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Abstract—A field campaign was carried out to evaluate the Soil
Moisture (SM) MIR_SMUDP2 product (v5.51) generated from
the data of the Microwave Imaging Radiometer using Aperture
Synthesis (MIRAS) aboard the Soil Moisture and Ocean Salinity
(SMOS) mission. The study area was the Pampean Region of
Argentina, which was selected because it is a vast area of flat-
lands containing quite homogeneous rain-fed croplands, which
are considered SMOS nominal land uses and hardly affected by
radio-frequency interference contamination. Transects of ground
handheld SM measurements were performed using ThetaProbe
ML2x probes within four Icosahedral Snyder Equal Area Earth
(ISEA) grid nodes, where permanent SM stations are located.
The campaign results showed a negative bias of −0.02 m3m−3

between concurrent SMOS data and ground SM measurements,
which means a slight SMOS underestimation, and a standard
deviation of ±0.06 m3m−3. Additionally, a good correlation was
obtained between the handheld SM measurements taken during
the campaign and the permanent SM station data within a node,
which pointed out that the station data could be used as reference
data to evaluate the SMOS product over a longer temporal pe-
riod. SMOS-retrieved data were also compared with station mean
SM values from 2012 to 2014. A general SMOS underestimation
of −0.05 m3m−3 was observed, with a standard deviation of
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±0.04 m3m−3, which yields an uncertainty of ±0.07 m3m−3 for
the SMOS product. Although the random error meets the SMOS
mission’s goal of ±0.04 m3m−3, the product overall uncertainty
is higher than that due to the significant dry bias, which is also
found in other regions of the world.

Index Terms—Ground measurements, product evaluation, Soil
Moisture and Ocean Salinity (SMOS), soil moisture (SM).

I. INTRODUCTION

THE European Space Agency’s (ESA) Soil Moisture and
Ocean Salinity (SMOS) mission was launched in Novem-

ber 2009 as part of the ESA’s Living Planet Programme [1],
[2]. Developed to further understand the Earth’s water cycle,
the second Earth Explorer Opportunity mission aims to con-
tribute to weather and extreme event forecasting by providing
global soil moisture (SM) data over land and salinity over
oceans [1], [2]. The Microwave Imaging Radiometer with
Aperture Synthesis (MIRAS) instrument aboard the SMOS
mission is a passive radiometer that detects microwave ra-
diation emitted from the Earth’s surface with a frequency
of 1.41 GHz (wavelength of 21.2 cm; L-band). SMOS has
a sun-synchronous quasi-circular orbit, with a 23-day repeat
cycle, although a complete set of global measurements cor-
responds to an approximate three-day temporal resolution
using both ascending and descending passes [1]. The aver-
age spatial resolution for SMOS-MIRAS (3-dB half-power
beamwidth) is approximately 40 km. However, ground in-
stantaneous field of views (GIFOVs) varies between roughly
27 km at nadir and 55 km at the edges of the observation
swath [3].

The principle of the SMOS Level-2 (L2) retrieval algorithm
over land is to exploit multiangular and bipolarization data in
order to simultaneously retrieve two main surface parameters:
the SM and the vegetation optical depth, which is related to
the vegetation biomass [4]. Since multiangular data (i.e., with
different GIFOVs) are used in the retrieval algorithm, SMOS
L2 data are represented over the fixed ISEA-4H9 grid, with
equally spaced nodes at 14.989 km, which are usually referred
to as discrete global grid (DGG) nodes [3], [4]. SMOS SM
is provided as an SM L2 User Data Product (MIR_SMUDP2)
[3], [5]. The SMOS L-band has a typical contributing depth of
2–5 cm [1], [6], [7], which results in a more stable SM value
over the diurnal cycle than SM from other sensors with shorter
wavelengths (e.g., AMSR-E X-band channel, with a frequency
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of 10.65 GHz and a wavelength of 2.8 cm, used in most
AMSR-E SM algorithms) [8]. In addition, the effects of veg-
etation (in particular attenuation), as well as surface roughness
and atmosphere, are less significant at longer wavelengths [8].
A detailed description of the MIR_SMUDP2 algorithm used to
retrieve SM from the SMOS data is provided in [1], [3], and
[5]. Using an initial SM guess and auxiliary data, brightness
temperatures are modeled by means of the L-band Microwave
Emission of the Biosphere (L-MEB) model [9]. SM is then
retrieved by minimizing a cost function between modeled and
SMOS measured multiangular brightness temperatures [3], [4].

Although the aim of the SMOS mission is to provide
volumetric SM values within ±0.04 m3m−3 [4], some pre-
vious papers have shown substantially higher uncertainties.
Dall’Amico et al. [10] found a SMOS data dry bias be-
tween 0.11 and 0.3 m3m−3 in the upper Danube catchment in
South Germany, and Gherboudj et al. [11] observed a SMOS
SM underestimation with an RMSE varying from 0.15 to
0.18 m3m−3 for agricultural and boreal forest sites in Canada.
However, other papers pointed out that SMOS SM estimates are
approaching the level of performance anticipated [8], [12]–[14],
mainly for nominal land covers, i.e., bare soils or low vegetation
(grass and crops with vegetation heights not exceeding 1 to 2 m,
by opposition to trees) [3], [11].

