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We consider here the effects of inertia on the instability of a flat liquid film under
the effects of capillary and intermolecular forces (van der Waals interaction). Firstly,
we perform a linear stability analysis within the long-wave approximation, which
shows that the inclusion of inertia does not produce new regions of instability other
than the one previously known from the usual lubrication case. The wavelength, λm,
corresponding to the maximum growth, ωm and the critical (marginal) wavelength
do not change. The most affected feature of the instability under an increase of the
Laplace number is the noticeable decrease of the growth rates of the unstable modes.
In order to put in evidence the effects of the bidimensional aspects of the flow
(neglected in the long-wave approximation), we also calculate the dispersion relation
of the instability from the linearized version of the complete Navier–Stokes (N–S)
equations. Unlike the long-wave approximation, the bidimensional model shows that
λm can vary significantly with inertia when the aspect ratio of the film is not
sufficiently small. We also perform numerical simulations of the nonlinear N–S
equations and analyse to which extent the linear predictions can be applied depending
on both the amount of inertia involved and the aspect ratio of the film.

Key words: interfacial flows (free surface), lubrication theory, micro-/nano-fluid dynamics

1. Introduction
The stability of thin films on substrates has been for a long time a basic

subject of research, not only because of the numerous technological applications,
including coatings, adhesives, lubricants and dielectric layers, but also because of
their fundamental interest (Eggers 1997; Oron, Davis & Bankoff 1997; Craster &
Matar 2009). The dewetting of thin liquid films is the process of destabilization of
such films which leads to the formation of drops. It is generally observed when the
supported liquid film is placed on a substrate under partial wetting conditions, and
subject to destabilizing intermolecular forces. For a homogeneous isotropic liquid on
a uniform solid substrate, two main dewetting processes are known: (i) the nucleation
of holes at defects or dust particles (Bischof et al. 1996; Xie et al. 1998), and
(ii) the amplification of perturbations at the free surface (e.g. capillary waves) under
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the destabilizing effect of long-range intermolecular forces in so-called spinodal
dewetting (Thiele, Mertig & Pompe 1998; Thiele, Velarde & Neuffer 2001; Thiele
2003). In the latter case, thermal fluctuations induce perturbations in the film thickness,
which then grow exponentially with time, leading to dewetting when the amplitude
reaches the size of the film thickness. For this mechanism, the term ‘spinodal
dewetting’ has been coined in analogy to the symmetry breaking mechanism involved
in decomposition processes (Cahn 1965; Mitlin 1993). Although the distinction
between these two dewetting processes is well established in the literature, there is
still a lot of debate about which of these mechanisms is actually observed in a given
experiment (Jacobs & Herminghaus 1998; Seemann et al. 2005).

In this context, lubrication approximations to the full Navier–Stokes (N–S) equations
have shown to be extremely useful for investigating the dynamics and instability of
thin liquid films on substrates, including the motion and instabilities of their contact
lines (Oron et al. 1997; Zhang & Lister 1999). The theoretical treatment of the
coating problem is greatly simplified if the film is so thin that the lubrication
approximation can be employed. When this modelling is valid, it is possible to
determine the velocity field of the liquid as a function of the film thickness, and the
problem reduces to the solution of a nonlinear evolution equation for the thickness
profile of the film. To leading order, at low speeds, the dynamics is controlled by a
balance among capillarity, viscosity and intermolecular forces, without inertia playing
a role. This approach has achieved considerable success in dealing with the solution
of this class of problems (Colinet et al. 2007). In other contexts, such as that of
sliding bearings, the effects of inertia within the lubrication approximation has also
been studied (see e.g. Hori 2006; Szeri 2011).

However, in some applications such as the dewetting of nano-scale thin metallic
films on hydrophobic substrates (González et al. 2013), the effects related to inertia
and the shortcomings of the lubrication approximation assumptions (requiring small
slopes and consequently small contact angles) may have an influence on the dynamics
and morphology of the film. For example, the effects of inertia in the context of
metallic films has recently been considered by Fowlkes et al. (2014) when analysing
instability development and the formation of satellite droplets. One of the goals
of this paper is to shed some light on the possible differences expected between
existing theories and experiments, which could eventually be attributed to inertial
effects, among others. Thus, we aim to give a quantitative answer to this issue by
considering in detail how measured parameters, such as the characteristic distance of
the drop pattern (i.e. average separation between drops) and characteristic times (i.e.
growth rates), are modified by the natural inertia of the flow (usually neglected).

Experimental studies of unstable thin films coating solids have shown significant
differences in the patterns that develop when fluid instabilities lead to the formation
of growing ‘dry regions’ on the solid. The effects of inertia on the instability have
been studied previously in other problems, for example for a film flowing down an
incline (Lopez, Miksis & Bankoff 1997), the breakup of a liquid filament sitting on a
substrate (Ubal et al. 2014) and several other configurations (Hocking & Davis 2002).
However, these problems do not include explicitly the effects of the intermolecular
interactions between the molecules of the liquid and those of the solid. Here, we
consider these by using integrated Lennard-Jones forces, which lead to the disjoining
pressure that entails the power dependence on the fluid thickness (Kargupta, Sharma
& Khanna 2004). In the present context, the occurrence and nature of both inertia and
bidimensional effects in the liquid film on the solid substrate is of interest, not only
for fundamental research, but also for technological applications.
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FIGURE 1. (Colour online) Schematic diagram of the problem.

The solutions of problems under the lubrication approximation is usually limited to
speeds low enough to give small capillary and Reynolds numbers. The extension of
the theory to higher speeds introduces inertia into the problem, and, even in the case
of thin films, the analysis may become much more difficult. The great simplification
previously found by the application of the lubrication theory no longer exists; instead,
the system is governed by the coupling of a nonlinear partial differential equation for
the velocity field, and an evolution equation for the thickness profile. It is possible,
however, to find a class of problems in which inertial effects can be assessed within
the long-wave framework. In this work we are concerned with the instability of a flat
liquid film extended over a solid plane, and subject to intermolecular forces between
the liquid and the solid substrate. Then, the film evolution is studied by considering
viscous, surface tension and intermolecular forces, with special emphasis on the effects
of inertia in the development of the instability.

