialized with zero values; 2) for every row, the
window centered at the first pixel is initialized with the appropriate
image values.

4) Update Histogram Hp : The kernel histogram Hp is updated
while sliding through the image (see lines 7–12 in Fig. 5). The updating
Hp requires to remove 2N + 1 values from the left column and to
add 2N + 1 values from the right column. This step is detailed in
Section III-B.

5) Calculate Number Cells Nc : The number of cells Nc de-
pends on the number of reference cells N when the sliding window
limits are within the limits of image I . In this case, the calculation
leads to the equation (2N + 1)2 (see line 13 in Fig. 5). On the other
hand, when the sliding window limits are out of the limits of image I ,
the calculation also depends on the current position in the image (row
and col). For further details in this calculation, refer to [4].

6) Calculate_Statistic_Order x(k): The x(k ) value is computed
from the updated partial kernel histogram Hp by accumulating frequen-
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Fig. 6. Reference images to apply different approaches: (a) input sonar image and (b) manual segmentation by an expert.

cies from one extreme and stopping when this cumulative sum reaches
the order statistics k (see line 14 in Fig. 5). The pseudocode of this
function is detailed in the appendix.

7) Calculate_Alpha αOS : This function calculates and extends
alpha multiplier αO S to real values using linear interpolation (see line
15 in Fig. 5). This step depends on false alarm probability Pf a , the
number cells Nc , and order statistic k. The pseudocode of this function
is detailed in the appendix.

8) Calculate Filtered Cell Value: The filtered cell value is cal-
culated multiplying the value x(k ) by alpha multiplier αO S (see line
16 in Fig. 5).

9) To Segment in c1 , . . . , cn Regions: The filtered cell value
is compared to the limits Lc 1 , . . . , Lcn −1 to segment a finite group of
n regions c1 , . . . , cn (see lines 17–24 in Fig. 5). Therefore, each pixel
of output synthetic image O contains a class region.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

This proposed framework for acoustical segmentation using OS-
CFAR 2-D was developed originally with MATLAB and then it was
ported to code written in C++, taking advantage of the data struc-
ture within OpenCV 2.3 [37]. The programming environment (IDE)
was Nokia QtCreator for GNU/Linux implementation code C++. The
framework was executed on a PC with a CPU 2.4 GHz Intel Core
i7-3630, and 8-GB RAM memory, with Ubuntu 14.04 LTS (32 bits)
operating system. This section describes three experiments: 1) quan-
titative and performance analyses comparing the proposed framework
with AC, UDWT, MRF, ACA-CFAR 2-D methods; 2) qualitative analy-
sis for pipeline detection; and 3) qualitative analysis for seafloor object
detection.

A. Quantitative and Performance Analysis

Different sonar images from several websites [38], [39] were selected
to perform a quantitative and performance comparison among different
segmentation approaches. These websites contain acoustic image gal-
leries for testing (see Fig. 6). The original images are shown in Fig. 6(a),
while the manual segmentation by an expert of these images is shown in
Fig. 6(b). The comparison (see Fig. 7 and Table I) is performed among
the proposed framework [see Fig. 7(e)] and the following methods: AC

[see Fig. 7(a)], UDWT [see Fig. 7(b)], ACA-CFAR 2-D [see Fig. 7(c)],
and MRF [see Fig. 7(d)].

For this first experiment, a binary segmentation process is applied,
which consists of separating acoustic highlight regions from the rest of
the image. Three images were selected. They represent: sand waves for
seafloor analysis [see Figs. 6(1) and 7(1)]; a school of fish for biological
observation [see Figs. 6(2) and 7(2)]; and a sunken ship for underwater
archaeology studies [see Figs. 6(3) and 7(3)]. These acoustical images
were taken using an SSS device with a frequency of 600 kHz. The size
of every image for these experiments was of 256 × 256 (h × w) in a
grayscale with a b image bit-depth per sample of 8 bits.

Results of the segmentation process are generally subjective and
depend on its particular application. There is not a standard method
to objectively compare the results obtained by different segmenta-
tion methods [40]. For this reason, this evaluation and comparison is
performed using the manual segmentation by an expert provided by
Celik and Tjahjadi [1] [see Fig. 6(b)]. The build process was per-
formed manually, separating the studied objects on each image. How-
ever, a real ground truthing operation (direct observation) was not
carried out.