In this paper, a specifically designed field campaign was
carried out to test the SMOS MIR_SMUDP2 product in ex-
tensive rain-fed croplands in the Pampean Region of Argentina
(PRA). In such rain-fed croplands, where most of world food
grain production is obtained (with a world harvested extension
of 516 million ha among wheat, maize, and soybean crops in
2013 according to FAO; http://faostat3.fao.org/), an accurate
monitoring of SM spatial and temporal variability is essential
to estimate crop yield (since the main cause of crop yield insta-
bility is the dependence on SM variability), plan the planting,
and evaluate the regional water and energy balances [15], with
SM being a key input variable in water balance models. Since
these crops play a considerable role in global food security,
their preharvest yield prediction is fundamental for support-
ing export–import policies. In addition, no evaluation of the
SMOS SM product were carried out before in South America
[14], where the radio-frequency interference (RFI) contamina-
tion is rather weak (both for ascending and descending over-
passes), as can be observed in http://www.cesbio.ups-tlse.fr/
SMOS_blog/smos_rfi. RFI deteriorates the SMOS data quality
with a significant impact in some regions of the world, e.g., in
Europe [11], [12].

We evaluated the version 5.51 of the SMOS MIR_SMUDP2
product. Most of the aforementioned references used product
versions previous to the v5.51, and the aim of this paper is to
estimate the soundness of this operational version to monitor
the SM variability in rain-fed croplands. The main difference
between version 5 and the previous version 4 is an improve-
ment of the RFI detection algorithm, which uses a temperature
threshold linked to the surface expected emissivity rather than a
fixed threshold [5]. The main difference between v5.51 (v5.50)
and v5.01 (v5.00) is the change of the dielectric constant model,
from the Dobson Model with Peplinski’s modification to the
Mironov formulation [5], [16], with the aim of improving SM

TABLE I
EXPERIMENTAL SITES CORRESPONDING TO FOUR SMOS DGG NODES.

SAMPLING DAYS CONCURRENT WITH SMOS OVERPASSES, BOTH

ASCENDING (10:30–11:00 UTC; 7:30–8:00 LOCAL TIME) AND

DESCENDING (21:30–22:00 UTC; 18:30–19:00
LOCAL TIME), DURING THE FIELD CAMPAIGN IN FEBRUARY 2013

estimates, with better and more successful retrievals over dry
warm surfaces, and reducing extreme values of SM.

The experimental campaign was performed in Summer 2013,
i.e., with quite dry and warm surfaces in the study region. Dur-
ing the campaign, handheld SM measurements were carried out
along transects, which were first used to test the MIR_SMUDP2
product. Then, continuous SM data logged by stations perma-
nently installed in the study region were additionally used to ex-
tend the evaluation period to two and a half years (2012–2014).
Since the difference between SMOS ascending and descending
retrievals remains unclear [8], [13], and [17], evaluation results
of both ascending and descending overpass data were assessed
separately to investigate possible differences on the SM product
accuracy depending on acquisition time.

This paper is organized as follows. Section II describes the
experimental sites, the measurement strategy, the instrumenta-
tion, and the SMOS and ground data comparison methodol-
ogy. Section III shows results and discussion of the product
evaluation when using handheld SM measurements acquired
during the campaign and the SM time series collected by the
stations as reference data. Finally, Section IV summarizes the
main conclusions drawn from this paper.

II. EXPERIMENTAL SITES, METHODOLOGY,
AND INSTRUMENTATION

Experimental sites were located in the Córdoba and Buenos
Aires provinces. Geographically, the PRA spans a vast area of
flatlands (with slopes lower than 1%), avoiding strong topog-
raphy effects [18], containing mainly homogeneous soybean
cultivations, with scattered maize crops. The land cover of
this area corresponds mainly to rain-fed croplands, as observed
from the ESA’s GlobCover land cover map [19]. The height
of vegetation varies from 1 to 2 m; thus, land cover can be
considered nominal land cover (low vegetation), for which
SMOS L2 products provide reliable data for a nominal retrieval
configuration. Handheld SM measurements were carried out
within the areas covered by four specific ISEA-4H9 DGG nodes
in the described area during the campaign. Table I shows the
assigned names to the SMOS nodes, their DGG IDs, and their
central geographical coordinates. The four nodes cover exten-
sive agricultural areas with prevalence of soybean cultivations.
The test sites were selected by taking as reference the locations
of stations permanently installed for the continuous acquisi-
tion of SM data. Fig. 1 shows the locations of the selected
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Fig. 1. Locations of the selected DGG nodes (black polygons) and the permanent stations near or inside them (white circles) in the PRA, shown over a TVDI
map generated from MODIS products (10–25 February 2012).

DGG nodes and the permanent stations near or inside them.
They have been shown over a map of temperature vegetation
dryness index (TVDI) [15], which is strongly correlated with
subsurface SM, generated from EOS-MODIS data. The stations
are property of the Argentinean CONAE, Instituto Nacional de
Tecnología Agropecuaria (INTA, National Institute of Farming
Technology), and Instituto de Hidrología de Llanuras (IHLLA,
Plain Hydrology Institute). There are five stations within the SN
node, with SN being the selected node with the highest number
of stations inside.

A. Field Campaign

The duration of the field campaign was one month
(February 2013). Table I includes the days when handheld SM
measurements were taken concurrently with SMOS overpasses
in the different selected nodes. Additionally, SM measurements
were carried out at the nodes even when no SMOS overpasses

were scheduled for the experimental sites with the aim of
monitoring the SM temporal evolution.