2. Intermolecular forces in the hydrodynamic description
We consider a thin liquid film of thickness h0, which spans infinitely in the

x-direction (the system is invariant in the y-direction, i.e. plane flow conditions
prevail), and rests on a solid plane at z = 0 (see figure 1). Here, we will consider
the instability of this initially flat film under the action of surface tension and
intermolecular forces, both acting at the free surface of the film of instantaneous
thickness h(x, t). Thus, the hydrodynamic evolution is governed by the N–S equations
and the incompressibility condition,

ρ(∂tv + v · ∇v)=−∇p+µ1v, ∇ · v = 0, (2.1a,b)

where ρ is the liquid density, µ its viscosity, p the pressure and v= (u,w) the velocity
field. At the substrate (z= 0), we apply the no slip and non-penetration conditions. At
the free surface, z= h(x, t), we have the usual kinematic condition and normal stress
equilibrium given by

p=−Π − γC , (2.2)

where γ is the surface tension, C the curvature of the surface and

Π(h)= κf (h)= κ
[(

h∗
h

)n

−
(

h∗
h

)m]
, (2.3)

is the disjoining pressure. Here, κ is a constant with units of pressure (related
to the Hamaker constant of the system), the exponents satisfy n > m > 0 and h∗
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is the equilibrium thickness (of the order of nanometres). This surface force is a
consequence of the interaction among the molecules in the three phases present in
the problem, namely the liquid of the film, the solid substrate and the surrounding
gas. Note that at equilibrium, i.e. when h = h0 = const., the film has a uniform
pressure p0 =−Π(h0) > 0, since Π(h0) < 0 for h0 > h∗.

Typically, the effects of this driving force is studied within a simplified version of
the N–S equations, namely the long-wave approximation with inertial terms neglected.
Here, we describe the instability under this approach, but including also inertial effects
(§ 3). Since this approximation requires very small values of the ratio, ε= h0/`, where
` is a typical wavelength of the instability (see below), we consider the complete
N–S equations in linear form, i.e. without the convective term (§ 4). Both models
are compared in § 5. We also solve numerically the nonlinear version of the N–S
equations and compare the results with the linear solution valid for small surface
perturbations (§ 6). The values of h0 of typical experiments that lead to noticeable
inertial effects as well as those related with ε are discussed in § 7, together with
theoretical and numerical predictions.

3. Long-wave approximation
In this approximation it is assumed that the film thickness, h0, is much smaller

than the characteristic horizontal length of the problem. Since the film extends to
infinity, we assume that there exists a typical length associated with the wavelength
of the perturbations, namely `. The definition of ` will be made more precise
below. Subsequently, for ε = h0/`� 1, we can simplify (2.1) under the long-wave
approximation assumptions retaining inertial terms in the form

−∂p
∂x
+µ∂

2u
∂z2
= ρ

(
∂u
∂t
+ u

∂u
∂x
+w

∂u
∂z

)
(3.1)

−∂p
∂z
= 0 (3.2)

∂u
∂x
+ ∂w
∂z
= 0. (3.3)

The boundary conditions for these equations are as follows. At z = 0, we impose
no penetration and no slip at the substrate,

w= 0, u= 0. (3.4a,b)

At the liquid–gas interface (z= h), we have zero shear stress,

∂u
∂z
= 0, (3.5)

as well as the kinematic condition,

∂h
∂t
+ u

∂h
∂x
=w, (3.6)

and the Laplace relation for the capillary pressure

p(h)=−γ ∂
2h
∂x2
− κf (h). (3.7)
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From (3.2) we see that the pressure, p, is z-independent, and then p is only a function
of h, p= p(h). Thus, we have that the x-derivative of p in (3.1) is given by

∂p
∂x
=−γ ∂

3h
∂x3
− κf ′(h)

∂h
∂x
. (3.8)

The continuity equation, (3.3), is conveniently satisfied by introducing the stream
function ψ(x, z, t) defined by

u= ∂ψ
∂z
, w=−∂ψ

∂x
. (3.9a,b)

Therefore, (3.1) and (3.6) in terms of ψ are given by

µ
∂3ψ

∂z3
=−γ ∂

3h
∂x3
− κf ′(h)

∂h
∂x
+ ρ

(
∂2ψ

∂z∂t
+ ∂ψ
∂z

∂2ψ

∂x∂z
− ∂ψ
∂x
∂2ψ

∂z2

)
, (3.10)

∂h
∂t
+ ∂ψ(x, h, t)

∂x
= 0. (3.11)

The boundary conditions, given by (3.4a,b) and (3.5), in terms of ψ are:

ψ |z=0 = 0,
∂ψ

∂z

∣∣∣∣
z=0

= 0,
∂2ψ

∂z2

∣∣∣∣
z=h

= 0. (3.12a−c)

3.1. Linear stability analysis (LSA) within long-wave approximation
The equilibrium state is given by h = h0, and for small-amplitude perturbations, the
height and stream function can be written in the form

h= h0
(
1+ A eωt+ikx

)
, ψ = Aψ1(z) eωt+ikx, (3.13a,b)

where A is the small amplitude of the perturbation, and unstable (stable) modes
correspond to ω > 0 (ω < 0). By replacing (3.13a,b) into (3.10) and (3.11), and
retaining terms up to order one in ε, we have

µ
d3ψ1

dz3
= iγ h0k3 − iκh0f ′(h0)k+ ρ ωdψ1

dz
, (3.14)

ωh0 + ikψ1(h0)= 0, (3.15)

with the boundary conditions

ψ1|z=0 = 0,
dψ1

dz

∣∣∣∣
z=0

= 0,
d2ψ1

dz2

∣∣∣∣
z=1

= 0. (3.16a−c)

Now, we define the horizontal length scale, `, by choosing κf ′(h0)= γ /`2, so that
it turns out

`=
√

γ

κf ′(h0)
=
√
γ h0

κg0
, (3.17)
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FIGURE 2. (Colour online) Parameter Λ as given by (3.21) as a function of the ratio
between the equilibrium thickness, h∗, and the film thickness, h0, for two pairs of the
exponents (n,m). The vertical dotted lines correspond to g0 = 0, i.e. h∗ = h0 (m/n)1/(n−m).

where

g0 = h0f ′(h0)=−n
(

h∗
h0

)n

+m
(

h∗
h0

)m

. (3.18)

Since n>m and h0 > h∗, we have g0 > 0. Note that we are here including in ` all the
effects related with the magnitude of the intermolecular forces given by κ . In fact, this
constant is usually related in the literature with the contact angle, θ , which appears at
the contact regions formed when the film thins up to h∗, and characterizes the partial
wetting of the substrate. It is found that the following simple relationship holds (Oron
et al. 1997; Schwartz & Eley 1998; Diez & Kondic 2007)

