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In this paper we shall discuss some classes of general monotonic
neighbourhood frames, or general m-frames. We shall study
the classes of point-compact, image compact and replete gen-
eral m-frames, and the relationships between them. The variety
of Boolean algebras with a monotonic modal operator is dually
equivalent to two classes of descriptive generalm-frames. In this
paper we shall clarify this phenomenon showing that there exists
a bijective correspondence between these two classes. We shall
also prove that the notions of point-compact, and image-compact
monotonic frames are preserved by strong bounded morphisms.
Also, we will prove some preservation results on general sub-
frames.

Key words: monotonic modal logic, multirelations, neighbourhood frames,
lower topology, descriptive monotonic frames.

A monotonic modal algebra is a pair 〈A,♦〉 where A is a Boolean alge-
bra and ♦ is a function defined on A such that ♦a ∨ ♦b ≤ ♦ (a ∨ b) for all
a, b ∈ A. If the operator ♦ satisfies the identity ♦0 = 0, then ♦ is called a
normal monotonic operator. Algebras of this type provide algebraic seman-
tics for monotonic modal logics. On the other hand, the monotonic neigh-
bourhood frames are the relational semantics for monotonic modal logics. A
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neighbourhood frame is a structure F = 〈X,R〉 where X is a set and R is
a multirelation defined on X (see [15]), i.e., R is a relation between X and
P(X). A neighbourhood frame F is monotonic if the set R(x) is closed un-
der supersets for each x ∈ X . If F is a monotonic neighbourhood frame,
then 〈P(X),♦R〉 is a monotonic modal algebra, where the monotonic opera-
tor ♦R is defined as ♦R(U) = {x ∈ X | ∃Y ∈ R (x) such that Y ⊆ U}. It is
well known that given a monotonic modal algebraA, there exists a monotonic
neighbourhood frame F = 〈X,R〉 such that A is isomorphic to a subalgebra
of 〈P(X),♦R〉. This representation by means of neighbourhood frames and
a topological duality is developed in [10] and [3]. A discrete duality between
Boolean algebras with monotone operators and a class of relational structures
endowed with multirelations is developed in [5].

In [10], the topological duality is based on the called descriptive mono-
tonic frames. In [3] the duality is based on a more restricted class of descrip-
tive monotonic frames. One of the main objectives of this paper is to analyze
the relationship between these two kinds of general monotonic frames, and
study some special classes of general frames that are generalizations of the
notions of modally saturated monotonic models studied in [2].

The paper is organized in the following fashion. In Section 2 we will recall
the principal results of the relational semantics and the algebraic semantics
for monotonic modal logics. In Section 3 we will study some special classes
of monotonic general frames, like image-compact, point-closed, replete and
modally saturated monotonic frames. These notions were first studied by
Goldblatt in [6] in the context of Kripke general frames. We will prove that
given a general monotonic frame 〈F , D〉 such that its underlying topological
space 〈X, TD〉 is compact, then 〈F , D〉 is replete if and only if it is point-
compact. This is a generalization of a similar result is valid for Kripke models
(see the Section Topological meaning of H-Closure in [7]). In this section
we shall also analyze the relationship between the definition of descriptive
general frames given by H. Hansen in [10] and the definition given in [3].
We will see that there exists a bijective correspondence between descriptive
monotonic frames and restricted descriptive m-frames.

In [2] it was proved that the concepts of compact and point-compact mod-
els are preserved by surjective bounded morphisms between monotonic mod-
els. In Section 4 we will extend these results proving that the notions of
point-compact and image-compact monotonic frames are preserved by strong
bounded morphisms. Also, we will prove some preservation results of general
subframes.
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1 PRELIMINARIES

Given a set X , we denote by P(X) the powerset of X , and for a subset Y of
X , we write Y c to denote the complementX−Y of Y inX . Let us recall that
a topological basis is a collection D ⊆ P(X) of subsets of a set X such that
(1) ∅ ∈ D, (2)

⋃
D = X and (3) for all U, V ∈ D and for each x ∈ U ∩ V ,

there exists W ∈ D such that x ∈ W and W ⊆ U ∩ V . A topological basis
D generates a topology on X that we will denote by TD. From now on, let
the term space stand for a topological space 〈X, TD〉, where the topological
basis D is a subalgebra of the Boolean algebra of P(X). In this case, the
elements of D are clopen (closed and open) subsets of X , because D is a
Boolean algebra, but an arbitrary clopen set does not need to be an element
of D. Given a space 〈X, TD〉 and Y ⊆ X , we will use the notation clD(Y ),
or cl(Y ), to express the closure of Y . The set of all closed subsets (compact
subsets) of 〈X, TD〉 will be denoted by C(X) (K(X)). We note that C(X)

and K(X) are posets under the inclusion relation.
Recall that if 〈X, T 〉 is a topological space and Y is a subset of X then the

family TY = {U ∩ Y : U ∈ T } of subsets of Y is a topology on Y called the
relative topology and the topological space 〈Y, TY 〉 is a subspace of 〈X, T 〉.

Let A be a Boolean algebra. The lattice of filters of A will be denoted by
Fi(A). The set of all prime filters or ultrafilters of A is denoted by Ul(A). To
each Boolean algebra A we can associate a Stone space 〈Ul (A) , TA〉 whose
points are the elements of Ul(A) with the topology TA = Tβ[A] determined
by the basis β [A] = {β (a) | a ∈ A}, where β (a) = {x ∈ Ul (A) | a ∈ x}.

Some topological properties of a space 〈X, TD〉 can be characterized in
terms of the map

εD : X → Ul (D)

defined by εD (x) = {U ∈ D | x ∈ U}. For instance,

1. 〈X, TD〉 is Hausdorff iff εD is injective, and

2. 〈X, TD〉 is compact iff εD is surjective.

A Stone space, also called a Boolean space, is a topological space 〈X, TD〉
that is zero-dimensional, T0 and compact. Equivalently, a Stone space is a
totally disconnected and compact space. We note that every Stone space is
Hausdorff (see [1] for more details).