Handheld measurements were taken along transects at the
SMOS overpass times for each specific node, for both ascend-
ing (10:30–11:00 UTC; 7:30–8:00 local time) and descending
overpasses (21:30–22:00 UTC; 18:30–19:00 local time). We
selected six parcels (with a minimum size of 0.5× 0.5 km2)
spatially distributed within each node. Although the campaign
was performed in extensive flat and homogeneous rain-fed
agricultural areas, the parcels were specifically selected to give
representative measurements of the whole nodes by taking into
account land cover, soil type, and crop fractions within each
node. Soil type was analyzed using soil order and texture maps
provided by INTA (http://geointa.inta.gov.ar/visor). The main
textural classes (following the U.S. Department of Agriculture
(USDA) Seventh Approximation Soil Classification System) in
the region were loam, clay loam, and silt loam samples, and the
main soil order was mollisol. Table II shows the fractions of the
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TABLE II
CROP COVERS AND SOIL TEXTURAL CLASSES PER NODE AND FOR EACH EXPERIMENTAL PARCEL

main textural classes in each selected DGG node. Additionally,
textural classes and clay, silt, and sand percentages measured
in laboratory for soil samples collected in the different experi-
mental parcels during the campaign are shown in Table II.

Soybean and maize parcels have different spectral signatures,
as obtained from the reflective bands 1–5 and 7, i.e., visible and
near-infrared bands (from 0.45 to 2.35 μm), of the Landsat-7
Enhanced Thematic Mapper Plus instrument (ETM+). There-
fore, Landsat-7 ETM+ images of January–February 2013 were
used to classify land covers and estimate node crop covers
(> 90%) and fractions of different crop types (mainly soybean
cultivations). Crop cover fractions were checked by using of-
ficial statistical data of the Ministry of Agriculture, Livestock
and Fisheries (Argentina) (http://www.siia.gov.ar/) and by prior
field inspections. Table II shows crop fractions estimated per
node and the crop type for each experimental parcel. Ad-
ditionally, as SMOS brightness temperature varies with land
surface temperature (LST), EOS/Terra-MODIS MOD11_L2
LST products [20] (13:30–14:30 UTC; time of maximum LST
variability) were used to test the homogeneity of the selected
DGG nodes and LST standard deviations lower than 1–1.5 K
were obtained for them.

Two research teams conducted measurements at the same
time over one of the selected DGG nodes to constrict the mea-
surement time to a 1-h period centered at each SMOS overpass
time. Each team followed a route within the node and measured
in three of the six parcels selected in the node for a period of
around 15 min each one. As an example, Fig. 2 shows the SN
node, outlined in white, together with the six selected parcels
where measurements were done outlined in yellow and the
routes followed by the two teams in blue. One team measured
in parcels E, F, and G and the other measured in parcels H,

I, and J. SM measurements were recorded every 10 m along
three transects within each individual parcel at the same time,
first moving towards the center of the parcel in parallel tracks;
thereafter, one would continue straight ahead, and two of them
would branch out at 90◦ continuing in opposite directions until
the parcel borders. Measurements on crop rows and between
them were collected to take into account the row crop SM
variability, mainly in maize parcels. Around 30 measurements
were accumulated in each transect, i.e., 90 measurements per
parcel. Finally, more than 500 SM measurements were acquired
per node per SMOS overpass.

Ground SM measurements were collected using Delta-T
ThetaProbe ML2x SM probes [21]. The ML2x SM probe
has four 60-mm-long sharpened stainless-steel rods that are
inserted into the soil, providing a SM measurement within
seconds. Because the dielectric constant of water (∼81) is very
much higher than that of soil (typically 3 to 5) and air (1) for low
frequencies (i.e., up to around 2–3 GHz), the dielectric constant
of a soil sample is determined primarily by its water content,
which is also the basis for the SMOS SM retrieval technique.
The correlation between the square root of the real part of the
dielectric constant and volumetric SM content (θv) has been
shown to be linear for many soil types and over what can be
considered a practical range of water content [22]–[24]. θv is
derived with the ML2x SM probe by responding to changes
in the apparent dielectric constant, which comprises almost
exclusively the dielectric constant’s real part. The ML2x SM
probes have been widely used for research purposes, e.g., by the
International SM Network (http://ismn.geo.tuwien.ac.at/). The
ML2x probe has a θv uncertainty of ±0.01 m3m−3 after cali-
bration to a specific soil type, and of ±0.05 m3m−3 when using
a generalized calibration according to the manufacturer [21].
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Fig. 2. SN node outlined in white, together with parcels where SM measurements were carried out along transects outlined in yellow and the two team routes in
blue. White circles show the permanent station locations inside the node (S1–S5). The background image is a color composition of Landsat-7 ETM+ reflectance
in band 432 on February 12, 2013. This color composition shows soybean crops in light red and maize crops in darker red.

We tested the calibration of the ML2x probes used during
the campaign in the laboratory by using the gravimetric method
[25], [26] and a representative variety of soil samples collected
from the experimental parcels (loam, clay loam, and silt loam
samples) (see Table II). The method involves measuring the
mass of water present in a soil sample as a ratio of the mass
of dry soil in it, and provides a result in terms of gravimetric
SM content that can be converted to θv by considering the
bulk density of the sample. The soil samples were saturated,
and since that moment, they were freely dried at laboratory
temperature (∼20 ◦C). The θv was measured several times
for each soil sample during the drying process using a ML2x
probe and by measuring masses up to the lowest sample weight
(constant during three days); then, the sample was artificially
dried. The bulk density was measured for each sample as the
ratio between dry mass, which was obtained after drying the
sample in an oven at 105 ◦C for 48 h, and volume. Fig. 3 shows
examples of the calibration results for three different samples
and probes. Sample 1, which was collected in the node BE
(parcel N), corresponds to a loam soil with a bulk density of
1.26 g · cm−3; sample 2, which was collected in the node SN
(parcel E), was a clay loam sample with a bulk density of 1.22
g · cm−3; and sample 3, which was collected in the TA node
(parcel V65), was a silt loam sample with a bulk density of 1.29
g · cm−3. Similar results were obtained for the other samples
and probes. Linear regression equations with the corresponding
fitting errors (i.e., the standard error for the dependent vari-

able estimate), biases between reference and ML2x probe θv
data (i.e., the average of the differences), and RMS difference
(RMSD, i.e., (bias2 + SD2)

