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Abstract
The generation of abnormally high levels of reactive oxygen
species (ROS) is linked to cellular dysfunction, including
neuronal toxicity and neurodegeneration. However, physio-
logical ROS production modulates redox-sensitive roles of
several molecules such as transcription factors, signaling
proteins, and cytoskeletal components. Changes in the func-
tions of redox-sensitive proteins may be important for defining
key aspects of stem cell proliferation and differentiation,
neuronal maturation, and neuronal plasticity. In neurons, most
of the studies have been focused on the pathological impli-
cations of such modifications and only very recently their

essential roles in neuronal development and plasticity has
been recognized. In this review, we discuss the participation of
NADPH oxidases (NOXs) and a family of protein-methionine
sulfoxide oxidases, named molecule interacting with CasLs,
as regulated enzymatic sources of ROS production in
neurons, and describes the contribution of ROS signaling to
neurogenesis and differentiation, neurite outgrowth, and neu-
ronal plasticity.
Keywords: NADPH oxidase, MICAL, reactive oxygen
species, neural progenitor cells, neuronal differentiation,
NMDA receptor.
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Reactive oxygen species (ROS) have been canonically
described as toxic by-products of aerobic cellular energy
metabolism and are associated with the onset of several
diseases, particularly those related to aging such as cancer,
neurodegenerative diseases, and diabetes (Andersen 2004;
Trachootham et al. 2009; Sohal and Orr 2012). However, in
the last two decades, a growing body of evidence has clearly
established that ROS may also be important mediators of
normal cellular functions, particularly as second messengers
in multiple intracellular signal transduction pathways (Cross
and Templeton 2006; Miki and Funato 2012; Weidinger and
Kozlov 2015). In 1990, seminal work by Shibanuma et al.
(1990) provided the first evidence for the involvement of
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ROS in signal transduction by showing that platelet-derived
growth factor induces the endogenous cellular production of
ROS, which is essential for DNA replication. Multiple
reports have since been published that provide evidence that
the role of ROS in signal transduction is a common feature
shared by most organisms, tissues, and cell types (Cooper
et al. 2002; Forman et al. 2004; Chiu and Dawes 2012; Miki
and Funato 2012; Bigarella et al. 2014). Here, we will
discuss accumulating evidence supporting a role for redox-
active enzymes-mediated cell signaling in several aspects
related to the development and function of neurons.

NADPH oxidases and ROS generation in neurons

Superoxide anion radicals (O2•�), hydroxyl radicals (•OH),
peroxynitrite (ONOO�), and hydrogen peroxide (H2O2) are
the main ROS produced in cells. These molecules display
different reactivity, concentration and lifetime, and most
probably play different roles in signal transduction and
oxidative stress. Oxidation of cysteine thiol side chains
mediated by H2O2 is the most recognized and studied redox
reversible post-translational modification, whereas •OH and
ONOO- are the products of secondary reactions of H2O2 and
O2•�, respectively. Both •OH and ONOO- are highly
reactive to proteins, lipids and DNA, being mainly involved
in oxidative damage (Dickinson and Chang 2011). The
NADPH oxidase family (NOX) of redox-active enzymes
represents a regulated source of ROS in many cell types,
including neurons (Bedard and Krause 2007; Nayernia et al.
2014). These include the classical NOX enzymes, which
constitute a family of five members (NOX1–5), and two
additional proteins, named Dual oxidase (DUOX) 1 and 2.
NOX1, 2, 3, and 5 catalyze the NADPH-dependent conver-
sion of O2 to O2

•�, whereas DUOX 1 and 2 and, more
recently, NOX4 have been shown to produce H2O2 (Geiszt
et al. 2003; Gough and Cotter 2011; Takac et al. 2011).
Irrespective of the species produced primarily, most of O2