κ = γ (1− cos θ)
Mh∗

, (3.19)

where M = (n−m)/((n− 1)(m− 1)). Thus, the characteristic length scale becomes

`=
√

Mh0h∗
(1− cos θ)g0

, (3.20)

so that this length includes all the parameters determining the problem, except for γ
and µ which yield the time scale (see (3.23) below). In figure 2, we show how the
dimensionless combination

Λ=√1− cos θ
`

h0
=
√

Mh∗
g0h0

(3.21)

depends on the ratio h∗/h0 for two fixed values of the exponent pair (n, m).
Interestingly, very small values of h∗ as well as h∗ close to h0 (m/n)1/(n−m) yield
very large values of `/h0 for given contact angle, θ <π/2. This illustrates that, for a
given film thickness, the combined length Λ (which includes both the characteristic
length used here, `, and the contact angle, θ ) can be much larger than h0 if h∗ is
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much less than or too close to h0. In other words, the length ` (as well as the ratio ε)
can vary over a very wide range for given h0, h∗ and θ .

Consequently, a convenient non-dimensional version of the problem for the long-
wave approximation is given by the following scaling

X = x
`
, Z = z

h0
, H = h

h0
, T = ε

3

τ
t, Ψ1 = τ

ε3`h0
ψ1, K = `k, Ω = τ

ε3
ω,

(3.22a−g)

where

τ = µ`
γ

(3.23)

is the time scale. Under these definitions, (3.14) and (3.15) become

d3Ψ1

dZ3
+ q2 dΨ1

dZ
= iK(K2 − 1), (3.24)

Ω + iKΨ1(1)= 0, (3.25)

where

q2 =−La∗Ω, (3.26)

with

La∗ = La ε5, (3.27)

and

La= ργ `
µ2

(3.28)

being the Laplace number. The latter dimensionless number considers the effects
of all the forces playing a role in the flow, namely, inertial (characterized by ρ),
viscous (characterized by µ), surface (characterized by γ ) and intermolecular forces
(characterized by `). Note that La is actually the physical dimensionless number that
accounts for the inertial effects in the problem, while La∗ combines both effects
studied here, namely, the inertial ones (only included in La) and the bidimensionality
specified solely by ε.

In general, the ratio of inertial to viscous effects scales as ρUL/µ, where L and U
are the characteristic length and velocity scales, respectively. If the only characteristic
length scale of the problem is L= `, the velocity field is driven by capillary pressure
gradients, which leads to the scaling U∼ γ /µ and the relative importance of inertia is
given by La= ργ `/µ2. Instead, if the aspect ratio of the film is small, the lubrication
scaling analysis requires L = h2

0/`. Then, the relative importance of inertial terms to
viscous ones is given by ρUh2

0/(µ`), see (3.1). The velocity scaling is now given
by the balance U ∼ Ph2

0/(`µ), with P ∼ γ h0/`
2. As a consequence, the appropriate

parameter to represent inertial effects is ργ h5
0/µ

2`4, which we denote by La∗.
The solution of (3.24) has the form

Ψ1 = iK(K2 − 1)
qZ + sin(q− qZ) sec Z − tan q

q3
, (3.29)
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FIGURE 3. (Colour online) (a) Relationship between La∗r and K as given by (3.32). The
dashed line is rmax = −4/La∗. (b) Possible values of r as a function of q0. The blue
lines correspond to ϕ = 0, the red one to ϕ = π/2 and the black one to ϕ 6= const. (see
figure 4a).

which allows one to obtain the dispersion relation from (3.25) as

Ω

K2(K2 − 1)
= q− tan q

q3
. (3.30)

In the limit q→ 0, this expression tends to the purely viscous solution,

Ωvis = K2(1−K2)

3
, (3.31)

which is obtained in the inertialess case (Diez & Kondic 2007) for La= 0. Note that
the dimensionless critical (marginal) wavenumber is equal to unity for the viscous
case, i.e. Kc = 1, so that (3.31) shows instability for K < 1. This is because the
choice of the in-plane characteristic length, `, the inverse of the dimensional critical
wavenumber (Nguyen et al. 2012).

By dividing (3.30) by q2 and using (3.26), we may define the parameter r as

r≡ 1
La∗ K2(K2 − 1)

, (3.32)

and then, the possible values of q for given K, are given by the roots of

r= tan q− q
q5

. (3.33)

In what follows, we will consider only real values of K. Thus, the allowed values of
r are r < rmax = −4/La∗ for K < 1, and r > 0 for K > 1 (see (3.32) and figure 3a).
In the region K < 1 and r < rmax there exist two different values of K for a given r,
and so they share the same growth rate, Ω . At r = rmax we have K = K1D

m = 1/
√

2.
Instead, in the region K > 1 and r > 0, each mode K has a unique and different r,
and consequently, Ω .

In order to analyse the possible values of Ω in each region, it is convenient to
introduce the notation

q= q0 eiϕ, (3.34)
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FIGURE 4. (Colour online) (a) Curves in the (q0, ϕ) plane along which Im(r) = 0.
(b) Maximum growth rate as a function of La∗−1. The horizontal dashed line corresponds
to Ωvis,max = 1/12.

so that the complex growth rate is

Ω =Ωr + iΩi =− q2
0

La∗
e2iϕ. (3.35)

For Ωr =Re(Ω)> 0 (< 0) we have unstable (stable) modes, and for Ωi= Im(Ω) 6= 0
we have spatially oscillating modes. Therefore, we consider the imaginary and real
parts of (3.33), which read as

Re(r)= F(q0, ϕ)= [−Φ cos 4ϕ + sin(2q0 cos ϕ) cos 5ϕ + sinh(2q0 sin ϕ) sin 5ϕ]/∆,
(3.36)

Im(r)=G(q0, ϕ)= [Φ sin 4ϕ − sin(2q0 cos ϕ) sin 5ϕ + sinh(2q0 sin ϕ) cos 5ϕ]/∆,
(3.37)

where

Φ = 2q0 cos(q0 e−iϕ) cos(q0 eiϕ), (3.38)
∆= q5

0(cos[2q0 cos ϕ] + cosh[2q0 sin ϕ]). (3.39)

Since r is real, the solutions of (3.33) must have Im(r)= 0. Two trivial roots of this
function are ϕ = 0 and |ϕ| = π/2. However, it is possible to find roots also along a
curve in the (q0, ϕ) plane given implicitly by the function G(q0, ϕ)= 0 (see figure 4a).