1/2
, with SD being the standard de-

viation of the differences) are included in Fig. 3. The calibration
results showed accurate operations for the ML2x probes, which
attain uncertainties lower than ±0.017 m3m−3, in agreement
with the manufacturer [21].

Additionally, the θv data obtained by each probe that tran-
sects in each parcel were checked by collecting soil samples
in the parcels at the same time and by using the gravimetric
method to obtain reference values. The main textural class of
the collected soil samples in the experimental sites was loam,
with some clay loam and silt loam samples (see Table II).
Fig. 4 shows the θv reference values obtained for the different
experimental parcels where samples were collected against the
average values of transects measured in the parcels by three
different ML2x probes (called A, B, and C) as an example. The
θv reference values are averages for five soil samples collected
in each parcel. Standard deviations for each probe transect
and for the five soil samples collected per parcel were also
assessed, with mean values of ±0.02 m3m−3 in both cases. The
error bars included in Fig. 4 show those standard deviations.
Fig. 4 shows that all the probe measurements follow the line
1:1 (with a linear regression coefficient of determination, r2, of
0.89), with residuals from 1:1 line within measurement uncer-
tainties in general. RMSDs and fitting errors ≤ ±0.03 m3m−3,
with negligible biases, were obtained for all the data together



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 3. Examples of the laboratory calibration procedures carried out for
the ML2x probes using as reference SM measurements carried out with the
gravimetric method (see text). A, C, and D probes are three of the ML2x
probes used during the campaign, and samples 1–3 were collected in some of
the selected parcels and correspond to loam, clay loam, and silt loam soils,
respectively.

and for the different probes separately. It shows the accurate
operation of the ML2x probes in field conditions, which provide
θv with an uncertainty within ±0.03 m3m−3. Therefore, these

Fig. 4. Test of the ML2x probe operation in the experimental parcels (example
for three different ML2x probes, A–C). Reference θv values obtained by using
the gravimetric method on field-collected samples against concurrent averages
of transect data in all the experimental parcels described in Table II.

results validate the manufacturer calibrations for the soils in the
experimental sites.

B. Permanent SM Stations

The permanent stations located in the study region mea-
sure SM data with Stevens Hydra Probe II probes [24], [27],
which have been also widely used for research (http://ismn.
geo.tuwien.ac.at/). The CONAE permanent stations contribute
with SM Cal/Val activities to the NASA’s SM Active Passive
(SMAP) mission since CONAE is a SMAP Cal/Val Partner.
Data measured at the surface (within the first 5-cm soil depth)
by five stations located in the SN node were used in this
paper since the SN node is the one with most stations inside.
Table III shows station locations and soil textural classes and
crop types in the parcels where they are located, which have a
minimum size of 0.7× 0.7 km2 and are spatially homogeneous.
The Hydra Probe II has a θv uncertainty of ±0.03 m3m−3

according to the manufacturer [24], [28]. The manufacturer
recommends the use of a linear relationship between θv and
the square root of the real dielectric constant with specific
calibration coefficients for loam soils, which is appropriate for
loam, silt loam, clay loam, silty clay loam, sandy clay loam,
sandy loam, and some medium textured clay soil samples. This
relationship is used to obtain θv from the station probe data
since it is suitable for all the textural classes present in the study
region. Additionally, the Hydra Probe II performance was eval-
uated by using the gravimetric method, as described earlier, to
obtain reference θv values in the parcels where the stations are
located in field conditions. Linear correlations were obtained
between reference and probe θv data for each individual parcel
(in the range from 0.05 m3m−3 to 0.4 m3m−3), with r2 of
about 0.83 and fitting errors and RMSDs of ±0.03 m3m−3, in
agreement with the uncertainty given by the manufacturer.
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TABLE III
LOCATIONS, SOIL TEXTURAL CLASSES, AND CROP TYPES FOR THE PERMANENT STATIONS IN THE SN NODE

C. SMOS and Ground Data Comparison Methodology

Volumetric SM content θv values were extracted from con-
current SMOS MIR_SMUDP2 products (v5.51) for the four
experimental nodes throughout the field campaign duration,
i.e., February, 2013 (see Table I). Additionally, values of the
data quality index (DQX), which includes an estimate of the
theoretically retrieved standard deviation [5], were also ex-
tracted for the SMOS-retrieved θv data. RFI probabilities were
much lower than 10% for all the cases (≤0.015). Average values
and standard deviations of all the handheld θv measurements
collected in each node during the campaign (i.e., using the mea-
surements taken by each probe along transects in the different
parcels within the node) were assessed to be compared with
the SMOS MIR_SMUDP2 θv data. The uncertainty assigned
to the average values per node of the handheld measurements
involves the calibration uncertainty of the ML2x probes (see
Section II-A) and the variability of the measurements per node
for each SMOS overpass.