Two quantitative measures are used to compare the different meth-
ods: 1) the proportion ρ of segmented images and 2) runtime in seconds.
The measure ρ is employed for comparing the segmentation map (SM)
with the manual segmentation by an expert (SMGT):

ρ = 1 −
∑Sw

i=1

∑Sa
j=1 ∅ (SMGT (i, j) , SM (i, j))

h × w
(7)

where h and w represent the rows and columns number of acoustic
image, respectively. Here, ∅ (a, b) = 1 when a = b, and ∅ (a, b) = 0
when a �= b. When SM and SMGT are the same, then ρ is 1, and ρ
approaches 0 when the dissimilarity between SM and SMGT increases.

Results obtained through the proposed framework were achieved
setting the parameters for images (1) and (2) with Pf a = 0.01 and
N = 5 offering the segmentation limits Lhighlight = 453 and 183,
respectively, and for image (3), a Pf a = 0.02 and N = 5 offering a
segmentation limit Lhighlight = 269.

Table I shows that the ACA-CFAR 2-D approach is more efficient
in runtime than the other approaches. Furthermore, as concluded in
[4], ACA-CFAR 2-D is a robust method to reduce the speckle noise
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Fig. 7. Seafloor segmentation using the approaches: (a) AC; (b) UDWT; (c) ACA-CFAR 2-D; (d) MRF; and (e) proposed framework with OS-CFAR 2-D.

TABLE I
PERFORMANCE AND RUNTIME RESULTS OF DIFFERENT APPROACHES

Fig. 7.1 7.2 7.3

7(a) AC ρ 97.77 87.52 84.69
t[s] 309.18 288.92 322.78

7(b) UDWT ρ 98.64 92.94 92.80
t[s] 2.15 2.33 2.22

7(c) ACA-CFAR 2-D ρ 82.08 80.50 85.57
t[s] 0.142 0.148 0.15

7(d) MRF ρ 84.08 73.59 72.59
t[s] 4.76 2.65 4.28

7(e) OS-CFAR 2-D ρ 98.68 91.02 93.09
t[s] 2.17 2.34 2.25

and its implementation is extremely simple. These features make it
especially interesting to be used in the perception system of an aquatic
robot such as an autonomous underwater or an autonomous surface
vehicle, which must make decisions in real time to provide efficient
feedback to a dynamic mission replanner or an adaptive control of the
robot, based on data acquired from sonar. On the other hand, the pro-
posed framework and the UDWT approach performed a more precise
segmentation than ACA-CFAR 2-D and AC with a similar runtime.
Both approaches can be used for tasks that require precise results, such
as seabed classification, marine geology, and underwater archaeology,
among others. The MRF method required 9 iterations, distance N = 2
to the kernel center (neighborhood level), and 20% of highlight areas
for the first initialization (these values have a significant impact on the
rapidity of the convergence and on the quality of the final estimates
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[17], [18]) to reach an optimum for the images in Fig. 7(1), (2), and (3),
respectively. Its performance was the worse in this set of experiments
with our parametrization.

The proposed framework using OS-CFAR 2-D presented the best
performance regarding the measure ρ for Fig. 7(1) and (3) of Table I.
An additional advantage of OS-CFAR 2-D was its simple implementa-
tion. This is because it does not require complex chain processes, such
as the nested process of UDWT (wavelet transform, inter- and intrares-
olution implementation, principal component analysis, clustering, and
among others), or the recursive iterations of MRF (which are unknown
beforehand).

Even though we based our comparative analysis on the measure ρ
proposed in [1], it may be argued that it is somehow subjective to eval-
uate each approach. It may be interesting to complement this analysis
with an algorithmic complexity evaluation. In this sense, ACA-CFAR
2-D [4] exhibits an algorithmic complexity of O(h × w). When the
image is square, complexity is then quadratic. The OS-CFAR 2-D al-
gorithmic complexity depends on the sort method. In this paper, we used
Huang’s method [34], whose algorithmic complexity is O(h × w × r),
where r is the radius size of the sliding window.