If 〈X, TD〉 is a Stone space, then the map εD is an homeomorphism be-
tween 〈X, TD〉 and

〈
Ul (D) , Tβ[D]

〉
. If A is a Boolean algebra, then A ∼=

β [A], by means of the map β. Moreover, it is known that the map F →
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F̂ = {x ∈ Ul (A) | F ⊆ x} establishes a bijective correspondence between
the lattice Fi(A) of all filters of A and the lattice C(Ul (A)) of all closed
subsets of 〈Ul (A) , TA〉.

Definition 1.1. Let 〈X, TD〉 be a space and let K ⊆ P(X). The lower topol-
ogy LD on K is the topology defined on K taking as sub-basis the collection
of all sets of the form

LU = {Y ∈ K | Y ∩ U 6= ∅}

where U ∈ D. The pair K = 〈K,LD〉 is called the lower hyperspace of
〈X, TD〉 relative to K.

Let DU = {Y ∈ K | Y ⊆ U} for U ∈ D. We note that (LUc)
c
= DU .

Recall that if 〈X, TD〉 is a Stone space, then 〈C(X),LD〉 is a Stone space (see
[14] for the details).

2 MONOTONIC GENERAL FRAMES

The algebraic semantic for monotonic modal logics is given by the class of
Boolean algebras with a monotonic operator [10].

Recall that a monotonic algebra is a pair A = 〈A,♦〉, where A is a
Boolean algebra and ♦ : A → A is a monotonic function, i.e., if a ≤ b

then ♦a ≤ ♦b for all a, b ∈ A. The monotony can be expressed by means of
the equation ♦a ∨ ♦b ≤ ♦(a ∨ b) for all a, b ∈ A.

Definition 2.1. A monotonic neighbourhood frame, or monotonic frame, is a
structure F = 〈X,R〉 where R ⊆ X×P(X), and R is upclosed, i.e., for any
x ∈ X and any Y ⊆ X , if (x, Y ) ∈ R and Y ⊆ Z, then (x, Z) ∈ R. In other
words, the set R (x) = {Z ∈ P(X) | (x, Z) ∈ R} is an increasing subset of
〈P(X),⊆〉 for each x ∈ X .

Every monotonic frame F gives rise to a monotonic algebra of sets in the
following way.

Definition 2.2. The monotonic algebra, or complex algebra, of a monotonic
frame F is the pair

A(F) = 〈P(X),♦R〉

where the monotonic map ♦R : P(X)→ P(X) is defined by:

♦R(U) = {x ∈ X | ∃Y ∈ R(x) (Y ⊆ U)} = {x ∈ X | R (x) ∩DU 6= ∅}

for each U ∈ P(X).
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Remark 2.3. Note that by monotonicity we have that

♦R(U) = {x ∈ X | U ∈ R(x) } .

Let F be a monotonic frame. The dual map �R : P(X) → P(X) is
defined by:

�R(U) = {x ∈ X | ∀Y ∈ R(x)(Y ∩ U 6= ∅)} = {x ∈ X | R (x) ⊆ LU}

for each U ∈ P(X).

Remark 2.4. Dually, by monotonicity we have that

�R(U) = {x ∈ X | U c /∈ R(x) } .

Now we shall see that each monotonic algebra gives rise to a monotonic
frame.

As in Kripke semantics for normal modal logics, the main defect of neigh-
bourhood semantics is the existence of neighbourhood incomplete logics. It
can be rectified by equipping neighbourhood frames with an extra structure
which restricts the set of possible valuations. This gives rise to the general
monotonic frames [10].

Definition 2.5. A general monotonic neighbourhood frame, or general mono-
tonic frame, is a structure 〈F , D〉 where F = 〈X,R〉 is a monotonic frame
and D is a collection of admissible subsets of X which contains ∅ and is
closed under finite unions, complementation in X and the modal operator
♦R, i.e., ♦R(U) ∈ D for each U ∈ D.

We note that if 〈F , D〉 is a general monotonic frame, then 〈D,♦R〉 is a
subalgebra of the complex algebra A(F) = 〈P(X),♦R〉. Moreover, since D
is a Boolean subalgebra ofP(X), we have that 〈X, TD〉 is a topological space
where D is a basis for the topology TD. We will refer to F as the underlying
frame of 〈F , D〉.
Remark 2.6. It is clear that a monotonic frame F = 〈X,R〉 is equivalent to
the general monotonic frame 〈F ,P(X)〉.

Definition 2.7. The monotonic frame, or ultrafilter frame, of a monotonic
algebra A is a pair

F(A) = 〈Ul (A) , R♦〉

where the relation R♦ ⊆ Ul (A)× P(Ul(A)) is defined by:

(x, Y ) ∈ R♦ iff ∃F ∈ Fi(A) (F̂ ⊆ Y and F ⊆ ♦−1(x)), (2.1)

with F̂ = {y ∈ Ul (A) | F ⊆ y}.
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Let A be a monotonic algebra. We note that for any F ∈ Fi(A), and for
each x ∈ Ul (A),

(x, F̂ ) ∈ R♦ iff F ⊆ ♦−1(x).

We also note that ♦R♦(β(a)) = β(♦(a)) for all a ∈ A. Thus the map β :

A → P(Ul(A)) is a monomorphism of monotonic algebras (see [2], [3] or
[10]). The pair

〈F(A), β [A]〉

is the general monotonic frame of A.

Definition 2.8. A bounded morphism f between the general monotonic frames
〈F1, D1〉 and 〈F2, D2〉 is a function f : X1 → X2 satisfying the following
conditions:

1. For all x ∈ X1 and for every Y ⊆ X1, if (x, Y ) ∈ R1, then (f(x), f [Y ]) ∈
R2.

2. For all x ∈ X1 and for every Z ⊆ X2, if (f(x), Z) ∈ R2, then there
exists Y ⊆ X1 such that (x, Y ) ∈ R1 and f [Y ] ⊆ Z.

3. f−1 [U ] ∈ D1 for each U ∈ D2.

We note that by condition 3, f is a continuous function between the topo-
logical spaces 〈X1, TD1〉 and 〈X2, TD2〉. If f is surjective, then it is called
a bounded epimorphism and 〈F2, D2〉 is called an homomorphic image of
〈F1, D1〉. We also note that the conditions 1 and 2 together are equivalent
with the following condition:

For all x ∈ X and for every Z ⊆ X2, f
−1 [Z] ∈ R1 (x) iff Z ∈ R2 (f (x)) .