For |ϕ| =π/2 we find unstable real modes with growth rates given by (see (3.35))

Ω =Ωr = q2
0

La∗
> 0, (3.40)

where q0 is now given by the implicit relation

r(±iq0)= F(±iq0,±π/2)= tanh q0 − q0

q5
0

. (3.41)

The function r(±iq0) is plotted in figure 3(b). Since r < 0 for all q0, this branch
corresponds to K < 1.
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Instead, for ϕ = 0, we obtain stable real modes whose growth rates are given by
(see (3.35))

Ω =Ωr =− q2
0

La∗
< 0, (3.42)

where q0 is obtained through the implicit relation

r(q0)= F(q0, 0)= tan q0 − q0

q5
0

. (3.43)

The function r(q0) is plotted with blue lines in figure 3(b). Since r changes sign at
q0 = π/2, the upper branch corresponds to K > 1, while the lower one to K < 1.
Moreover, these branches are related to monotonically damped modes.

The implicit relation G(q0, ϕ)= 0 (plotted as the black curve in figure 4a) allows
us to obtain r(q0 eiϕ) as a function of q0 (see black curve in figure 3b). This branch
appears as a bifurcation point of the the upper branch ϕ = 0, with coordinates B =
(rb, q0,b) = (1.1127, 0.5367). Since |ϕ| 6= 0, ±π/2 we have complex values of the
growth rate, Ω , as determined by (3.35). Moreover, since |ϕ| < π/2, Ωr is always
negative and it corresponds to oscillating stable (damped) modes. It transpires that
r> 0, so that these modes belong the region K > 1.

As a result, only the branch |ϕ| = π/2 includes unstable modes, which are in the
region k< 1 and r< rmax of figure 3(a). The mode with maximum (real) growth rate,
ωmax, is given by r= rmax < 0 for a given La∗ and is located at the intersection with
the line |ϕ| =π/2 in figure 3(b). In fact, for given La∗ we solve

tanh q0,max − q0,max

q5
max

=− 4
La∗

, (3.44)

for q0,max and obtain Ωmax=−q2
0,max/La∗. The result is shown in figure 4(b), where it is

observed how Ωmax tends to the viscous value, namely Ωvis,max= 1/12 (see (3.31)), as
La∗→ 0. It is also shown that the behaviour for large La∗ corresponds to a decreasing
growth rate as a power law with exponent close to 0.42. Similar decreasing trends of
the growth rates due to inertial effects have also been found in other problems (Oron
et al. 1997; Ubal et al. 2014).

Figure 3(b) also shows that the line r= rmax< 0 is also intersected by the ϕ= 0 line.
Since it corresponds to monotonically damped perturbations in the region 0< K < 1,
this implies that the maximum damping for the stable mode occurs at the same K
than the unstable modes in the |ϕ| =π/2.

Note that unstable monotonically growing modes are only possible for K < 1, so
that neither the critical wavelength nor that of the maximum growth rate are affected
by the value of La∗. However, the maximum growth rate itself is altered by the
relative weight of inertial effects with respect to viscosity and capillarity. Therefore,
the Laplace number is relevant when discussing time scales and growth rates, but not
for critical or dominant wavelengths.

The modes with K > 1 correspond to the r > 0 region and are always stable as is
the case in the usual viscous lubrication approximation, but we want now to analyse
whether there is any change in their behaviour when inertial effects are included. First,
note that for each K > 1, there is a single value of r> 0 (see figure 3a). This value
of r could yield either ϕ = 0 (blue line, upper branch) or |ϕ|<π/2 at the black line
in figure 3(b). Two different situations ensue. If r> rb, the solutions are on the ϕ= 0
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(blue) line, i.e. the modes are monotonically damped, and two different values of q
are admissible: one smaller and the other larger than q0,b. At the point B= (rb, q0,b),
both roots degenerate into a single value. For 0 < r < rb, the roots are found along
the black line, and the modes are oscillatory and damped. From (3.32), we find the
wavenumber corresponding to point B as given by

Kb =
√√√√1

2
+
√

1
4
+ 1

La∗ rb
. (3.45)

Thus, for 1 < K < Kb there are two damped real modes, while for K > Kb (r < rb)
two oscillatory (complex) damped modes are possible with increasing frequency
oscillations and stronger damping as K increases.

In summary, the condition Im(r) = 0 (i.e. r real) yield three types of lines in the
(q0, ϕ) plane, which can be classified as:

(i) ϕ = 0, which yields stable damped (real) modes;
(ii) |ϕ| =π/2, which can be related to unstable purely growing (real) modes; and

(iii) ϕ 6= 0, π/2, that will produce stable oscillatory modes in time, i.e. complex
conjugate roots of Ω .

The procedure to obtain the dispersion relation of the problem, i.e. Ω(K), for a
fixed La∗ is as follows. Given a value K, we obtain the corresponding r (see (3.32)
and figure 3a). Then, with this value of r, we find q0 (e.g. using figure 3b). In the
case of complex roots (black line) the corresponding value of ϕ is a consequence of
requiring that Im(r)= 0 in (3.37). Once this is done, we obtain the full spectrum of
modes as shown in figure 5. The dashed lines correspond to Ωi for the complex modes
along the black line named C.

We observe in figure 5 that La∗ strongly modifies some features of the complete
dispersion relation. For instance, it modifies the maximum, Ωmax, in the unstable
region (K < 1, Ωr > 0). Note that the product La∗Ωmax grows with La∗ because Ωmax

decreases with La∗ with an exponent less than one (see figure 4b). Analogously,
La∗ also affects the minimum in the stable region with K < 1. For K > 1, La∗ only
modifies the value of Kb (see (3.45)).

In figure 6 we show a more detailed comparison of the dispersion curves for several
La∗’s, both on the real growth rates for unstable (Ωr > 0) and stable (ωr < 0) modes.
Panel (a) shows that as La∗ increases, the unstable modes have lower growth rates, but
the wavenumber of the maximum growth is not altered and remains at Kmax = 1/

√
2.

For very small La∗, the viscous dispersion relation is rapidly approached (see (3.31)).
Figure 6(b) shows the stable region of the instability diagram (K > 1). For 1 < K
<Kb, there are two branches of modes that decay exponentially, a characteristic of the
instability which is lost in the viscous approximation. For K> 1, the viscous solution,
Ωvis, is a fairly good approximation if K .Kb, but fails for K around Kb. Clearly, this
solution cannot describe the oscillating modes for K >Kb.