B. Qualitative Analysis for Pipeline Detection

The first test of the framework proposed for pipe detection was per-
formed using SSS images acquired in surveys in Salvador de Bahı́a,
Brazil. For these surveys, an SSS Starfish 450F device (with chirped
signal [430 kHz, 470 kHz]) of the Tritech company, Westhill, U.K.,
was used. The maximum range established was 50 m. The sonar was
mounted on the hull (bow) of the boat survey using stainless steel
support. The boat followed a pipeline, which was situated about 18
m in depth. The maximum range of the sonar was configured to stay
between three or four times higher than the water depth. SSS sounding
beams were run perpendicular to the line track of the boat. Data were
acquired at 30° from nadir on both port and starboard side of the SSS.
Also, the azimuthal angle was 1.7°. In these sonar images, the pipeline
exhibits stronger backscattering than the seabed. Moreover, the sonar
shadow formed after the pipeline is a very useful marker for this type
of objects. The boat speed was less than 4.5 m/s for depths between
5 and 20 m and it was reduced to 1.5 or 2 m/s in deeper waters (>20
m), according the best practices of National Oceanic and Atmospheric
Administration. This allowed us to have correct coverage from adjoin-
ing sonar acoustic beams in the form of SSS grayscale images. These
images were saved in a binary map file format with 8 bits per pixel,
i.e., pixel gray levels were between 0 and 255. In this experiment, the
only possible geometrical corrections were slant-range correction and
sound-speed correction that described in [9]. As we did not have any
available inertial navigation unit during data collection, corrections to
avoid roll, pitch, and yaw effects over the image could not be done.
However, as this experimental evidence supports it, segmentation and
then detection of the pipelines could be successfully done. This im-
plies that the proposed methodology is robust enough to face practical
applications.

The pipeline tracking was done in two sections: the first
one was initiated at latitude −12◦51′ 19.5′′ S and longitude
−38◦32′ 23.03′′ W, and concluded at latitude −12◦52′ 23.28′′ S and
longitude −38◦33′ 48.48′′ W. About 50 500 beams of valid acous-
tic data were collected, yielding 101 images at 1000 × 500 pix-
els for testing the algorithms. The second section, started at latitude
−12◦53′ 33.04′′ S and longitude −38◦33′ 48.14′′ W, and concluded at
latitude −12◦52′ 16.1′′ S and longitude −38◦31′ 37.14′′ W, collecting
47 000 beams of acoustic data totaling 94 images of the same size the
ones obtained for the first test stage.

Fig. 8 shows examples of SSS images (a) without further processing
and the (b) results of having applied the proposed framework. The
pipeline deployed on the seafloor is observed. Besides, these images
have been cropped for better presentation.

Results obtained applying the proposed framework were achieved by
setting the parameters for all images with Pf a = 0.04, N = 3, and the
segmentation limits Lhighlight = 295 for Fig. 8(1)–(3) and Lhighlight =
290 for Fig. 8(4). Pf a was selected as lower as possible to avoid false
alarms, N was selected according to the image resolution; in this case,
it was a good tradeoff to select N = 3. Finally, the limits Lhighlight

were selected in a trial-and-error sketch.
The pipelines in Fig. 8(1) and (3) were acquired from the right

channel of the SSS device (starboard). On the other hand, the pipelines
in Fig. 8(2) and (4) were acquired from the left channel (port). In
Fig. 8(1)–(3), the pipeline is slightly curved and a lot of sediment
has been accumulated which may have produced false detections. In
Fig. 8(4), a straight and well-defined pipeline can be observed.

Based on navigation data, pipeline lies 20 m deep from the SSS
acoustic device. At this depth, the shadow near the pipeline is not
completely defined, and for this reason binary segmentation has to be
performed (acoustic highlight and seafloor reverberation areas).

Segmentation results provided by this framework illustrate that
pipeline objects detected show small gaps. This is due to the move-
ment of the vehicle carrying the sonar device. Moreover, Fig. 8(2)–(4)
shows small objects that could represent stones on the seafloor. One
way to confirm this would be through direct observation in the detection
point (latitude and longitude) where the object is located.

The second test of the proposed framework was carried out using
SSS images acquired through an AUV (see Figs. 9–11). The AUV
sailed to a depth of 5 m above the seafloor with a speed of 2 m/s. An
Edgetech company, Ada, OK, SSS device was used for this test, also
with a chirped signal.

Figs. 9 and 10 show a segmentation of three classes: highlight (white
color), shadow (black color), and seafloor reverberation areas (gray
color). The results obtained for Fig. 9 through the proposed framework
were achieved setting the parameters with Pf a = 0.04, N = 2, and
segmentation limits Lshadow = 20 and Lhighlight = 550. Note that the
values lower than 20 are considered as shadows, the values lower than
550 and greater or equal than 20 are considered as seafloor reverberation
area, and values greater or equal than 550 are considered as highlight
area.