During the campaign, handheld measurements along tran-
sects were carried out in the parcels where SM stations were
permanently located, mainly in those within the SN node. The
comparison of station data with averages of transect measure-
ments at the station parcels show an average θv difference of
−0.003 m3m−3, with a standard deviation of the differences
of ±0.03 m3m−3. This comparison results show the station
SM data reliability as a parcel measurement. However, these
measurements were also used to check the validity of the data
provided by the stations in a given node to give an SM value
representative of the whole node. The objective was to use node
representative data obtained from station data series as ground
reference to evaluate the SMOS SM product beyond the field
campaign term. Since the SN node have five stations inside,
unlike the other nodes (see Fig. 1), a comparison between the
average of the transect data measured in the different parcels
within this node and the average of the θv data provided by the
five stations (four in soybean parcels and one in a maize parcel,
as shown in Table III) was performed to analyze the station data
representativeness at node scale. Station data are acquired at
hourly intervals, and they were temporally interpolated (with a
cubic spline method) to the handheld measurement times. The
mean bias of the differences between node average handheld
and station measured θv was negligible, −0.002 m3m−3, with
a standard deviation of ±0.02 m3m−3. A good correlation
was obtained between both data, with r2 = 0.98 and a linear
regression fitting error of ±0.010 m3m−3. The data agreement
points out that the mean data of the stations located inside the
SN node can be considered representative θv data for the node
to evaluate the SMOS MIR_SMUDP2 product over a longer

Fig. 5. Time series of the SMOS-retrieved θv data and average values of all
the handheld measurements acquired within the two nodes with the majority of
data collected during the campaign (i.e., SN and BE nodes). Data acquired in
both SMOS ascending (10:30–11:00 UTC) and descending (21:30–22:00 UTC)
overpasses are shown as solid and empty diamonds, respectively. TRMM 3-h
accumulated precipitation data are shown in the secondary axis.

period. Section III-B shows the evaluation of the product when
comparing with mean station data acquired in the SN node from
June 2012 to December 2014.

III. RESULTS AND DISCUSSION

A. Evaluation With Handheld Measurements

Fig. 5 shows the evolution of the SMOS-retrieved θv data
together with the average values per node of the handheld
measurements at nodes SN and BE, for which the majority
of ground measurements were taken during the field campaign
(see Table I). SMOS data error bars show the MIR_SMUDP2
product DQX values, and error bars for node average ground
data show the measurement uncertainty assessed, as described
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in Section II-C. Fig. 5 shows an overall correlation in the
temporal evolution of the time series for node average ground
data and SMOS-retrieved data for both nodes. Handheld θv
measurements taken at these nodes even with no concurrent
SMOS overpasses are also included in Fig. 5 to monitor the
θv temporal evolution. Some sampling days with and without
SMOS overpasses, such as those on day 12 (see Table I), were
measured at the other nodes. SMOS-retrieved data for the SN
and BE nodes were very similar early in the month, as was
expected considering the proximity of the nodes (∼60 km)
and the similarity with respect to vegetation and soil types
(dominated by soybean crops and loam soils). Then, the SMOS
values for the BE node dropped to near-zero values at the end
of day 7 and during day 10 (both at ascending and descending
overpass time). Further in the month, θv increased for both
nodes starting around day 13, with BE once more displaying
substantial variability as SMOS-retrieved θv peaked at an ex-
treme value of 0.62 m3m−3, after which the values decreased
to around 0.4 m3m−3. The difference between the data for
the nodes demonstrated the variability of SMOS values over
similar regions, mainly due to local meteorological differences.
Fig. 5 also shows 3-h and 0.25◦ × 0.25◦ accumulated precipita-
tion data provided by the Tropical Rainfall Measuring Mission
(TRMM), TRMM_3B42.007 product [29], for the SN and BE
node locations. Despite the relatively coarse spatial resolution,
these data show differences in the accumulated precipitations
for the two nodes. Rain events were registered on the 13th
from midday, on the 16th evening, and on the 17th. Rain events
showed higher intensity for the BE node, with the 16th–17th
event explaining the extreme SMOS value for this node.

In general, SMOS seems to underestimate ground data for
both nodes. However, following the SMOS θv peak at the BE
node, ground values are lower than SMOS data. When rain
occurs, it wets the layer from the surface, and a thin saturated
soil layer can result in a contributing depth that is shallower
than 5 cm [6], [8]. In this case, the reduction of the contributing
depth results in overestimating handheld measurements col-
lected from 0 to 5 cm. Following a rainfall event, the SM
within the surface soil layer will equilibrate through drainage
and hydraulic redistribution. The time required to reach this
state depends on the antecedent conditions, the intensity of
precipitation, and the soil hydraulic properties [8]. Therefore,
the rainfall events on the 16th–17th could explain the SMOS
overestimation for the two last ground data at the BE node.
However, this is not the case for the two last ground data at
the SN node, where an SMOS underestimation is still observed
after the rainfall event on the 13th, probably due to the lower
accumulated precipitation in this area.

The effect of the different crop types within a node was
investigated by comparing parcel average ground θv values, i.e.,
the averages of the handheld measurements taken in each indi-
vidual parcel, within the SN node. Fig. 6 shows the evolution
of the parcel θv averages for the different parcels in the SN
node, with the dotted lines corresponding to parcels containing
maize and the solid lines to soybean crops. The data associated
with maize crops do not noticeably deviate in comparison to
soybean crops, implying that they do not have a major effect
on the node values. The same conclusion was drawn from data

Fig. 6. Average θv of the handheld measurements taken along transects in the
different parcels (called E–J) within the SN node (details in Table II). Dotted
and solid lines for maize and soybean parcels, respectively.