4. Bidimensional flow: linear stability analysis

We consider here the full N–S equations, (2.1a,b), in dimensional form without the
long-wave approximation assumptions, i.e. the ratio ε is not necessarily small now.
Therefore, the small perturbations of the free surface are done on the velocity and
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FIGURE 5. (Colour online) Real (solid lines) and imaginary (dashed lines) parts of Ω =
Ωr + iΩi multiplied by La∗ as a function of the wavenumber K for (a) La∗ = 1, and (b)
La∗= 10. The curves for Ωr > 0 and K< 1 (unstable region) correspond to |ϕ| =π/2, and
those for Ωr < 0 and K <Kb (stable region for damped modes) correspond to ϕ = 0.
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FIGURE 6. (Colour online) Dispersion relations, Ωr(k), for some values of La∗: (a) stable
region, and (b) unstable region. The dashed line for La∗ = 0 is given by (3.31).

pressure fields, and are expressed in terms of normal modes with a wavenumber k=
(kx, 0, 0) parallel to the substrate. Thus, we have

δv = v(z) eik · r+ωt,

p= p0 + δp= p0 + p1(z) eik · r+ωt,

h= h0 + δh= h0 + ζ eik · r+ωt,

 (4.1)

where v = (u(z), 0, w(z)) and δh is the Lagrangian displacement of the free surface.
Note that, for small perturbations, we have ζ = w(1)/ω. Then, the N–S equation to
first order in the perturbations becomes

ρ ∂tδv =−∇δp+µ1δv. (4.2)

Since we assume incompressible flows, ik · v = −Dw, where D ≡ d/dz. In order
to reduce the number of variables, we eliminate the pressure terms, by taking the z
component of the ∇×∇× (4.2). After some calculation, we obtain

(D2 − k2
x)(D

2 − s2 k2)w= 0, (4.3)
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where k= kx, and

s2 ≡ 1+ ω/(νk2), (4.4)

or equivalently

ω= (s2 − 1)νk2. (4.5)

The general solution of (4.3) is

w= A1 cosh(kz)+ A2 cosh(s kz)+ A3 sinh(kz)+ A4 sinh(s kz), (4.6)

where the constants Ai (i=1, . . . ,4) are calculated by applying the following boundary
conditions.

First, we impose the no-flow condition through the rigid substrate,

w|z=0 = 0. (4.7)

Second, we shall assume that there is no slip at the substrate, u|z=0 = 0. Since the
flow is incompressible, then

Dw|z=0 = 0. (4.8)

Third, the tangential stresses at the free surface should be zero, k · S · ez|z=h0
= 0,

where S=−pI+µ∇δv+µ(∇δv)T is the stress tensor. By replacing here the perturbed
quantities, (4.1), we find

(D2 + k2)w
∣∣

z=h0
= 0. (4.9)

Finally, the normal stress at the free surface must satisfy the generalized Laplace
pressure jump,

ez · S · ez|z=h0
= γC +Π, (4.10)

where C =−k2ζ is the first-order curvature of the perturbed free surface. Since

ζ = w
ω

∣∣∣
z=h0

, (4.11)

we have

(−p1 + 2µDw)|z=h0
= dΠ

dh

∣∣∣∣
h=h0

ζ − γ k2ζ . (4.12)

Notice that the term in dΠ/dh plays a role that is analogous to that of ρg in the
Rayleigh–Taylor instability of a thin film. In order to obtain p1 for this equation, we
perform the scalar product of (4.2) by k, and using (4.5) we find

p1 =µ
(

D2

k2
− s2

)
Dw. (4.13)
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Then, by replacing this expression of p1 at z = h0 into (4.12), we finally write this
boundary condition as

γ

`2
(k2`2 − 1)

w
ω

∣∣∣
z=h0

= µ
(

D2

k2
− 2− s2

)
Dw
∣∣∣∣

z=h0

, (4.14)

where ` is defined by (3.17).
From the above boundary conditions, (4.7)–(4.9) and (4.14), it is possible to build

up a matricial system to solve the four unknowns, Ai (i= 1, . . . , 4). Its determinant
must be zero to avoid a trivial solution. This condition leads to

K3 [−4(s+ s3)+ s(5+ 2s2 + s4) cosh(Kε) cosh(s Kε)
− (1+ 6s2 + s4) sinh(Kε) sinh(s Kε)]
+La(K2 − 1)[s cosh(s Kε) sinh(Kε)− cosh(Kε) sinh(s Kε)] = 0, (4.15)

with K and La defined in (3.22a−g) and (3.28), respectively.
This expression is the dispersion relation of the problem, since it implicitly gives

s as a function of K. The values of ω can be obtained through (4.5), which in
dimensionless variables is

Ω =ωτ = K2

ε3La
(s2 − 1). (4.16)

It can be shown that (4.15) is identical to that obtained in Kargupta et al. (2004) if
slipping at the substrate is neglected once we take into account that α and β in their
equations (6) and (7) are Kε and s Kε, respectively (our s corresponds to their q).

In order to obtain the limit of (4.15) for ε� 1, note first that q in (3.26) of the
long-wave model is related to s in (4.4) by

q2 = (1− s2)K2ε2, (4.17)

and that K ε = 2πh0/λ<< 1 in this limit. In order to keep a meaningful value of q,
|s| � 1 is required, which means that q≈ iKsε. Thus, with these ingredients in mind
when analysing the limiting behaviour of the dispersion relation given by (4.15), to
the lowest meaningful order in ε, we find

La∗ K2(K2 − 1)(tan q− q)= q5, (4.18)

which is the same expression as given by the long-wave model when (3.32) and (3.33)
are combined.

5. Comparison between long wave and bidimensional models
In this section we study the effects of La and ε on the dispersion relation for the

unstable region as given by the one-dimensional (1-D) long-wave approximation and
the bidimensional (2-D) model. For the 1-D case, we focus on the solution of (3.32)
and (3.33) for ϕ =π/2, while for the 2-D case we numerically solve (4.15) together
with (4.16).