•�

turns into H2O2 enzymatically (by superoxide dismutases) or
by spontaneous dismutation (Winterbourn 2008).
ROS production mediated by NOXs has many implica-

tions in normal physiology, including the immune response,
cell signaling, hormone synthesis, and others (Bedard and
Krause 2007).
The best-characterized NOX is the NOX2 complex, which

is composed of six catalytic and regulatory subunits arranged
in a multimeric enzymatic complex at the plasma or luminal
membrane: three cytosolic subunits named p40phox,
p47phox, and p67phox; two integral membrane subunits
named gp91phox (renamed NOX2) and p22phox; and the
small Rho GTPase Rac1 (Bedard and Krause 2007). The
most well-characterized isoform is NOX2, which is
considered a prototypical NOX. Sequence analyses and
hydropathy profiles suggest that NOX2 is a six-pass
transmembrane protein, with its N- and C-termini facing

the cytoplasmic compartment. NOX2 possesses NADPH-
and FADH-binding domains in its C-terminal domain.
Transmembrane domains III and V contain two histidine
residues that links two heme groups, which are necessary for
electron transfer from NADPH to O2 (Harper et al. 1985;
Rotrosen et al. 1990; Paclet et al. 2004; Groemping and
Rittinger 2005).
Upon assembly of these subunits in the membrane, this

enzyme produces a burst of O2
•� on the extracellular side of

the membrane by transferring electrons from NADPH to
oxygen (Babior 1999). The membrane protein p22phox
interacts with NOX2, the catalytic subunit of the complex,
stabilizing the catalytic subunit of the complex and promot-
ing O2•� production (Dinauer et al. 1987; Parkos et al.
1988; Ambasta et al. 2004). Under these conditions, NOX
produces O2

•� under a basal steady state called the dormant
state; under certain circumstances, however, such as an
immune response or growth factor stimulation, O2

•� pro-
duction increases. In addition to p22phox-mediated stabi-
lization, NOX2 displays molecular partners that enhance
ROS synthesis. Interaction with the cytoplasmic protein
p67phox increases NOX2 activity, although the p67phox/
NOX2 interaction does not always take place, because these
proteins reside in different subcellular locations, with
p67phox in the cytoplasm and NOX2 at the plasma
membrane. Therefore, an additional subunit, p47phox, is
necessary to promote translocation of p67phox from the
cytoplasm to the plasma membrane, where it is involved in
NOX2 activation (Nauseef 2004; Groemping and Rittinger
2005; Sumimoto et al. 2005). The p47phox functions are
regulated by post-translational modifications in its C-terminal
domain, which lead to the recruitment of p67phox to the
plasma membrane where it binds NOX2. Therefore, the
p47phox subunit is considered the assembly organizer subunit
of the NOX complex. Finally, two additional subunits are
required for proper assembly and function of the NOX
complex: the p40phox protein and the actin cytoskeleton
regulator Rac. While the precise role of p40phox on ROS
production is not clearly known, Rac1/2 are required to
induce ROS synthesis after physiological demands (Glogauer
et al. 2003; Diebold et al. 2004; Bokoch and Zhao 2006;
Bedard and Krause 2007; Roepstorff et al. 2008).
Several isoforms and subunits of NOXs are widely

expressed in the central nervous system, especially NOX1,
NOX2, and NOX4 (reviewed in Sorce and Krause 2009).
The widespread expression of NOX2 and its associated
subunits had been detected by inmunohistochemistry in
murine brain (Serrano et al. 2003; Kim et al. 2005).
Additionally, NOX isoforms expression has been detected
specifically in many neuronal types, including superior
cervical ganglion, dorsal root ganglion, and celiac ganglion
sympathetic neurons (Hilburger et al. 2005; Cao et al. 2009;
Kallenborn-Gerhardt et al. 2012), cerebellar granule neurons
(Coyoy et al. 2008) and dopaminergic neurons (Choi et al.
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2012). In cultured primary neurons, isolated from mouse and
rat embryonic hippocampus, the presence of the subunits that
compose NOX2 has been recently detected (Wilson et al.
2015), confirming previous findings (Tejada-Simon et al.
2005). Similarly, quantitative PCR analyses for NOX
isoforms in murine cortical neurons suggest that the most
abundant isoform is NOX4, although low levels of NOX2,
p22phox, and DUOX are also detected (Ha et al. 2010). The
prevalence of NOX4 is replicated in the intact mouse/rat/
human midbrain and hindbrain, but not in the forebrain,
where the most highly expressed isoform is NOX2 (Infanger
et al. 2006). NOX4 is also abundant in mouse/rat/human
neurons in all-cortical layers, in hippocampal neurons, and in
cerebellar Purkinje cells (Vallet et al. 2005).
Although not as well characterized, DUOX expression is