Consider the underwater pipelines deployed on seafloor shown in
Fig. 9. These presented images have been cropped for better presen-
tation. Each image shows precisely a pipeline and its corresponding
shadow. For all images, the pipelines were acquired from the right
channel of the SSS device (starboard). In addition, useful inspection
features can be observed: free span, rock dump, and reflective objects on
the seafloor. The free span feature can be clearly observed in Fig. 9(2)
where the shadow close to the pipeline is not completely defined. In
other words, a seafloor acoustic reverberation area is between pipeline
and shadow. From this feature, it can be inferred that the pipeline is not
deployed on the seafloor and could collapse causing economic and en-
vironmental disaster. The most common method to solve this problem
is known as rock dumping. This feature is observed in Fig. 9(1) and (2)
where the pipeline is wider. Usually, rock dumping has to be examined
to ensure stability.

Fig. 10 shows six images: (a) original image of a pipeline within a
trench, acquired through the SSS Edgetech acoustic device; (b) original
image plotted in 3-D (along track, across track, and backscattering),
with SSS inherent speckle noise; (c) and (d) output detection threshold
surface plotted in 2-D (along track, across track) and 3-D (along track,
across track, and threshold), respectively, calculated according to the
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Fig. 8. Sonar image for pipes detection on seafloor (Starfish 450F device): (a) images without processing; (b) segmented images using our proposed framework
with OS-CFAR 2-D.

Fig. 9. Sonar image for pipes detection on seafloor (Edgetech device): (a) and (c) input sonar image; (b) and (d) segmented image using proposed framework
with OS-CFAR 2-D.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL OF OCEANIC ENGINEERING

Fig. 10. Sonar image for pipes detection on seafloor (Edgetech device): (a) sonar image yielded by the SSS; (b) the original image of (a) plotted in 3-D where
the speckle noise can be better appreciated; (c) output detection threshold plotted in 2-D after applying the OS-CFAR 2-D; (d) output detection threshold surface
plotted in 3-D after applying the OS-CFAR 2-D; (e) segmented image using our proposed framework with OS-CFAR 2-D; and (f) segmented image plotted in 3-D
using our proposed framework with OS-CFAR 2-D.

proposed framework; (e) segmentation process results using the pro-
posed framework with setting the parameters Pf a = 0.04, N = 2,
Lshadow = 20 and Lhighlight = 550; and (f) segmented image plotted in
3-D (along track, across track, and segmentation value set) using our
proposed framework with OS–CFAR 2-D. The particular feature of the
pipeline within a trench is determined because the acoustic shadow
lies on both sides of the pipeline. The effective detection is done in
Fig. 10(e). Note also in Fig. 10(d) that the filtered surface is decreasing
the original speckle noise of the image. This noise is reduced due to
the use of OS-CFAR 2-D approach.

Fig. 11 shows a generalization to the segmentation in n classes,
with n = 4. This segmentation allows us to separate among four
classes: highlight (white color), shadow (black color), strong seafloor
reverberation (light gray color), and lower seafloor reverberation areas
(dark gray color). The results obtained for Fig. 11 by means of the
proposed framework were achieved setting the parameters as Pf a =
0.04, N = 2, Lshadow = 20, Lreverberation = 150, and Lhighlight = 550.
Note that the values less than 20 are considered as shadows, the values
between less than 150 and greater or equal than 20 are considered

Fig. 11. Sonar image for pipes detection on seafloor (Edgetech device): (a)
input sonar image; (b) segmented image using proposed framework with OS-
CFAR 2-D.
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Fig. 12. Sonar image of different seefloor objects: (1) lobster traps; (2) sunken ship; and (3) sunken airplane. (a) Input sonar image and (b) segmented image
using proposed framework with OS-CFAR 2-D.

as lower seafloor reverberation area, the values smaller than 550 and
greater or equal than 150 are considered as strong seafloor reverberation
area, and the values greater or equal than 550 are considered highlight
area.