In figure 7 we show the comparison between 1-D and 2-D dispersion relations for
given values of La (columns) and ε (rows). The inertial effects are shown along a
given row (fixed ε), with the first column being a viscous dominated flow and the
fourth column corresponding to inertia dominated cases. For small ε, as in first row
where ε = 0.1, both dispersion relations are practically coincident for any value of
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FIGURE 7. (Colour online) Dispersion relations, Ω as a function of K, for different values
of La and ε for the linearized problem: 2-D model (N–S solution, blue dots) and 1-D
long-wave approximation with inertia (purple lines). For large La (strong inertia) we obtain
similar results for both models. For small La (weak inertial effects) there are meaningful
differences between both models (different ε’s): ε is constant for each row being 0.1 (a–d),
0.5 (e–h) and 1 (i–l) and La is constant in each column and takes the values 10−2 (a,e,i),
1 (b,f,j), 102 (c,g,k) and 104 (d,h,l).

La, as expected and shown analytically in (4.18). In general, the long-wave model
qualitatively predicts the same trends as the 2-D model. However, for ε as large as
ε= 0.5 (second row), the quantitative comparison certainly depends on La: the smaller
La, the larger is the departure between both models, i.e. 2-D effects become more
important for flows with weak inertia. This effect is still more pronounced for larger
ε as seen in the third row for ε= 1. Also note that, for fixed La, the position of the
maximum shifts towards the left as ε increases.

We focus now on the behaviour of the maximum of the dispersion relations, since
its analysis provides interesting insight on the effects of both inertia and aspect ratio.
While the behaviour for the 1-D model has been already described, the 2-D model
results can be obtained noticing that for Ω =Ωmax:

0= dΩ(s,K)
dK

= ∂Ω
∂K
+ ∂Ω
∂s

ds
dK
. (5.1)

Since the dispersion relation satisfies F(s,K)= 0, one can calculate

ds
dK
=−

∂F
∂K
∂F
∂s

. (5.2)

Thus, using (4.16), it is possible to write

2K(s2 − 1)
∂F
∂s
+ 2sK2 ∂F

∂K
= 0, (5.3)

which we shall not write in full for brevity. By solving this expression in conjunction
with (4.15) we are able to obtain Ωm and Km as a function of both La and ε.
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FIGURE 8. (Colour online) Wavenumber at the maximum growth rate, Km, as a function
of: (a) La for different ε’s, and (b) ε for different La’s. The solid lines correspond to the
2-D model, and the dashed line to the 1-D (long wave) model, K1D
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FIGURE 9. (Colour online) Maximum growth rates, Ωm, as a function of: (a) La for
different ε’s, and (b) ε for different La’s. The solid lines correspond to the 2-D model,
and the dashed line to the 1-D (long wave) model (same colour implies same ε in (a),
and same La in (b)). The upper dotted line in both figures is the purely viscous (La= 0)
growth rate, Ωm,vis = 1/12 = 0.0833. In (a), the 1-D and 2-D models for ε = 0.1 are
graphically superimposed to the this value of Ωm.

In figure 8 we show the wavenumber at the maximum growth rate, Km, as a function
of La for several aspect ratios ε’s, and vice-versa. Recall that for the 1-D model, we
simply have Km= 1/

√
2, independently of both La and ε. For small La, the departure

between both models can be very large if ε is not very small. In fact, the value of Km
can be reduced even up to 50 % for ε as large as ε= 5 (see figure 8a). The difference
remains also for large La, but it reduces for smaller ε. This effect is clearly shown
in figure 8(b) since, even if the departure increases for ε increasing, it is smaller for
larger La’s. Therefore, the lubrication and the long-wave approximations predict larger
distances between drops after breakup if the corresponding aspect ratio does not fulfil
the requirement ε� 1. However, this discrepancy is smaller for larger La’s.

Figure 9 shows the maximum growth rate, Ωm, as a function of La for several
aspect ratios ε’s, and vice-versa. The curves for the 1-D model are obtained for the
corresponding value of La∗ as given by (3.27). The difference in Ωm between both
models for small La can be very large if ε is sufficiently large (see figure 9a). Instead,
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for large La both models agree in a power law decrease of Ωm with differences that
increase for larger ε, as expected.

The departures for small La and large ε are also seen in figure 9(b) which shows
how the 1-D curves with smaller La separate more and more from the corresponding
2-D curves for smaller La’s. Thus, for small values of La, the discrepancy in Ωm
between the 1-D and 2-D models can be very large, even if ε is not strictly much
less than one (see also figure 11). Note that even if both models tend to coincide as
ε→ 0 (as expected) this coincidence occurs for smaller values of ε as La decreases.

6. Numerical simulations
In order to analyse the validity range of the predictions of both LSAs described

above, we perform numerical simulations of the instability by solving the complete
set of N–S equations. Here, we use the two-phase flow, moving mesh interface
of COMSOL Multiphysics. It solves the full incompressible N–S equations using
the Finite Element technique in a domain which deforms with the moving fluid
interface by using the arbitrary Lagrangian–Eulerian (ALE) formulation. The interface
displacement is smoothly propagated throughout the domain mesh using the Winslow
smoothing algorithm. The main advantage of this technique compared to others
such as the level set of phase field techniques is that the fluid interface is, and
remains, sharp. The main drawback, on the other hand, is that the mesh connectivity
must remain the same, which precludes the modelling of situations for which the
topology might change. The default mesh used throughout is unstructured and
has 2940 triangular elements (P1 linear elements for both velocity and pressure).
Automatic remeshing is enabled to allow the solution to proceed even for large
domain deformation when the mesh becomes severely distorted. The mesh nodes are
constrained to the plane of the boundary they belong to for all but the free surface.

We adapt the same physical boundary conditions used above to the complete
(nonlinear) 2-D problem. Thus, we write the kinematic condition as:(

v − ∂h
∂t

)
· n= 0, (6.1)

n being the external unit normal vector. Both surface tension and disjoining pressure
exert normal stresses at the liquid–air interface

S · n= (σC − κf (h)) n, (6.2)

where C = −∇s · n is the curvature of the free surface, ∇s = I s · ∇ is the surface
gradient operator and I s= I−n n the surface identity tensor. At the ends of the domain
(x = 0 and x = d) periodic boundary conditions are applied for both the velocity
field and shape of the free surface. On the liquid–solid interface, the no slip and
no-penetration conditions (v = 0) are applied.

Since we must have the same length scale in both x and z directions in the solution
of the full nonlinear N–S equations, we define now a slightly different dimensionless
set of units than in LSA for the long-wave approximation (see (3.22a−g)). Thus, the
dimensionless variables in the numerical simulations are given by:

z= `z̃, x= `x̃, t= τ t̃, u= γ
µ

ũ, w= γ
µ

w̃, p= γ
`

p̃, (6.3a−f )

which yields the dimensionless form of N–S equations
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FIGURE 10. (Colour online) Time evolution of thickness profile for La= 1 and ε= 1. We
use A0 = 0.05.