Fig. 7. SMOS-retrieved θv data against average θv values of all the handheld
measurements acquired within a node concurrently with each SMOS overpass
during the campaign. Data are plotted per node and for SMOS ascending (solid
symbols) and descending (empty symbols) overpasses separately.

of the other nodes. There was no trend observed with parcel
crop. Neither there was any general trend with soil type, maybe
due to the similarity of parcel textural classes (see Table II). A
noticeable feature of Fig. 6 is the negative correlation between
θv and the spread of measured values. The values across parcels
are most similar for the large θv at day 15 (with a mean θv of
0.311 m3m−3 and a standard deviation of ±0.018 m3m−3 for
all the parcels), whereas the spread of values for drier soils, e.g.,
at day 11, is substantially larger (with a mean θv of 0.14 m3m−3

and a standard deviation of ±0.04 m3m−3 for all the parcels),
which is apparently not crop related. In any case, the variability
among parcels was taken into account in the estimation of the
node ground θv uncertainties (see Section II-C), shown as error
bars in Fig. 5.

Fig. 7 shows the correlation between SMOS-retrieved data
and the concurrent node average ground values for the four
experimental nodes and SMOS ascending (solid symbols) and
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descending (empty symbols) overpasses, with the dotted line
representing the 1:1 relationship. A linear fit of all the data
is shown as a solid line, which equation has a relatively high
coefficient of determination (r2) of 0.83 and a fitting error
of ±0.06 m3m−3. Fig. 7 seems to show a tendency of the
SMOS data to underestimate θv values for soils with low
to moderate θv , and to slightly overestimate values for soils
with high θv, although this will be further discussed with a
larger data set in Section III-B. This figure also reflects larger
amplitude of SMOS data compared with ground measurements,
which is in part explained by the aforementioned possible
differences in contributing depth between SMOS-retrieved and
ground data. The following linear equation is obtained when
data are inversely plotted, i.e., node average ground θv as
a function of SMOS-retrieved θv: θv = a · θv,SMOS + b, with
a = 0.66± 0.10, b = 0.08± 0.02 m3m−3, and a fitting error
of ±0.04 m3m−3. From all the data, a bias (i.e., the average dif-
ference between the SMOS-retrieved and node average ground
measured θv data) of −0.02 m3m−3 is obtained, showing how
the majority of SMOS-retrieved values underestimate ground
measurements. The standard deviation of the differences is
±0.06 m3m−3, obtaining an RMSD of ±0.06 m3m−3. These
results are in agreement with those obtained in [4], [12],
and [13], and much better than those in [10] and [11]. The
differences observed between our results and those in previ-
ous studies can be a consequence of several factors, such as
the improvement offered by the latest version of the SMOS
MIR_SMUDP2 product (v5.51), the level of RFIs (our exper-
imental sites are hardly affected, unlike, e.g., the study region
in [10]), the measurement quality and representativeness at the
SMOS spatial resolution (since the study region is a quite ho-
mogeneous rain-fed and flat cropland area that enables it), and
the good quality of auxiliary data files such as ECOCLIMAP
land cover and FAO soil properties in the region. All these
factors make the study area a suitable site to evaluate the
performance of the SMOS SM retrieval algorithm in itself, as
uncertainties originating from external factors are minimized.
Differences between the SMOS-retrieved and node average
ground measured θv data of −0.01± 0.06 m3m−3 and −0.04±
0.06 m3m−3 are obtained separately for the data acquired by
SMOS ascending (50% of events) and descending overpasses,
which lead to similar RMSDs of ±0.06 and ±0.07 m3m−3,
respectively.

B. Evaluation With Permanent SM Station Data

SMOS-retrieved θv data, both acquired with the SMOS
ascending and descending overpasses, were also compared with
station mean θv values for the SN node for two and a half
years of available station data (from June 2012 to December
2014) (see Fig. 8). SMOS data with DQX > 0.03 m3m−3 were
filtered out for the study (still remaining the 97.5% of the
data, with a mean DQX value of 0.007± 0.004 m3m−3 for the
whole period). RFI probabilities were ≤ 0.015, both for SMOS
ascending and descending overpass data. Fig. 8 shows a general
underestimate by the SMOS product, both for ascending and
descending overpasses, without significant differences. Similar
r2 values were obtained in both cases, with values of 0.644

Fig. 8. SMOS-retrieved θv against station mean θv at the SN node for the
whole study period (June 2012–December 2014). SMOS data in ascending
and descending overpasses are shown as solid diamonds and empty circles,
respectively. Linear regression equations are shown together (see statistical
results in Table IV).

and 0.653 for ascending and descending data, respectively.
The following linear equation was obtained when data were
inversely plotted, i.e., fitting reference station mean θv as a
function of SMOS-retrieved θv (for ascending and descend-
ing overpasses altogether): θv = a · θv,SMOS + b, with a =
0.695± 0.019, b = 0.117± 0.004 m3m−3, r2 = 0.636 and a
fitting error of ±0.04 m3m−3. This expression can be used
to adjust the MIR_SMUDP2 v5.51 product data for the study
region.