We shall say that f is a strong bounded morphism if it satisfies the follow-
ing condition:

(S) If U ∈ D1, then there exists V ∈ D2 such that f [U ] = f [X1] ∩ V ,
i.e., U = f−1 [V ].

Definition 2.9. Let F = 〈X,R〉 be a monotonic frame. A subset X1 of X is
R-hereditary if for every x ∈ X1 and for every Y ⊆ X such that

(x, Y ) ∈ R, there exists Z ∈ P(X1) such that (x, Z) ∈ R and Z ⊆ Y.
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Remark 2.10. We note that a subset X1 of X is R-hereditary if and only if
the inclusion map i : X1 → X is a bounded morphism.

Let F2 = 〈X2, R2〉 be a monotonic frame. Let X1 a subset of X2 and
consider R1 = R2 ∩ (X1 × P(X1)). Then, it is easy to check that F1 =

〈X1, R1〉 is a monotonic frame.

Definition 2.11. Let 〈F1, D1〉 and 〈F2, D2〉 be two general m-frames where
F2 = 〈X2, R2〉, F1 = 〈X1, R1〉, X1 ⊆ X2 and R1 = R2 ∩ (X1 × P(X1)).
We shall say that F1 is a subframe of F2 if:

SF1 X1 is an R-hereditary subset of X2.

We shall say that 〈F1, D1〉 is a general subframe of 〈F2, D2〉 if F1 is a
subframe of F2 and F1 satisfies the following condition:

SF2 D1 = {U ∩X1 : U ∈ D2}.

It is easy to see that if 〈F1, D1〉 is a subframe of 〈F2, D2〉, then by condi-
tion 2 of Definition 2.11, TD1 = {O ∩ Y : O ∈ TD2} is a relative topology,
and thus 〈X1, TD1〉 is a subspace of 〈X2, TD2〉. We note that if SF2 holds,
the inclusion map i : X1 → X2 is a strong bounded morphism.

Lemma 2.12. Let F1 and F2 be two m-frames. If F1 is a subframe of F2,
then for all U ∈ P(X2) :

1. �R1(U ∩X1) = �R2(U) ∩X1.

2. ♦R1
(U ∩X1) = ♦R2

(U) ∩X1.

Proof. (1) Let x ∈ X1 and suppose that x ∈ �R1
(U ∩X1). Let Y ∈ P(X2)

such that (x, Y ) ∈ R2. As X1 is an R-hereditary subset of X2, there exists
Z ∈ P(X1) such that (x, Z) ∈ R1 and Z ⊆ Y . So, ∅ 6= Z ∩ U ∩ X1 =

Z ∩ U ⊆ Y ∩ U . Thus, x ∈ �R2
(U) ∩ X1. Conversely, suppose that

x ∈ �R2
(U) ∩ X1. Let Z ⊆ X1 such that (x, Z) ∈ R1. As R1 ⊆ R2, we

have (x, Z) ∈ R2, and thus Z∩U = Z∩U∩X1 6= ∅, i.e., x ∈ �R1(U∩X1).
(2) follows from (1).

3 SOME SPECIAL CLASSES OF GENERAL MONOTONIC FRAMES

Dualities between monotonic algebras and certain classes of general mono-
tonic frames have been developed in detail in [3] and [10]. In the duality
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theory of monotonic modal logics, Hansen [10] introduced the notion of de-
scriptive monotonic frames to obtain a full duality for the category of Boolean
algebras with a monotonic operator. Below we will recall the notion of de-
scriptiveness for general monotonic frames given by H. Hansen.

Definition 3.1. [10] A descriptive monotonic frame, or descriptive m-frame,
is a general monotonic frame 〈F , D〉, where 〈X, TD〉 is a Stone space, and
for all x ∈ X , all C ∈ C (X) and all Y ⊆ X ,

PCom Y ∈ R(x) iff ∃C ∈ C (X) [C ⊆ Y and C ∈ R(x)] ,

PClos C ∈ R(x) iff ∀U ∈ D [C ⊆ U → U ∈ R(x)].

Between the class of monotonic general frames and the class of descriptive
monotonic frames there exists some interesting classes of general frames that
are defined generalizing the properties PCom and PClos of Definition 3.1.
In the following definition we extend certain notions introduced in [2] for
monotonic models.

Definition 3.2. Let 〈F , D〉 be a general monotonic frame. We shall say that:

1. 〈F , D〉 is compact if the space 〈X, TD〉 is compact.

2. 〈F , D〉 is image-compact if for all x ∈ X and for each Y ∈ R(x), there
exists a compact subset Z of 〈X, TD〉 such that Z ⊆ Y and Z ∈ R(x).

3. 〈F , D〉 is point-compact in 〈K,LD〉, where K ⊆ P(X), if R(x) is a
compact subset in the topological space 〈K,LD〉 for each x ∈ X .

4. 〈F , D〉 is replete if it satisfies the following property:

(P) For all x ∈ X and for every Y ∈ P(X), if
⋂
{εD(y) | y ∈ Y } ⊆

♦−1R (εD(x)), then there exists a subset Z ⊆ X such that Z ∈ R(x)

and Z ⊆ cl(Y ), where cl(Y ) is the closure of Y in the space 〈X, TD〉.

5. 〈F , D〉 is modally saturated in 〈K,LD〉, where K ⊆ P(X), if it is
image-compact and point-compact in 〈K,LD〉.

Remark 3.3. Let 〈F , D〉 be a general monotonic frame. The notion of image-
compact is an adaptation of Condition PCom of Definition 3.1. Later we
will show that the notion of point-compact is related to Condition PClos of
Definition 3.1.

The notion of replete monotonic general frame is a generalization of the
notion ofH-closed Kripke model introduced by R. Goldblatt in [7] page 112,
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and it is related to one of the conditions used to define the notion of replete
general frame in normal modal logics (see condition VI of Definition 1.19.1
of [6]).

In [7] R. Goldblatt also introduces the notion ofH-compact Kripke model.
This notion is equivalent to our definition of compactness given in the item (1)
of Definition 3.2. Moreover, Goldblatt also defines an H-saturated structure
(Kripke models, for us) as an H-compact and H-closed structure. In our
terminology, anH-compact andH-closed monotonic modelM is a compact,
and point-compact model, or from Proposition 10 of [2],M is compact and
replete.