C. Qualitative Analysis for Seafloor Object Detection

Fig. 12 shows three examples of different issues using the proposed
framework. Fig. 12(1) shows the detection of small lobster cages de-
ployed on the seafloor. This image was selected from website [41]
and it was acquired by a Klein System 3900 SSS acoustic device.
These small lobsters cages are effectively detected through the pro-
posed framework. The parameters used for this binary segmentation
are Pf a = 0.04, N = 2, and Lhighlight = 470.

Fig. 12(2) shows a detection of a sunken ship located on Lake
Washington. The image was acquired by Marine Sonic Technology,
Yorktown, VA, at a frequency of 600 kHz and at a maximum range of
50 m [38]. Similarly, Fig. 12(3) shows an image of a sunken plane (Con-
solidated PB4Y2 Privateer) acquired for the same company. This image
was taken at a frequency of 600 kHz at a maximum range of 20 m. These
images are of special interest particularly for rescue or archaeological
studies. The results obtained for Fig. 12(2), (3) were achieved setting the
parameters with Pf a = 0.02, N = 4, Lshadow = 140, Lhighlight = 400
and with Pf a = 0.04, N = 3, Lshadow = 10, Lhighlight = 300,
respectively.

A summary of the selected parameters for every segmentation ob-
tained from experimental data (see Figs. 7–12) is given in Table II. Nc

and αO S are indirect parameters computed from the remaining ones.
The probability of false alarm Pf a and the number of reference cells
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TABLE II
SUMMARY TABLE OF PARAMETERS USED

Fig. Pfa N Nc k αOS

7(1) 0.01 5 121 90 3669
7(2)
7(3) 0.02 2986
8(1) 0.04 3 49 36 2.948
8(2)
8(3)
8(4)
9(1) 2 25 18
9(2)
10
11
12(1)
12(2) 0.02 4 81 60 2986
12(3) 0.04 3 49 36 2.948

(N ) were chosen from a trial-and-error sketch based on the detection
and segmentation performances.

V. CONCLUSION

This paper presented a general framework for segmenting images
obtained through different SSS acoustic devices. The framework was
experimentally and successfully tested to separate up to four classes
(n = 4). Its application was demonstrated through different tests that
focused on current problems. OS-CFAR represents one of the most used
techniques in radar technology for moving object detection in real time.
This paper provides another proof about the utility of shifting radar
technology to sonar technology. It also provides a sound experimental
comparison between OS-CFAR 2-D as a segmentation technique on
one side and other methods such as UDTW, AC, MRF, and ACA-
CFAR 2-D on the other side. This allows stating the robustness of
OS-CFAR 2-D regarding its accuracy and ability to separate among n
classes. Therefore, it may be concluded that it is a useful technique
for soil taxonomy, underwater archeology, and dock works among
other applications. In addition, this approach has several advantages.
For instance, it needs few parameters to be set: reference cells, false
alarm probability, and region class percentages. They were tuned from
a previous analysis of the acoustical image obtained by the particular
sonar, as explained in previous paragraphs. Another benefit is that OS-
CFAR 2-D is easy to implement. Its computational complexity only
depends on the mean sorting method.

Finally, the runtime comparison that was proposed in [1] is some-
how subjective, in our opinion, to evaluate each approach. Instead, it
would be more precise if complemented with an algorithmic complex-
ity evaluation. For instance, ACA-CFAR 2-D [4] exhibits an algorith-
mic complexity of O(h × w). When the image is square, complexity
is quadratic. The OS-CFAR 2-D algorithmic complexity depends on
the sort method. In this paper, we used Huang’s method [34], whose
algorithmic complexity is O(h × w × r), where r is the radius size of
the sliding window.

APPENDIX

This appendix contains the internal functions that implement the
pseudocode of general framework for acoustical segmentation using
OS-CFAR 2-D. Among them are: determine_limits Lc 1 , . . . , Lcn −1

(see Fig. I1), Initialize Hp (see Fig. I2), calculate_statistic_order value
x(k ) (see Fig. I3), and calculate_alpha αO S (see Fig. I4).

A. Determine_Limits Lc1 , . . . , Lcn−1

Fig. I1. Pseudocode for determine_limits Lc 1 , . . . , Lcn −1 .

B. Initialize Hp

Fig. I2. Pseudocode for initialize Hp .
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C. Calculate_Statistic_Order x(k)

Fig. I3. Pseudocode for calculate_statistic_order value xk .

D. Calculate_Alpha αOS

Fig. I4. Pseudocode for calculate_alpha αO S .
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