La
(
∂ ũ
∂ t̃
+ ũ

∂ ũ
∂ x̃
+w

∂ ũ
∂ z̃

)
=−∂ p̃

∂ x̃
+
(
∂2ũ
∂ x̃2
+ ∂

2ũ
∂ z̃2

)
, (6.4)

La
(
∂w̃
∂ t̃
+ ũ

∂w̃
∂ x̃
+ w̃

∂w̃
∂ z̃

)
=−∂ p̃

∂ z̃
+
(
∂2w̃
∂ x̃2
+ ∂

2w̃
∂ z̃2

)
. (6.5)

In particular, the boundary condition at the free surface, (6.2), becomes

S̃ · n=
(

C̃ − ε

g0
f (h̃)

)
n. (6.6)

In order to observe the evolution of the mode with maximum growth rate in the 2-D
model, we choose the length of the domain size in x-direction as d̃ = λ̃m = 2π/K2D

m .
Note that this value is not coincident with K1D

m (see figure 8). Thus, we use the
following monochromatic initial perturbation of the free surface

h̃(x, t= 0)= ε+ A0 sin
(

2πx̃

d̃

)
, (6.7)

where A0 is a small amplitude (A0= 0.05 in the present calculations). In figure 10 we
show a time evolution of the thickness profile for La= 1 and ε= 1 (we use (n,m)=
(3, 2) and h̃∗= 10−2 in all the following cases, unless otherwise stated). We carry on
the simulation until the film becomes too close to h̃∗, where the numerical method is
unable to converge, although continuation is sometimes possible by using automatic
remeshing.

We study the evolution of the instability by tracking the maximum and minimum
amplitudes of the free-surface deformation by defining

Amax(t̃)= max
06x̃6L̃

∣∣∣∣∣1− h̃(t̃)
ε

∣∣∣∣∣ , (6.8)

Amin(t̃)= min
06x̃6L̃

∣∣∣∣∣1− h̃(t̃)
ε

∣∣∣∣∣ . (6.9)
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FIGURE 11. (Colour online) Time lines of the amplitudes Amax (E) and Amin (A) with
T = t̃ε3 for different values of La (a,c) La = 10−2; (b,d) La = 100 and ε (a,b) ε = 0.5;
(c,d) ε= 1. The lines correspond to the exponential behaviour A= 0.05 exp[ΩmT], where
Ωm corresponds to the value given by either the 2-D (solid line) or 1-D (dashed line)
model.

These results are plotted in figure 11 for the same values of La used in figure 7,
but ε = 0.5, 1, 2. The numerical nonlinear solution of the problem shows that both
Amax and Amin are practically coincident during a relatively long time of the evolution.
Within the wide ranges of La and ε shown in figure 11, this behaviour is observed for
at least two thirds of the total time required for the full development of the instability.
This indicates that linear models, such as those presented previously, are relevant to
describe the flow beyond the onset of the instability.

In order to compare the numerical results with the linear models, we plot in
figure 11 the expected exponential behaviour as,

A= 0.05 eαT, (6.10)

where α is given by the predicted growth rate for K2D
m . For the 1-D model, α is

the corresponding growth rate for K2D
m , i.e. α = Ω1D(K2D

m ), which in general does
not coincide with the maximum growth rate within this approximation. For the 2-D
model, α=Ω2D(K2D

m )=Ωm, which is indeed the absolute maximum for this approach.
Moreover, after separation of Amax and Amin, we expect that Amax remains closer to the
exponential growth than Amin, which is more strongly affected by the presence of the
substrate. This effect is certainly observed in the numerical results.

Figure 11 shows that for small La, say La = 0.01 and 1, there is a very good
agreement with the exponential behaviour of the 2-D model prediction (solid blue
lines). In general, the 1-D model is not a good approximation, except for very small
ε, as expected. For both models, we use T0 = 0 since the behaviour of Amax and
Amin is of the exponential type from the very beginning. This type of growth is also
observed for La= 100 and ε = 0.5, but T0 6= 0 is needed for large ε, thus indicating
the presence of a very early stage with slower (non-exponential) growth. This effect
is still more pronounced for La as large as La= 104. In these cases, where there is
still an acceptable agreement between the 2-D model and the numerics for relatively
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FIGURE 12. (Colour online) Time lines of the amplitudes Amax and Amin for La= 1 and
ε = 1 for: (a) two different pairs of exponents (n, m) and h̃∗ = 10−2, (b) two different
values of h̃∗ and exponents (n,m)= (3, 2). Symbols indicate numerical simulations, lines
the predictions of linear models.

large ε. However, for this very large value of La, as ε is decreased, neither the 1-D
nor 2-D models are able to capture the actual evolution of the complete nonlinear
problem. This issue deserves further investigation, which is out of the scope of the
present paper and remains for future work.

It is worth noting that the exponents n and m of the disjoining pressure in (2.3) do
not a play a role in both linear analyses performed here. Their influence in this stage
is somehow hidden in the length scale, `, defined in (3.17). However, some effects
are expected in the numerical solution of the fully nonlinear N–S equations, since
they appear in the boundary condition given by (6.6). Figure 12a shows a comparison
of the time evolution of Amax and Amin for (n, m) = (3, 2) and (9, 3), which are
typical pairs of the exponents used in the literature (Schwartz 1998). Clearly, both
cases are practically coincident in the linear stage, and are in agreement with the
linear 2-D model. For larger times, the corresponding nonlinear regimes strongly differ,
thus leading to different breakup times, so that the effect of the exponents is limited
to the short final nonlinear stage. Similarly, figure 12(b) shows the same time lines
for two different values of h̃∗ and a given pair of (n, m). Also in this case, only
the nonlinear stage of the evolution changes for different thicknesses h̃∗, without any
significant change of the early linear stage. For h̃∗ as small as h̃∗= 10−3, no difference
is observed either in the linear or in the nonlinear stages. This so because h̃∗ becomes
negligible with respect to h̃0.