Let 〈F , D〉 be a general monotonic frame. Let us consider the set

ranR = KR = {Y ⊆ X | ∃x ∈ X ((x, Y ) ∈ R)} .

Then, we can consider the hyperspace 〈KR,LD〉 of 〈X, TD〉 relative to KR
(see definition 1.1).

The following results were proved in Propositions 9 and 10 of [2] for
monotonic models. Now we will extend these results for general monotonic
frames. Although the proof is similar to the proofs given in [2], we decided
to include it due to a matter of completeness.

Proposition 3.4. Let 〈F , D〉 be a general monotonic frame.

1. If 〈F , D〉 is point-compact in 〈KR,LD〉, then 〈F , D〉 is replete.

2. If 〈F , D〉 is compact, then 〈F , D〉 is replete iff it is point-compact in
〈KR,LD〉.

Proof. (1) Let x ∈ X and let Y ∈ P(X). Assume that
⋂
{εD(y) | y ∈ Y } ⊆

♦−1R (εD(x)). Suppose that for all Zi ∈ R (x), Zi * cl (Y ). As D is a ba-
sis for 〈X, TD〉, we have that for each Zi ∈ R (x) there exists Ui ∈ D

such that Y ⊆ Ui and Zi * Ui, i.e., Zi ∩ U ci 6= ∅. Thus, R (x) ⊆⋃{
LUc

i
| Y ⊆ Ui

}
. Since R(x) is a compact subset of 〈KR, TD〉, there ex-

ists a finite set {U1, ..., Un} such that R (x) ⊆ LUc
1
∪ · · · ∪ LUc

n
. Then,

x /∈ ♦R (U1 ∩ . . . ∩ Un), and Y ⊆ U1 ∩ . . .∩Un. So, ♦R (U1 ∩ . . . ∩ Un) /∈
εD(x) and U1 ∩ . . . ∩ Un ∈

⋂
{εD(y) | y ∈ Y }, which is a contradiction.

Therefore, there exists Z ∈ R (x) such that Z ⊆ cl(Y ).
(2) Suppose that 〈F , D〉 is replete. Consider W ⊆ D such that

R (x) ⊆
⋃
{LU | U ∈W} .
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Suppose that for every finite subset W0 of W ,

R (x) *
⋃
{LU | U ∈W0} . (3.1)

First, we prove that
⋂
{U c : U ∈W} 6= ∅. On the contrary, suppose that

X =
⋃
{U : U ∈W}. As 〈F , D〉 is compact, X = U1 ∪ . . . ∪Un, for some

finite subset {U1, ..., Un} of W . From (3.1), there exists Y ∈ R(x) such that
Y ∩U1 = ∅,...,Y ∩Un = ∅, i.e., Y ∩ (U1∪ . . .∪Un) = Y ∩X = ∅, which is
impossible. Thus, Z =

⋂
{U c | U ∈W} 6= ∅. It is evident that Z is a closed

subset of 〈X, TD〉. We now prove that⋂
{εD (z) | z ∈ Z} ⊆ ♦−1R (εD (x)) . (3.2)

If V ∈
⋂
{εD (z) : z ∈ Z}, thenZ =

⋂
{U c | U ∈W} ⊆ V . It is clear that

V c is a closed subset of 〈X, TD〉, and as 〈X, TD〉 is compact, V c is compact.
It follows that there exists a finite set {U1, ..., Un} such that U c1 ∩ . . .∩U cn ⊆
V . Then, ♦R(U c1 ∩ . . . ∩ U cn) ⊆ ♦R(V ). From (3.1), there exists T ∈ R(x)
such that T ∩ (U1 ∪ . . . ∪ Un) = ∅, i.e., T ⊆ U c1 ∩ . . . ∩ U cn ⊆ V . Thus,
x ∈ ♦R(V ). So, (3.2) is valid. By hypothesis, there exists Y ∈ R (x)

such that Y ⊆ cl(Z) = Z. Then Y ∩ U = ∅, for every U ∈ W . Thus,
R (x) *

⋃
{LU | U ∈W}. The other direction follows from (1).

Lemma 3.5. Let 〈F , D〉 be a general monotonic frame such that 〈X, TD〉 is a
Stone space. Then 〈F , D〉 is image-compact iff it satisfies Condition PCom

of Definition 3.1.

Proof. We recall that in a Stone space 〈X, TD〉 a subset Y of X is compact
iff it is closed. Thus, the result follows.

3.1 Descriptive m-frames and restricted descriptive m-frames
In this subsection we will analyze the relationship between the definition of
descriptive m-frame given by H. Hansen in [10] and the definition given in
[3].

First, we recall the definition introduced in [3]. In order to differentiate it
from Hansen´s Definition 3.1, we shall write these general monotonic frames
as restricted descriptivem-frames. So, we will prove that this notion is equiv-
alent to the definition given by H. Hansen.

Definition 3.6. [3] A restricted descriptive m-frame is a triple 〈X,R, TD〉
where

1. 〈X, TD〉 is a Stone space,
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2. R ⊆ X × C (X),

3. �R(U) ∈ D, and

4. R (x) =
⋂
{LU | x ∈ �R(U)} for all x ∈ X .

We now prove that Condition 4 of Definition 3.6 is equivalent to saying
that the relation R ⊆ X × C (X) is point-compact in 〈C(X),LD〉. We note
that every restricted descriptive m-frame 〈X,R, TD〉 is image-compact, be-
cause ranR = KR ⊆ C(X).

Lemma 3.7. Let 〈X,R,D〉 be a triple such that 〈X, TD〉 is Stone space,
R ⊆ X × C(X) such that R (x) is an increasing subset of 〈C(X),⊆〉 for
each x ∈ X , and �R(U) ∈ D for all U ∈ D. Then the following conditions
are equivalent:

1. R is point-compact in 〈C(X),LD〉.

2. R (x) =
⋂
{LU | x ∈ �R(U)} for all x ∈ X .

3. 〈X,R,D〉 is a replete general monotonic frame.