detected in the brain. Damiano et al. (2012) recently detected
DUOX expression by immunohistochemistry in rat cerebral
cortex. It is particularly enriched in brain membrane fraction
and induced by platelet-derived growth factor in SK-N-BE
human neuroblastoma cells. The expression of DUOX1 and
its maturation factor DUOXA1 is also increased during
neuronal differentiation of neuroblastoma P19 cells (Ostra-
khovitch and Semenikhin 2011; Ostrakhovitch et al. 2012).
Recently, Weaver et al. (2015) described the expression of
nox1, nox2/cybb, nox5, and duox (should this not be NOX1,
NOX2 etc.) during the development of the nervous system in
zebrafish larvae. Authors found that nox1, nox5, and duox
have a variable expression pattern after 2 days post-
fertilization. At this time, nox2 expression presented a stable
gene expression pattern across several regions of the
emerging nervous system of zebrafish. These evidences
support the notion that NOX proteins are early expressed and
widely distributed across the nervous system in the CNS of
zebrafish.

Contribution of ROS to neurogenesis

Redox signaling plays an important role in the differentiation
of various cell lineages from their respective precursors
(Chaudhari et al. 2014), as well as in the clonal expansion of
stem cells in their proliferative niches (Wang et al. 2013).
Therefore, tight regulation of ROS production is likely
needed to maintain stemness properties of neuronal precur-
sors in the brain (Dickinson et al. 2011; Forsberg et al.
2013; Forsberg and Di Giovanni 2014). Both pharmacolog-
ical inhibition of the NOX complex and the use of
antioxidants significantly inhibits proliferation of embryonic
hippocampal-derived neural progenitor cells (NPCs)
(Yoneyama et al. 2010). Moreover, NOX2 knock-out mice
(NOX2�/�) exhibit a decrease in the number of proliferating
progenitors in the adult hippocampus, suggesting that basal
ROS production sustained by NOX2 is required for NPCs
maintenance (Dickinson et al. 2011). In addition, a cross-
talk between redox balance, metabolism, and p53 protein

regulates the differentiation of neuronal progenitors to
neurons (Forsberg and Di Giovanni 2014). These authors
also showed that p53�/� mice exhibited an increase in the
content of ROS at telencephalic neuronal progenitors,
associated with an enhancement of doublecortin, vesicle
glutamate transporter, and glutamate decarboxylase GAD65/
GAD67 positive cells. These findings suggest that p53 loss-
of-function increases ROS levels in neuronal progenitors
promoting its differentiation toward neuron lineage. More-
over, both p53 ectopic expression and the treatment with the
general antioxidant N-Acetyl cysteine decreased both neu-
rogenesis and neurite outgrowth (Forsberg et al. 2013;
Forsberg and Di Giovanni 2014), suggesting that ROS levels
regulate in vitro and in vivo NPCs commitment. Although
the down-regulation of ROS decreases neurogenesis, the up-
regulation stops the differentiation of neural precursors into
neurons, suggesting that ROS fine-tunes the maintenance of
NPCs population (Tsatmali et al. 2006; Dickinson et al.
2011; Forsberg et al. 2013; Forsberg and Di Giovanni
2014).
Our knowledge on the mechanisms that regulates NOX

activity by extracellular/intracellular ligands is still fragmen-
tary. It is relevant, therefore, to identify and define extracel-
lular stimuli involved in NOX activation in the brain. Recent
evidences suggest that angiotensin II (AngII) triggers NPCs
proliferation by binding to type II receptors (Chao et al.
2013). AngII-induced NPCs proliferation is dependent on the
production of ROS by NOX4, the major NOX isoform
present in these cells (Topchiy et al. 2013). Pharmacological
or genetic loss-of-function of NOX4 abrogates AngII-
induced ROS production and NPCs proliferation (Topchiy
et al. 2013). AngII induces both mitochondrial and extra-
mitochondrial production of ROS in neuronal cells, as
observed by partial localization of NOX4 in this organelle
(Case et al. 2013; Topchiy et al. 2013). The precise
mechanism by AngII regulates NOX4-mediated ROS pro-
duction is still unknown. AngII increases NOX4 protein
levels in NPCs, suggesting a transcriptional or translational
regulation (Topchiy et al. 2013). However, treatment with
AngII at short intervals (5-60 min) increases ROS production
in NPCs and other cell types, an effect inhibited by NOX4
genetic loss-of-function, suggesting that in addition to
transcriptional regulation, a direct regulation of NOX activity
is likely (Gorin et al. 2003; Massey et al. 2012; Case et al.
2013; Topchiy et al. 2013; Somanna et al. 2016).
Another extracellular ligand associated with ROS-depen-