Table IV shows statistics for the differences between SMOS-
retrieved data and station mean θv values for the SN node (June
2012–December 2014). The statistics include: number of cases
(N), mean bias (mean), standard deviation (SD), root-mean-
square difference (RMSD), median bias (Me), robust standard
deviation (RSD), i.e., RSD = Me(|xi − Me(xi)|) ∗ 1.4826,
where x = SMOS θv—mean station θv [30], robust RMSD (R-
RMSD), i.e., R-RMSD=(Me2+RSD2)

1/2
, minimum (min),

maximum (max), skewness, kurtosis, and coefficient of deter-
mination (r2). Me and RSD minimize the influence of possible
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TABLE IV
DIFFERENCES BETWEEN SMOS-RETRIEVED DATA AND STATION MEAN

θv VALUES (IN m3m−3) FOR THE SN NODE AND THE WHOLE STUDY

PERIOD (JUNE 2012–DECEMBER 2014). THE STATISTICS INCLUDE:
NUMBER OF CASES (N), MEAN BIAS (MEAN), STANDARD

DEVIATION (SD), RMSD (RMSD = (mean2 + SD2)
1/2

) MEDIAN

BIAS (ME), AND ROBUST STANDARD DEVIATION (RSD,
RSD =Me(|xi−Me(xi)|) ∗ 1.4826, WHERE x = SMOS θv—MEAN

STATION θv ), ROBUST RMSD(R-RMSD =(Me2 + RSD2)1/2),
MINIMUM (MIN), MAXIMUM (MAX), SKEWNESS, KURTOSIS, AND

COEFFICIENT OF DETERMINATION (r2). RESULTS FOR SMOS DATA

ACQUIRED IN ASCENDING AND DESCENDING OVERPASSES

ARE ALSO ANALYZED SEPARATELY

outliers and can be considered statistically more consistent
validation parameters than mean and SD [31], although the
similarity between mean and median and between SD and
RSD denotes a small effect of outliers in this case. Skew-
ness and kurtosis quantitatively describe the distribution of the
differences between SN-node SMOS-retrieved θv and station
mean θv and explain the small discrepancies between mean and
median and SD and RSD. The distributions passed successfully
a Kolmogorov–Smirnov test with the Lilliefors significance
correction and a Shapiro–Wilk test [32], [33], which means
that they fit to a normal distribution, and the statistics used de-
scribes properly the evaluation results. A Me of −0.05 m3m−3,
which means a SMOS general underestimation, and an RSD
of ±0.04 m3m−3 are finally obtained from the differences
between the SMOS-retrieved data and station mean θv values
for all the concurrent data over the study period, with a R-
RMSD of ±0.07 m3m−3. The R-RMSD, as a quadratic sum of
systematic and random errors, gives an estimate of the SMOS
product agreement with the reference station data and can be
considered the product accuracy at the study region.

Table IV also includes the statistics when results are sep-
arated for SMOS ascending and descending overpasses. Me
values of −0.07 and −0.04 m3m−3 are obtained for data in
ascending and descending overpasses, respectively, with RSDs
of ±0.04 m3m−3. Although the implied R-RMSDs in SMOS-
retrieved data (of ±0.08 m3m−3 and ±0.06 m3m−3 for as-
cending and descending overpasses, respectively) are higher
than the SMOS mission’s goal of ±0.04 m3m−3, these results
show relatively high accuracy for the MIR_SMUDP2 product.
It should be noted that the negative biases observed (i.e.,

Fig. 9. SMOS-station mean θv differences at the SN node against SMOS-
retrieved θv data are shown in the primary axis, together with the SMOS θv
uncertainties, shown as DQX in the MIR_SMUDP2 product, in the secondary
axis (crosses). SMOS data in both ascending (solid diamonds) and descending
(empty circles) overpasses are shown separately.

systematic errors) increase the R-RMSDs above the mission’s
goal since the random errors (estimated with the RSDs) equal
this goal, such as in [13].

Fig. 9 shows the SMOS—mean station θv differences against
SMOS-retrieved θv data for the SN node and for ascending and
descending overpasses separately, together with the SMOS θv
uncertainties, shown as DQX in the MIR_SMUDP2 product,
in a secondary axis. A clear tendency for the differences to
decrease in absolute value with increasing SMOS θv values
is observed, i.e., the differences are larger for lower SMOS
θv values, but the same pattern is not encountered in the case
of SMOS DQX θv uncertainties. As mentioned earlier, DQX
θv uncertainties are calculated during the product retrieval
process based on known error sources, such as the radiomet-
ric accuracy of the SMOS acquired brightness temperatures,
and their propagation through the modeling process. Possible
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Fig. 10. Comparison of the SMOS-retrieved θv data, in both ascending (solid squares) and descending (empty squares) overpasses, and concurrent station mean
θv data for the SN node, together with accumulated precipitation data from a near WMO station called Marcos Juarez (daily) and TRMM data (3-hourly and
0.25◦ × 0.25◦), over two periods of 2013. (a) Days 30–130 (summer) and (b) 225–325 (winter–spring).

SMOS users should be aware of the observed tendency in such
surface conditions, with a larger SMOS underestimation for
lower SMOS values, since it is not reflected in the estimate of
the uncertainty included in the DQX data.