4. For all x ∈ X and for every Y ∈ C(X), if (εD(x), εD [Y ]) ∈ R♦R
,

then (x, Y ) ∈ R.

Proof. (1)⇒ (2) Let x ∈ X . The inclusion R(x) ⊆
⋂
{LU | x ∈ �R(U)}

is clear. Let Z ∈ C (X) such that Z ∈
⋂
{LU : x ∈ �R(U)} and suppose

that Z /∈ R(x). Then, we have that for every K ∈ R (x) , K * Z. Since
Z ∈ C (X) and the elements of D are clopen, for each K ∈ R (x) there
exists UK ∈ D such that Z ⊆ UK and K * UK , i.e., Z ⊆ UK and K ∩
U cK 6= ∅. In consequence, R (x) ⊆ {LUc | Z ⊆ U} . As R (x) is compact in
〈C (X) ,LD〉 , there exist U1, . . . , Un ∈ D such that

R (x) ⊆ LUc
1
∪ . . . ∪ LUc

n
= LU

where U = U c1 ∪ . . . ∪ U cn ∈ D. So, x ∈ �R (U) and we get that Z ∈ LU .
On the other hand, Z ⊆ Ui for 1 ≤ i ≤ n. Then, Z ⊆ U1 ∩ . . . ∩ Un
and Z ∩ U = ∅ which is a contradiction. Thus, Z ∈ R (x) and R(x) =⋂
{LU | x ∈ �R(U)} .
(2)⇒ (3) Let x ∈ X and let Y ∈ P(X) such that

⋂
{εD(y) | y ∈ Y } ⊆

♦−1R (εD(x)). We prove that cl(Y ) ∈ R(x). Suppose that cl(Y ) /∈ R(x) =⋂
{LU | x ∈ �R(U)}. Then, there exists U ∈ D such that R(x) ⊆ LU ,
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x ∈ �R(U) and cl(Y ) ⊆ U c. So Y ⊆ U c, then U c ∈
⋂
{εD(y) | y ∈ Y } ⊆

♦−1R (εD(x)), and thus x ∈ ♦R(U c) = �R(U)c, which is a contradiction. So
cl(Y ) ∈ R(x), and 〈X,R,D〉 is replete.

(3)⇒ (4) is immediate.
(4)⇒ (1) see [3].

Let 〈X, TD〉 be a Stone space with a basis D. Consider a relation R ⊆
X × P(X). We define the restriction Rr of R to C(X) as

(x, Z) ∈ Rr iff Z ∈ C(X) and Z ∈ R(x).

Given a relation S ⊆ X×C(X) we define the relation Se, called the extension
of S to P(X) as

(x, Y ) ∈ Se iff there exists Z ∈ C(X) such that Z ⊆ Y and Z ∈ S(x).

Proposition 3.8. Let 〈F , D〉 be a descriptive monotonic frame. Then:

1. �R(U) = �Rr (U) for all U ∈ D.

2. The relation Rr ⊆ X × C(X) is point-compact in 〈C(X),LD〉.

3. (Rr)
e = R.

Thus, 〈X,Rr, TD〉 is a restricted descriptive m-frame.

Proof. We note that 〈C(X),LD〉 is compact because 〈X, TD〉 is a Stone space
(see [14]).

(1) Let U ∈ D. As Rr ⊆ R, we get �R(U) ⊆ �Rr
(U). Let x ∈ �Rr

(U)

and let Y ∈ R(x). By Property PCom of Definition 3.1, there exists C ∈
C (X) such that C ⊆ Y and C ∈ R(x). It is clear that C ∈ Rr(x), and as
x ∈ �Rr

(U), we have C ∩ U 6= ∅. So, Y ∩ U 6= ∅. Thus, x ∈ �R(U).
(2) By Lemma 3.7 and (1), it is enough to show that

Rr(x) =
⋂
{LU : x ∈ �R(U)} . (3.3)

It is clear that the inclusion Rr(x) ⊆
⋂
{LU | x ∈ �R(U)} holds. Let Z ∈

C (X) such that Z ∈
⋂
{LU | x ∈ �R(U)} and suppose that Z /∈ R(x). By

Property PClos of Definition 3.1, there exists U ∈ D such that Z ⊆ U and
U /∈ R(x). By remark 2.3, x /∈ ♦R(U), i.e., x ∈ �R(U c). Since Z ∈ LUc,

we have that Z ∩U c 6= ∅, which is a contradiction. Thus, the identity (3.3) is
valid.
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(3) Let (x, Y ) ∈ (Rr)
e. Then there exists Z ∈ C(X) such that Z ⊆ Y

and Z ∈ Rr(x). Since Rr ⊆ R, we have Z ∈ R(x), and as R is monotonic,
Y ∈ R(x). Let (x, Y ) ∈ R. By Property PCom of Definition 3.1, there
exists C ∈ C (X) such that C ⊆ Y and C ∈ R(x). So, C ∈ Rr(x).
Since there exists C ∈ C(X) such that C ⊆ Y and C ∈ Rr(x), we get
that (x, Y ) ∈ (Rr)

e.

Proposition 3.9. Let 〈X,R,D〉 be a triple such that 〈X, TD〉 is a Stone
space, R ⊆ X × C(X) and �R(U) ∈ D for all U ∈ D. If R is point-
compact in 〈C(X),LD〉, then

1. 〈X,Re, D〉 is a descriptive m-frame, and

2. (Re)r = R.