dent control of neurogenesis is the vascular cell adhesion
molecule-1. This adhesion receptor regulates NOX2 expres-
sion and activation, in order to maintain adequate ROS levels
required to preserve quiescence of NPCs in the subventric-
ular zone (Fig. 1) (Kokovay et al. 2012).
In addition, brain-derived growth factor (BDNF) also

regulates NOX2-dependent ROS production in order to
maintain the self-renewal of NPCs. Accordingly, BDNF

© 2016 International Society for Neurochemistry, J. Neurochem. (2016) 10.1111/jnc.13581

ROS signaling in neurons 3



induces endogenous production of superoxide, but is unable
to stimulate the self-renewal of NPCs derived from NOX2
knockout mice (Le Belle et al. 2011). BDNF binding to its
tyrosine kinase receptor tyrosine receptor kinase B, is
coupled to activation of phosphatidylinositol-3 kinase
(PI3K), that rises phosphatidylinositol (3,4,5)-trisphosphate
(PIP3) levels. Subsequently, PIP3 stimulates Akt activity in
order to regulate several process including neuroprotection
(Chen et al. 2013), synapsis formation (Luikart et al. 2008),
and neural crest-derived cell proliferation (Dewitt et al.
2014). The oxidative inactivation of phosphatase and the
tensin homolog (PTEN), the phosphatase involved in PIP3
dephosphorylation, could be a key event triggered by ROS
for regulating this process (Lee et al. 2002). The adminis-
tration of exogenous H2O2 to NPCs oxidizes and reversibly
inactivates PTEN, favoring the activation of PI3K-Akt.

Consistently, PTEN-deficient cells do not respond to BDNF
stimulation or to treatment with exogenous H2O2. Likewise,
pharmacological inhibition of PI3K eliminates the positive
effects of ROS in neurogenesis (Le Belle et al. 2011).
Activation of the PI3K-Akt pathway has also been associated
with the phenotype of premature neurogenesis observed in
the p53 knockout mice, but a role for NOXs has not been
established in this model (Forsberg et al. 2013). Downstream
targets of Akt in this process are unknown, although some
interesting candidates arise. Activated Akt phosphorylates
and inactivates glycogen synthase kinase 3b (GSK-3b).
Indeed, decreased GSK-3b activity promotes NPCs prolifer-
ation (Sato et al. 2004; Ying et al. 2008; Kim et al. 2009).
Akt also inhibits the transcription factor FoxO3. A consti-
tutive active FoxO3 expressing transgenic mice shows
disminished NPCs numbers and reduced brain size (Sch-

Fig. 1 Redox signaling in neurogenesis. Neural progenitor cell (NPC)s
proliferation and stemness are maintained by enzymatic reactive
oxygen species (ROS) production. Adhesion-mediated VCAM1 sig-

naling or the stimulation of AT2R or the brain-derived growth factor
(BDNF) receptor, TrkB, induces the activation of NADPH oxidase
family members such as NOX2 and NOX4 to increase H2O2 levels. A

local increase in H2O2 could inactivate the Phosphatase and tensin
homolog (PTEN), altering the phosphoinositide-phosphate balance
toward phosphatidylinositol (3,4,5)-trisphosphate (PIP3). The increase

in PIP3 activates Akt, which in turn would activates mammalian target
of rapamycin (mTOR) and inhibits glycogen synthase kinase 3b (GSK-
3b) or FoxO3, controlling NPCs proliferation.
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midt-Strassburger et al. 2012). Finally, Akt activates mam-
malian target of rapamycin, and a conditional deletion of
mammalian target of rapamycin in NPCs impairs self-
renewal (Fig. 1) (Ka et al. 2014). How variations in the
production of ROS mediate successive steps of proliferation
and differentiation is still a matter of debate. On the one
hand, some studies suggest that NOX2-mediated ROS
production is associated with self-renewal and multipotency
of NPCs (Le Belle et al. 2011; Forsberg et al. 2013). On the
other hand, other studies have indicated that high levels of
ROS induce acquisition of a differentiated neuron phenotype
through the increased expression of mitochondrial respiratory
chain proteins (Tsatmali et al. 2005, 2006). This apparent
contradiction may reflect specific requirements of ROS
signaling when NPCs are either proliferating or quiescent
(Le Belle et al. 2011).