Fig. 10 shows, as an example, a comparison of the SMOS-
retrieved and station mean θv data for the SN node, together
with precipitation data, over two periods of 2013. The precip-
itation was obtained from two sources: (a) daily accumulated
precipitation from the Marcos Juarez station (station number
87467, 32◦42′S, 62◦09′W, 45 km from the SN node center)
included in the World Meteorological Organization (WMO)
World Weather Watch Program according to WMO Resolution
40 and provided by the NOAA National Climatic Data Center
(NOAA-NCDC) (http://www7.ncdc.noaa.gov/CDO/cdoselect.
cmd), and (b) 3-h and 0.25◦ × 0.25◦ accumulated precipitation
from the aforementioned TRMM_3B42.007 product, which
data covers spatially the SN node. Fig. 10 shows that SMOS
reproduces the θv temporal evolution reasonably well and
SMOS θv generally increases after significant precipitation
events [e.g., see days 285, 305, and 312 in Fig. 10(b)], al-
though in some cases, the difference between station mean

and SMOS θv data seems to increase after them [e.g., see
days 47 and 91 in Fig. 10(a)]. The largest range of SMOS-
station mean θv differences are observed after precipitation
events, obtaining differences from −0.20 to +0.05 m3m−3.
Moreover, Fig. 10(b) shows that SMOS data present a high
temporal variability even in periods without significant precip-
itation events, e.g., in days 225–285, when only the SMOS
peak after the low precipitation event in day 272 (not repro-
duced by the station data) could be correlated with rainfall.
During this period, the SD of SMOS θv is ±0.03 m3m−3

for ascending and descending overpass data altogether, with
a difference between the maximum and the minimum (max-
min) of 0.12 m3m−3, whereas an SD of ±0.011 m3m−3 and a
max-min of 0.04 m3m−3 were obtained for the station mean
θv data. When SMOS data is separated into ascending and
descending overpasses, SDs of ±0.03 m3m−3 are obtained
in both cases during this period, with max-min differences
of ±0.12 and ±0.10 m3m−3, respectively. In general, the
higher temporal variability of the SMOS product compared
with ground measurements (see also Figs. 7 and 8) can be
consequence of the soil contributing depth sensitivity of the
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SMOS radiometric measurements to skin surface [6] (being
much shallower than 5 cm after heavy rainfalls), whereas
station probe measurement depth is constant (at the soil top
5 cm). Additionally, the drying process after important rainfalls
could be faster for SMOS data than for station data due to
different contributing depths. However, these are not likely the
reasons of the temporal variability observed in periods without
precipitation events (days 225–285), which should be better
investigated, e.g., by analyzing technical issues with SMOS
instrumentation [17] or possible leftover artifacts in the retrieval
algorithm.

IV. SUMMARY AND CONCLUSION

An experimental campaign was carried out in the PRA in
February 2013 with the aim of evaluating the latest operational
version of the SMOS MIR_SMUDP2 product (v5.51) in rain-
fed croplands, due to the importance of monitoring SM in such
land covers to improve crop yield estimation and to evaluate
water balance. Several papers have been devoted to assess the
accuracy of the MIR_SMUDP2 product (mostly for previous
versions) over different regions, but this is the first time this
is addressed in South America, where the RFI contamination
is really weak in both ascending and descending overpasses,
unlike in other validation sites used around the world [10],
[17], which makes the region optimal to study differences in
the SMOS retrievals from both orbits. Additionally, the area is
well suited to study the operation of the SMOS SM retrieval
algorithm in itself, as uncertainties originating from external
factors, e.g., topography, heterogeneities, vegetation effects,
RFI contamination, poor quality in the auxiliary data, and soil
property effects, are minimized.

The comparison of concurrent MIR_SMUDP2 data (ac-
quired in both ascending and descending overpasses) with
average values of handheld measurements taken along transects
over representative parcels within four SMOS DGG nodes
during a one-month field campaign showed a slight θv underes-
timation by the SMOS product of −0.02 m3m−3 and an RMSD
of ±0.06 m3m−3.

The good agreement obtained between averages of the hand-
held θv measurements within the SN node and concurrent
averages of the data acquired by five permanent stations within
this same node, i.e., with a negligible bias and a standard
deviation ±0.02 m3m−3, suggested the possibility of using
temporal series of the SN node mean station data to extend
the SMOS product evaluation beyond the campaign period. A
comparison of the MIR_SMUDP2 data with station mean θv
values for the SN node over two and a half years (June 2012–
December 2014) showed again a SMOS product general under-
estimation of −0.05 m3m−3 and an R-RMSD of ±0.07 m3m−3

(±0.08 m3m−3 and ±0.06 m3m−3 for SMOS data in ascending
and descending overpasses, separately).

Although it might be expected that SM has better perfor-
mance for SMOS ascending data [8], [17], due to smaller SM
and temperature gradients within the contributing depth, our re-
sults do not confirm this. No significant differences were found
between the use of data acquired in ascending and descending
orbits in our study region, such as in [8], and [13], and in

contrast to the results shown by Rowlandson et al. [17] over the
Midwest United States, where RFI contamination for ascending
orbits could influence the SMOS brightness temperatures and
the SM product results.

A tendency for the SMOS-station mean θv differences to
decrease in absolute values with increasing SMOS θv values
was observed. Moreover, even in periods without precipitation
events, a significant SMOS θv temporal variability (i.e., much
larger than the SMOS θv uncertainty provided as DQX) was
shown, which was not reproduced by the station data.

The MIR_SMUDP2 θv accuracy observed in the study re-
gion, when using both the handheld measurements and the
station data as reference data for its evaluation, is relatively
lower than the mission’s accuracy goal of ±0.04 m3m−3, due
to the significant dry bias observed (i.e., negative systematic
error), since standard deviation (i.e., random error) equal this
goal. Therefore, a general underestimation is observed for the
SMOS product, which was also observed in other regions of the
world for previous product versions (e.g., in [4] and [11]–[13]),
but despite this underestimation, SMOS seems able to monitor
the temporal evolution of ground SM data in this area of rain-
fed croplands.
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