Proof. (1) By the definition of the relation Re, Re(x) is an increasing set for
each x ∈ X . We prove that �R(U) = �Re(U) for all U ∈ D. Let U ∈ D.
As R ⊆ Re, we have that �Re(U) ⊆ �R(U). Suppose that x ∈ �R(U). Let
Y ∈ Re(x). Then there exists Z ∈ C(X) such that Z ⊆ Y and Z ∈ R(x).
So, Z ∩ U 6= ∅ because x ∈ �R(U). So, Y ∩ U 6= ∅, i.e., x ∈ �Re(U).
Condition PCom is immediate from the definition of Re. We also note that
by definition of Re we have that if C ∈ R(x) then C ∈ Re(x) whenever
C ∈ C(X). We prove Condition PClos. Let C ∈ C(X) such that C ∈ Re(x)
and let U ∈ D such that C ⊆ U. From C ∈ Re(x) we have that there exists
Y ∈ C(X) such that Y ∈ R(x) and Y ⊆ C ⊆ U. Then, by definition of Re,
we get that U ∈ Re(x). Let C ∈ C(X). Assume that for all U ∈ D, C ⊆ U

implies U ∈ Re(x). Suppose that C /∈ Re(x), i.e., C /∈ R(x). As R(x) is
point-compact in the Stone space 〈C(X),LD〉, we have that R(x) is closed
in 〈C(X),LD〉. So, there exists U ∈ D such that x ∈ �R(U), R(x) ⊆ LU
and C /∈ LU . Then, x ∈ �R(U) and C ∩ U = ∅. As C ⊆ U c ∈ D, we
get U c ∈ Re(x), i.e., x ∈ ♦Re(U c) = �Re(U)c = �R(U)c, which is a
contradiction. Thus, 〈X,Re, D〉 is a descriptive m-frame.

(2) It is easy to check that the equality (Re)r = R holds.

Let 〈X1, R1, TD1
〉 and 〈X2, R2, TD2

〉 be two restricted descriptive m-
frames. Consider the monotonic general frames 〈F1, D1〉 and 〈F2, D2〉where
F1 = 〈X1, R1〉 and F2 = 〈X2, R2〉 . Recall that for all Y ∈ K (X1) =

C (X1) and for every f continuos function, f [Y ] ∈ K (X2) = C (X2) . Then,
a function f : X1 → X2 is called a bounded morphism between the restricted
descriptive m-frames 〈X1, R1, TD1

〉 and 〈X2, R2, TD2
〉 if and only if f is
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a bounded morphism between the monotonic general frames 〈F1, D1〉 and
〈F2, D2〉.

Proposition 3.10. Let f : X1 → X2 be a bounded morphism between the
restricted descriptive m-frames 〈X1, R1, TD1

〉 and 〈X2, R2, TD2
〉 . Then,

1. For all x ∈ X1 and for every Y ⊆ X1, if (x, Y ) ∈ Re1, then (f (x) , f [Y ]) ∈
Re2.

2. For all x ∈ X1 and for every Z ⊆ X2, if (f (x) , Z) ∈ Re2, then there
exists Y ⊆ X1 such that (x, Y ) ∈ Re1 and f [Y ] ⊆ Z.

Thus, f : X1 → X2 is a bounded morphism between the descriptive m-
frames 〈X1, R

e
1, D1〉 and 〈X2, R

e
2, D2〉 . In addition, if f is a strong bounded

morphism between the restricted descriptive m-frames 〈X1, R1, TD1
〉 and

〈X2, R2, TD2
〉, then f is a strong bounded morphism between the descrip-

tive m-frames 〈X1, R
e
1, D1〉 and 〈X2, R

e
2, D2〉 .

Proof. It follows from the inclusions R1 ⊆ Re1 and R2 ⊆ Re2.

Proposition 3.11. Let f : X1 → X2 be a bounded morphism between the
descriptive m-frames 〈X1, R1, D1〉 and 〈X2, R2, D2〉 . Then,

1. For all x ∈ X1 and for every Y ∈ C (X1) , if (x, Y ) ∈ (R1)r , then
(f (x) , f [Y ]) ∈ (R2)r .

2. For all x ∈ X1 and for every Z ⊆ C (X2) , if (f (x) , Z) ∈ (R2)r ,

then there exists C ∈ C (X1) such that (x,C) ∈ (R1)r and f [C] ⊆ Z.

Thus, f : X1 → X2 is a bounded morphism between the restricted de-
scriptive m-frames 〈X1, (R1)r , TD1〉 and 〈X2, (R2)r , TD2〉 . In addition, if
f is a strong bounded morphism between the descriptivem-frames 〈X1, R1, TD1

〉
and 〈X2, R2, TD2

〉, then f is a strong bounded morphism between the re-
stricted descriptive m-frames 〈X1, (R1)r , TD1

〉 and 〈X2, (R2)r , TD2
〉 .

Proof. (1) Let x ∈ X1 and Y ∈ C (X1) such that (x, Y ) ∈ (R1)r . Then,
(x, Y ) ∈ R1. As f is a bounded morphism, it follows that (x, f [Y ]) ∈
R2. Since 〈X, TD1〉 is a Stone space, we get that Y is a compact subset
of 〈X, TD1

〉. As f is a continuous function between the topological spaces
〈X, TD1

〉 and 〈X, TD2
〉 , we have that f [Y ] is a compact subset of 〈X, TD2

〉
and therefore f [Y ] ∈ C (X2) . Thus, (x, f [Y ]) ∈ (R2)r .

(2) Let x ∈ X1 and Z ∈ C (X2) such that (f (x) , Z) ∈ (R2)r . Then,
(f (x) , Z) ∈ R2. As f is a bounded morphism, it follows that there exists
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Y ⊆ X1 such that (x, Y ) ∈ R1 and f [Y ] ⊆ Z. By Property PCom of
Definition 3.1, there exists C ∈ C (X1) such that C ⊆ Y and (x,C) ∈ R1. It
is easy to check that (x,C) ∈ (R1)r and f [C] ⊆ f [Y ] ⊆ Z.

Corollary 3.12. There exists a bijective correspondence between descrip-
tive monotonic frames and restricted descriptive m-frames. Strong bounded
morphisms between two descriptive monotonic frames are strong bounded
morphisms between their corresponding restricted descriptive m-frames and
viceversa.

4 PRESERVATION PROPERTIES

In this section we study some properties that are preserved by means of sur-
jective bounded morphisms, and some valid properties in a general mono-
tonic frame that are preserved in its subframes. Just to be clear, we say that a
class K reflects a construction if its complement Kc, which is the class of all
frames that are not in K, is closed under that construction.

Proposition 4.1. Let f : 〈F1, D1〉 → 〈F2, D2〉 be a surjective bounded
morphism between the general monotonic frames 〈F1, D1〉 and 〈F2, D2〉.
Then,

1. If 〈F1, D1〉 is point-compact in 〈KR1 ,LD1〉, then 〈F2, D2〉 is point-
compact in 〈KR2

,LD2
〉.