7. Summary and conclusions
In this work, we have developed three different approaches to study the instability

of a flat liquid thin film under partial wetting conditions, and subject to intermolecular
forces (disjoining pressure): long-wave 1-D model (with inertia), linear 2-D model,
and fully nonlinear numerical simulations. Firstly, we have extended the purely
viscous analysis within the lubrication approximation to one where inertial effects are
taken into account, which we call for brevity the 1-D model. The LSA of this model
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shows that inertia does not lead to new regions of instability compared with the
purely viscous case. Instead, it adds new stable modes: some which are exponentially
decaying, and others which are damped oscillations. The former extend over the
same range of the unstable modes and even beyond, while the latter appear for
larger wavenumbers. In the unstable region of most interest here, we find that both
the marginal wavenumber and that of the maximum growth rate do not change at
all with the addition of inertia. However, the results clearly show that the growth
rates of the instability decrease as inertial effects are stronger. The intensity of these
effects is here quantified by a single parameter, namely the modified Laplace number,
La∗ = La ε5. Therefore, the approximation can be applied only for large La, since
ε� 1 is required for the approach to be valid.

Secondly, we develop a LSA of the N–S equations, so that the restriction of small
aspect ratio, ε, is no longer required. This calculation, called for brevity the 2-D
model, is particularly useful to assess the accuracy of the 1-D model predictions. The
main difference between these models is the way that inertia is treated. In the linear
1-D model, the convective terms for the horizontal direction are still taken into
account, while horizontal and vertical convective terms are neglected in the linear
2-D model, although the viscous Laplacian term is now fully conserved for both
directions. Thus, we have now two independent parameters to characterize the flow,
namely La and ε. The 2-D model shows that the marginal wavenumber remains the
same as in the 1-D model, and does not depend on La. However, unlike the 1-D
model, the 2-D model shows that Km is not constant, and decreases as La increases.
This is an important result, since it shows that inertia can modify the distance between
the final drops, which must be more separated with respect to the purely viscous
case.

With respect to the dependence of the growth rates with La, the 2-D model also
shows that they decrease for increasing La, but the strength of the effect is greater
than what is predicted by the 1-D model. Interestingly, the discrepancies between both
models decrease as La increases, i.e. for larger inertial effects. Note also that both
models capture the main scaling of the dimensional growth rate, ω, with the aspect
ratio ε. Thus, we can write,

ω1(k)= ε
3

τ
Ω1(k`; La ε5), ω2(k)= ε

3

τ
Ω2(k`; La, ε), (7.1a,b)

where the subscripts 1 and 2 correspond to the 1-D and 2-D models, respectively.
Finally, we are concerned now with obtaining a prediction of the both km and ωm as

a function of the film thickness, h0, for a given experimental configuration. In order
to do so, we recall that (Israelachvili 1992)

κ = A
6πh3∗

, (7.2)

where A is the Hamaker constant. Thus, the characteristic length, `, given by (3.17)
can be written as

`= F(ξ)
h2

0

L
, (7.3)

where

L=
√

A
6πγ

, F(ξ)=
√

ξ 3

g0(ξ)
, (7.4a,b)



470 A. G. González, J. A. Diez and M. Sellier

1

2

3

0 0.2 0.4 0.6 0.8 1.0

(3, 2)
(9, 3)

(4, 3)

FIGURE 13. (Colour online) Function F(ξ) that determines the influence of h∗ on the
characteristic length scale, `.

and ξ = h∗/h0. The function F(ξ), which describes the effects of h∗, is shown in
figure 13 for three usual values of (n, m). Interestingly, the cases with m = 3 and
large n present a practically constant region for ξ < 0.5, which is a typical range in
experiments. In these cases, we notice that `∝ h2

0, thus ε∝ h−1
0 and La∝ h2

0. Instead,
if m < 3, say m = 2, the behaviour is different since F→ 0 for decreasing h∗. For
(3, 2), we have `∝ h3/2

0 , thus ε∝ h−1/2
0 and La∝ h3/2

0 .
These results should be taken into account when analysing experimental data

within a given hydrodynamic model. For instance, the lubrication approximation
would not become more valid as h0 decreases (as could be expected a priori) since
ε increases for thinner films. In fact, let us consider the data from the experiments
with melted copper films on a SiO2 substrate reported in González et al. (2013).
In this case, we have γ = 1.304 N m−1, µ = 0.00438 Pa s, and the experiments
could be fitted with a purely viscous lubrication model using A = 2.58 × 10−18 J,
h∗ = 0.1 nm and (n, m) = (3, 2). Thus, we calculate the corresponding values of ε
and La for film thickness, h0, in the interval (1, 100) nm, as shown figure 14(a).
Note that even if inertial effects increase as h0 increases, ε decreases even faster,
so that lubrication approximation assumptions apply for larger h0’s (see also La∗
in figure 14b). Consistently, figure 14(b) indicates that the length ` (proportional to
the critical wavelength) increases with h0, so that wavelengths of some hundreds of
nanometres should be expected for these film thicknesses.

In particular, we show the wavelength of maximum growth rate, λm, as well as the
corresponding growth, ωm, as a function of h0 in figure 15. The asymptotic power laws
for large h0, given by the lubrication approximation where Km= 1/

√
2 and Ωm= 1/12

are (see also (3.22a−g)),

λm = 2π

√
L2

h∗
h3/2

0 , ωm = γ

3µ
L4

h2∗
h−3

0 . (7.5a,b)

These expressions are plotted as dotted lines in figure 15. Therefore, we conclude
that both inertial and bidimensional effects are not significant if h0 & 20h∗, and it is
thus safe to use lubrication approximation results to describe the instability, even for
large La, provided h0� h∗, as in the experiments reported by González et al. (2013).
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FIGURE 14. (Colour online) Dependence of the dimensionless parameters ε, La, La∗, and
the characteristic length scale, `, as a function of the film thickness, h0, for melted copper
films.
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FIGURE 15. (Colour online) Wavelength of maximum growth rate, λm, and the
corresponding growth, ωm, as a function of the film thickness, h0, for melted copper films.

However, for very thin nanometric films with h0 . 10h∗, these effects should be taken
into account, especially when analysing the growth rates of the unstable modes. The
effects of inertia in the context of nanometric problems has recently been discussed
in Fowlkes et al. (2014), where they are considered as important during the instability
development of a nickel filament on silicon oxide, and the resulting formation of drops
with satellite droplets. The typical physical parameters for nickel are very similar to
those of the copper mentioned here.

Naturally, the inertial and dimensional effects studied here are expected to be more
important for smaller viscosity, µ. Regarding the microscopic parameters, one should
consider materials with larger values of the Hamaker constant, A, and smaller values
of the equilibrium thickness, h?. Small variations of these numbers in this direction
can produce large increments of La and ε, and consequently, the approaches developed
here could become relevant to describe these effects.
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