Redox signaling in axonal outgrowth and guidance

ROS functions are not only related with the regulation of
NPCs proliferation and commitment. There are redox-
dependent mechanisms that promote neuronal differentiation.
This process depends mainly on dynamic changes that affect
microtubules and actin filaments in response to extracellular
signals (Neukirchen and Bradke 2011). The regulation of
cytoskeleton dynamics by ROS had been recently reviewed,
underlining the relevance of cytoskeleton as effector of redox
signaling (Stanley et al. 2014; Valdivia et al. 2015; Wilson
and Gonz�alez-Billault 2015). Studies in Aplysia neurons
revealed that pharmacological inhibition of NOX using
apocynin or VAS2870 reduces actin polymerization in
growth cones, decreases retrograde actin flow, reduces
neurite outgrowth and modifies the structure of actin in the
growth cone transition zone, impairing growth cone forma-
tion (Munnamalai and Suter 2009; Munnamalai et al. 2014;
Altenhofer et al. 2015). Moreover, NOX inhibition using
several strategies, including the expression of dominant
negative variant of p22phox, delayed axon specification and
outgrowth, possibly through decreased activity of Rho
GTPases, Rac1 and Cdc42 (Wilson et al. 2015). Reduced
neurite outgrowth is also been observed in cerebellar granule
neurons derived form NOX2�/� mice (Olguin-Albuerne and
Moran 2015). Likewise, either pharmacological inhibition or
siRNA-mediated knock down of NOX2 decreased bone
morphogenetic protein-7-induced dendritic growth in cul-
tured rat sympathetic neurons (Chandrasekaran et al. 2015).
Neuronal cell lines differentiation is also dependent on the
role of ROS. Nerve growth factor-induced neurite outgrowth
in PC12 cells is inhibited by antioxidants, pharmacological
inhibition of NOX or dominant-negative Rac1 expression
(Suzukawa et al. 2000). Similar results are observed in
several models of neurite outgrowth, including retinoic acid
(RA)-differentiated SH-SY5Y human neuroblastoma cells
(Nitti et al. 2010), neuregulin- or staurosporin-treated PC12

cells (Goldsmit et al. 2001; du Kim et al. 2013) and
staurosporin-treated HN33 hippocampal cells (Min et al.
2006).
Once generated, axons navigate to its final destination

guided by positive and negative extracellular cues (Tessier-
Lavigne and Goodman 1996). Semaphorins belong to a
prototypical family of secreted and membrane-associated
proteins that inhibit axonal growth to specific regions in the
nervous system. Semaphorins exert their effects by binding to
cell surface receptors of the Plexin and neuropilin families
(Pasterkamp 2012). Molecule interacting with CasL
(MICAL), is a Plexin effector, originally identified in a
genetic screen for Plexin A-binding partners in Drosophila
melanogaster (Terman et al. 2002). Its structure is charac-
terized by the presence of a flavin monooxygenase domain
(FAD) as well as several protein–protein interaction motifs,
including calpostin homology domain, a LIM(Lin11, Isl-1 &
Mec-3) domain, and a coiled-coil domain. In vertebrates,
three genes encode for MICAL-1, MICAL-2, and MICAL-3,
while two additional genes encode shorter versions of the
protein known as MICAL-like1 and MICAL-like2 (Giridha-
ran & Caplan, 2014). These last two short isoforms lack FAD
domain, but include the rest of protein–protein interaction
motifs. Semaphorin-induced MICAL activation target neu-
ronal cytoskeleton proteins, involved in actin and microtubule
dynamics. On one hand, MICAL oxidize G-actin monomers
leading to growth cone collapse (Hung et al. 2010). MICAL-
mediated actin oxidation can be reversed by the methionine
sulfoxide reductase MsrB1, providing a regulated redox
modification on G-actin (Fig. 2) (Hung et al. 2011, Hung
et al. 2013; Lee et al. 2013). In addition, MICAL-2 specif-
ically promotes depolymerization of nuclear actin, which
stimulate transcriptional mechanisms dependent on the Serum
response factor/myocardin-related transcription factor-A
(MRTF-A), to enhance neurite outgrowth (Lundquist et al.
2014). It is therefore conceivable that redox regulation of
actin microfilament pools in nuclei and cytoplasm differen-
tially contribute to neuronal differentiation.
On the other hand, MICALs forms a complex with Plexin