2. If 〈F1, D1〉 is image-compact, then 〈F2, D2〉 is image-compact.

Proof. (1) Let b ∈ X2 and let F ⊆ D2. We prove that R2(b) is a compact
subset of the hyperspace 〈KR2

,LD2
〉. Suppose that for any finite subset Fj

of F we get
R2 (b) ∩

⋂
{LcV | V ∈ Fj} 6= ∅. (4.1)

We prove that R2 (b) ∩
⋂
{LcV | V ∈ F} 6= ∅. Since f is surjective, there

exists a ∈ X1 such that f(a) = b. We prove that

R1 (a) ∩
⋂{

Lcf−1[V ] | V ∈ Fj
}
6= ∅ (4.2)

for any finite subset Fj of F . Suppose that there exists a finite subset F0 of F
such that

R1 (a) ∩
⋂{

Lcf−1[V ] | V ∈ F0

}
= ∅. (4.3)

15



By (4.1), R2 (f(a)) ∩
⋂
{LcV | V ∈ F0} 6= ∅. So, there exists Y ∈ R2 (b)

such that Y ∩ V = ∅ for any V ∈ F0. As f is a bounded morphism, there
exists Z ⊆ X1 such that (a, Z) ∈ R1 and f [Z] ⊆ Y . Then f [Z] ∩ V = ∅
for every V ∈ F0. So, Z ∩ f−1 [V ] = ∅ for all V ∈ F0. Thus, Z ∈
R1(a) ∩

⋂{
Lcf−1[V ] | V ∈ F0

}
, which contradicts (4.3). Thus, (4.2) is

valid. As 〈F1, D1〉 is point-compact, there exists Y ⊆ X1 such that Y ∈
R1 (a)∩

⋂{
Lcf−1[V ] | V ∈ F

}
. As f is a bounded morphism, we have that

(f(a), f [Y ]) ∈ R2 and f [Y ] ∈
⋂
{LcV | V ∈ F}. Therefore, 〈F2, D2〉 is

point-compact.
(2) Assume that 〈F1, D1〉 is image-compact. Let b ∈ X2 and Y ⊆ X2

such that (b, Y ) ∈ R2. Since f is surjective, there exists a ∈ X1 such that
f(a) = b. So, (f(a), Y ) ∈ R2, and as f is a bounded morphism, there exists
Z ⊆ X1 such that (a, Z) ∈ R1 and f [Z] ⊆ Y . Since 〈F1, D1〉 is image-
compact, there exists a compact subset H ⊆ X1 such that (a,H) ∈ R1 and
H ⊆ Z. It is easy to check that f [H] is a compact subset of X2, and as
(f(a), f [H]) ∈ R2 and f [H] ⊆ f [Z] ⊆ Y , we get that 〈F2, D2〉 is image-
compact.

Proposition 4.2. Let f : 〈F1, D1〉 → 〈F2, D2〉 be a strong bounded mor-
phism between the general monotonic frames 〈F1, D1〉 and 〈F2, D2〉. Then,

1. If 〈F2, D2〉 is point-compact in 〈KR2
,LD2

〉, then 〈F1, D1〉 is point-
compact in 〈KR1 ,LD1〉.

2. If f is surjective and 〈F1, D1〉 is replete, then 〈F2, D2〉 is replete.

3. If f is injective and 〈F2, D2〉 is image-compact, then 〈F1, D1〉 is image-
compact.

4. If 〈F2, D2〉 is replete, then 〈F1, D1〉 is replete.

Proof. (1) Let a ∈ X1 and let W ⊆ D1. We prove that R1(a) is a compact
subset of the hyperspace 〈KR1

,LD1
〉. Suppose that for any finite subset Wj

of W we get
R1 (a) ∩

⋂
{LcU | U ∈Wj} 6= ∅. (4.4)

As f is strong, for each U ∈ D1 there exists VU ∈ D2 such that U =

f−1 [VU ]. We prove that R2 (f(a))∩
⋂{

LcVU
| U ∈Wj

}
6= ∅ for any finite

subset Wj of W . Suppose that there exists a finite subset W0 of W such that
R2 (f(a))∩

⋂{
LcVU

| U ∈W0

}
= ∅. By (4.4),R1 (a)∩

⋂
{LcU | U ∈W0} 6=

∅, i.e., there exists Y ∈ R1 (a) such that Y ∩ U = Y ∩ f−1 [VU ] = ∅ for all
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U ∈ W0. Since f is a bounded morphism, f [Y ] ∈ R2(f(a)) and f [Y ] ∩
VU = ∅ for all U ∈ W0, i.e., f [Y ] ∈ R2 (f(a)) ∩

⋂{
LcVU

| U ∈W0

}
=

∅, which is impossible. Then, as 〈F2, D2〉 is point-compact, there exists
Z ⊆ X2 such that Z ∈ R2 (f(a)) and Z ∩ VU = ∅ for all U ∈ W . As
f is a bounded morphism, there exists Z ′ ⊆ X1 such that Z ′ ∈ R1(a) and
f [Z ′] ⊆ Z. It is clear that Z ′ ∩ f−1 [VU ] = Z ′ ∩ U = ∅ for all U ∈ W .
Thus, Z ′ ∈ R1 (a) ∩

⋂
{LcU | U ∈W}, i.e., 〈F1, D1〉 is point-compact.

(2) Assume that 〈F1, D1〉 is replete. Let εi = εDi for i = 1, 2. Let b ∈ X2

and Y ⊆ X2 such that⋂
{ε2(y) | y ∈ Y } ⊆ ♦−1R2

((ε2 (b)) . (4.5)

We prove that there exists Y ′ ⊆ X2 such that (b, Y ′) ∈ R2 and Y ′ ⊆ cl (Y ).
Since f is surjective, there exists a ∈ X1 such that f(a) = b. We prove that⋂{

ε1(x) | x ∈ f−1 [Y ]
}
⊆ ♦−1R1

((ε1 (a)) . (4.6)

Let U ∈
⋂{

ε1(x) | x ∈ f−1 [Y ]
}

. Then f−1 [Y ] ⊆ U . As f is strong, there
exists VU ∈ D2 such that U = f−1 [VU ] . So, f−1 [Y ] ⊆ f−1 [VU ]. We prove
that Y ⊆ VU . Let y ∈ Y . Since f is surjective, there exists x ∈ X1 such
that f(x) = y. So, x ∈ f−1 [Y ] ⊆ f−1 [VU ]. Consequently, x ∈ f−1 [VU ],
i.e., f(x) = y ∈ VU . Then, VU ∈