A and collapsin response mediator proteins (CRMPs),
providing a molecular link connecting repulsive extracellular
cues with microtubules (Schmidt et al. 2008). MICAL-
dependent oxidation of CRMP-2 Cys504 promotes the
formation of disulfide-linked homodimers (Morinaka et al.
2011). Oxidization of CRMP-2 can then be reduced by
thioredoxin, which in turn generates a disulfide-bridged
intermediate. Such cysteine-linked intermediate complex
promotes CRMP-2 phosphorylation by GSK-3b, favoring
microtubule depolymerization (Morinaka et al. 2011)
(Fig. 2). Consistently, MICAL-1 knockout mice present
developmental defects in the nervous system that result from
abnormal actin cytoskeleton dynamics and cell adhesion
(Van Battum et al. 2014). Given the limited number of
described substrates for MICAL, we anticipate that such
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redox regulation will likely be involved in other aspects of
neuronal differentiation. For example, MICAL3 regulates
Rab6/Rab8 exocytic vesicles docking and fusion, through the
oxidative modification of hitherto unknown proteins (Grig-
oriev et al. 2011), possibly regulating neuronal functions
associated with vesicular traffic, such as neurite outgrowth
(Villarroel-Campos et al. 2014).

The role of ROS in NMDA receptor-mediated
plasticity, LTP and memory

One of the most studied forms of synaptic plasticity is
hippocampal long-term potentiation (LTP), in which activa-
tion of synaptic N-methyl-D-aspartate receptors (NMDARs)
leads to insertion of AMPA receptors into the postsynaptic
membrane, a process driven by calcium entry, CaMKII and/or
the Ras-extracellular-regulated kinase (ERK) pathways (Mal-
enka and Nicoll 1999; Lisman et al. 2012). Calcium entry
through synaptic NMDARs also activates the ERK-mitogen-
activated protein kinase signaling cascade that phosphorylates
cAMP-responsive element binding protein, a transcription
factor that can translocate to the nucleus to mediate gene
transcription of multiple “synapse-associated genes” required
for memory consolidation (Greer and Greenberg 2008). The
fact that NOX proteins are also expressed at synaptic sites of
mature hippocampal neurons suggest that NOX may have a
role in neurotransmission (Tejada-Simon et al. 2005; Vallet
et al. 2005; Sorce and Krause 2009; Massaad and Klann
2011). NMDAR activation promotes O2

•� production by
NOX in hippocampal mature neurons, suggesting that gluta-
matergic and excitatory synapses are intimately related to ROS
production and NOX activity (Brennan et al. 2009; Reyes

et al. 2012). In agreement, patients affected with the inherited
syndrome called chronic granulomatous disease (CGD), in
which NOX proteins exhibit missense mutations that are
unable to produce physiological concentrations of O2

•�, show
cognitive dysfunction and lower intellectual coefficient com-
pared to control population (Pao et al. 2004). The conse-
quence of NOX2 deficiency in the intellectual disability has
been questioned in patients with CGD (Cole et al. 2013). A
criticism to these data is that children with CGD required long-
term hospitalization, affecting normal school attendance and
normal intellectual development during childhood. However,
children that present other infectious diseases, that also
required long-term hospitalization, did not develop cognitive
deficits, suggesting a NOX-specific phenotype. Further anal-
ysis will be required to understand the impact of NOX loss of
function in cognitive development and neuronal function in
humans. Consistent with the phenotype observed in CGD
patients by Pao et al., mice lacking gp91phox or p47phox
(mouse models for CGD) show impaired LTP and hippocam-
pus-dependent memory (Kishida et al. 2006). The absence of
a severe phenotype can be explained by a putative compen-
satory effect, since over-expression of NOX4 has been
observed in the gp91phox knockout mouse (Pendyala et al.
2009). However, NOX isoforms are not completely equiva-
lent, showing differential response to agonists and selective
activation of signaling cascades (Anilkumar et al. 2008).
Additional studies using ROS scavengers and pharmaco-

logical manipulations to alter NOX activity also demonstrate
that NOX-induced O2

•� production is required for NMD
AR-mediated ERK pathway activation, the full expression of
NMDAR-mediated LTP, and hippocampal-dependent mem-
ory tasks (Klann 1998; Thiels et al. 2000; Massaad and