⋂
{ε2(y) | y ∈ Y } ⊆ ♦−1R2

((ε2 (b)),
and it follows that b = f(a) ∈ ♦R2

(VU ). Thus, a ∈ f−1 [♦R2
(VU )] =

♦R1(f
−1 [VU ]) = ♦R1(U), i.e., U ∈ ♦−1R1

((ε1 (a)). Therefore (4.6) is valid.
Since 〈F1, D1〉 is replete, there exists Z ⊆ X1 such that

(a, Z) ∈ R1 and Z ⊆ cl(f−1 [Y ]). (4.7)

As f(a) = b, and f is a bounded morphism, (b, f [Z]) ∈ R2. Since f is
a strong bounded morphism, it is easy to see that from Z ⊆ cl(f−1 [Y ]) it
follows that f [Z] ⊆ cl(Y ). Thus, 〈F2, D2〉 is replete.

(3) Let a ∈ X1 and let Y ∈ R1(a). Then f [Y ] ∈ R2(f(a)). As 〈F2, D2〉
is image-compact, then there exists a compact subset H of X2 such that H ⊆
f [Y ] and H ∈ R2(f(a)). As f is a bounded morphism, there exists Z ⊆ X1

such that (a, Z) ∈ R1 and f [Z] ⊆ H . So, Z ⊆ f−1 [H], and as 〈F1, D1〉
is monotonic, (a, f−1 [H]) ∈ R1. We prove that f−1 [H] is compact. Let
W ⊆ D1 such that f−1 [H] ⊆

⋃
{U : U ∈W}. As f is strong, for each

U ∈ W there exists VU ∈ D2 such that U = f−1 [VU ]. We prove that
H ⊆

⋃
{VU : U ∈W}. Let y ∈ H . As H ⊆ f [Y ] , there exists x ∈ X1

such that f(x) = y. So, x ∈ f−1 [H], and consequently there exists U ∈ W
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such that x ∈ U = f−1 [VU ], i.e., f(x) = y ∈
⋃
{VU : U ∈W}. As H is

compact, there exist U1, . . . , Un ∈ W such that H ⊆ VU1 ∪ . . . ∪ VUn . So,
f−1 [H] ⊆ U1 ∪ . . . ∪ Un, and thus f−1 [H] is compact. Since f is injective,
it follows that f−1 [H] ⊆ Y , and we get that 〈F1, D1〉 is image-compact.

(4) Suppose that 〈F2, D2〉 is replete. Let a ∈ X1 and Y ∈ P (X1) such
that ⋂

{εD1
(y) | y ∈ Y } ⊆ ♦−1R1

(εD1
(a)).

We prove that ⋂
{εD2

(x) | x ∈ f [Y ]} ⊆ ♦−1R2
(εD2

(f (a))). (4.8)

Let U ∈ D2 such that U ∈
⋂
{εD2(x) | x ∈ f [Y ]} . We have that f [Y ] ⊆

U. So, Y ⊆ f−1 (f [Y ]) ⊆ f−1 (U) ∈ D1 and it implies that f−1 (U) ∈⋂
{εD1(y) | y ∈ Y } . It follows that f−1 (U) ∈ ♦−1R1

(εD2(a)), i.e., a ∈
♦R1

(
f−1 (U)

)
. Thus, there exists Z ∈ R1 (a) such that Z ⊆ f−1 (U) .

Since f is a bounded morphism, f [Z] ∈ R2 (f (a)) and f [Z] ⊆ U. Then,
U ∈ ♦−1R2

(εD2
(f (a))) and (4.8) is valid. As 〈F2, D2〉 is replete, there exists

Z ⊆ X2 such that (f (a) , Z) ∈ R2 and Z ⊆ clD2
(f [Y ]). Again, since f

is a bounded morphism, there exists V ⊆ X 1 such that (a, V ) ∈ R1 and
f [V ] ⊆ Z ⊆ clD2 (f [Y ]) . Now, we prove that V ⊆ clD1 (Y ) . Let x ∈ V
and U ∈ D1 such that x ∈ U . As f is a strong bounded morphism, there
exists W ∈ D2 such that x ∈ U = f−1 (W ). So, f (x) ∈ W and from
f [V ] ⊆ clD2

(f [Y ]), we get that f (x) ∈ clD2
(f [Y ]) . Since W is a basis

element, W ∩ f [Y ] 6= ∅, i.e., there exists y ∈ Y such that f (y) ∈W . Then,
y ∈ f−1 (W ) = U and it follows that U ∩ Y 6= ∅. Therefore, x ∈ clD1 (Y )

and 〈F1, D1〉 is replete.

Corollary 4.3. Let f : 〈F1, D1〉 → 〈F2, D2〉 be a surjective strong bounded
morphism between the general monotonic frames 〈F1, D1〉 and 〈F2, D2〉.
Then,

1. 〈F1, D1〉 is point-compact in 〈KR1
,LD1

〉 iff 〈F2, D2〉 is point-compact
in 〈KR2 ,LD2〉.

2. 〈F1, D1〉 is replete iff 〈F2, D2〉 is replete.

3. If f is injective, then 〈F1, D1〉 is image-compact iff 〈F2, D2〉 is image-
compact.

Proposition 4.4. Let 〈F1, D1〉 and 〈F2, D2〉 be two general monotonic frames.
Suppose that 〈F1, D1〉 is a general subframe of 〈F2, D2〉. Then,
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1. If 〈F2, D2〉 is point-compact in 〈KR2 ,LD2〉, then 〈F1, D1〉 is point-
compact in 〈KR1

,LD1
〉.

2. If 〈F2, D2〉 is image-compact, then 〈F1, D1〉 is image-compact.

3. If 〈F2, D2〉 is replete, then 〈F1, D1〉 is replete.

Proof. It follows from 4.2 and from the fact that if 〈F1, D1〉 is a general sub-
frame of 〈F2, D2〉 , then the inclusion map i : X1 → X2 is a strong bounded
morphism.
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