Fig. 2 Redox signaling inaxonal growthcone
cytoskeletal dynamics. The binding of the
axon-repulsive cue Semaphorin 3a
(Sema3a) to its membrane receptor, Plexin

A1, releases the autoinhibitory conformation
of MICALs, a group of FAD-dependent
monooxygenases, which mediate the

oxidative modification of actin and CRMP-2.
Two methionine residues (Met46 and Met49)
in G-actin are reversibly oxidized to

methionine sulfoxide (SO), inhibiting its
incorporation into actin filaments. In contrast,
oxidation of Cys504 in CRMP-2 forms a

disulfide-linked dimer, favoring thioredoxin
(Trx)-mediated GSK-3b phosphorylation of
collapsin response mediator protein (CRMP)-
2 in Ser 514, which leads to microtubule

depolymerization and growth cone collapse.
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Klann 2011). Studies that monitor intracellular accumulation
of fluorescent oxidized dihydroethidium (dHEh) have shown
that O2

•� in hippocampal neurons is produced as a result of
NMDAR activation (Bindokas et al. 1996; Brennan et al.
2009). NOX activity has been identified as a source of
NMDA-induced O2

•� production (Brennan et al. 2009;
Girouard et al. 2009; Guemez-Gamboa et al. 2011),
although other sources, including mitochondria and nitric
oxide synthase (NOS), have also been implicated in ROS
generation in neurons (Dugan et al. 1995; Bindokas et al.
1996; Massaad and Klann 2011). While the above-mentioned
studies indicate that NMDA-induced O2

•� production can
function as an intracellular messenger in LTP, at the same
time production of this anion by activation of NMDARs can
also promote neurotoxicity (Lafon-Cazal et al. 1993; Patel
et al. 1996; Suh et al. 2008; Brennan et al. 2009), including
in neighboring neurons and astrocytes (Reyes et al. 2012).
Whether ROS function as beneficial intracellular messengers
or as neurotoxic molecules likely depends on which
NMDAR subtype is activated, its specific localization, and
duration of activity. NMDARs are composed of two
obligatory NR1 subunits plus two NR2A-D and/or NR3A-
B subunits; the precise subunit combination determines the
physiological and pharmacological properties of the receptor,

their binding partners and downstream signaling effects (van
Zundert et al. 2004). Functional NMDARs are located both
at the synaptic and extrasynaptic membrane, however, they
are linked to different underlying signaling cascades and can
have opposite functions in physiological (van Zundert et al.
2004) and pathological (Hardingham and Bading 2003)
neuronal processes.
As discussed above, it is well established that activation of

synaptic NMDARs induces calcium entry into postsynaptic
terminals that can activate ERK signaling pathways to induce
local synaptic plasticity and/or gene transcription required for
memory consolidation (Greer and Greenberg 2008). Inter-
estingly, more recently it has also been shown that a rise in
calcium levels in dendritic spines can trigger the opening of
ryanodine receptors (RyR), stimulating additional calcium
release from the endoplasmic reticulum; a phenomenon
termed calcium-induced calcium release (Emptage et al.
1999). Interestingly, RyRs are extremely sensitive to redox
modifications, with oxidizing reagents activating the channel,
whereas reducing compounds inhibiting this receptor
(Murayama et al. 1999; Hidalgo et al. 2005). Studies in
hippocampal slices have indicated that increased ROS (H2O2

or O2
•�) levels stimulate ERK and cAMP-responsive

element binding protein phosphorylation through oxidative

Fig. 3 Redox-dependent NMDA signaling. NMDA receptor (NMDAR)
activation at the postsynaptic membrane induces calcium entry and
activation of neuronal NOS (nNOS). NO modifies a specific cysteine

residue in the small GTPase Dexras1, thus enhancing iron uptake,
partially through the formation of a ternary complex between
Dexras1, peripheral benzodiazepine receptor-associated protein

(PAP7) and divalent metal transporter 1 (DMT-1). In addition,

NMDAR activation is linked to NOX2 complex assembly, leading to
an increase in local H2O2 levels. Iron and H2O2, through Fenton
chemistry, produce hydroxyl radical-mediated oxidative sensitization

of the ryanodine receptor (RyR) that is involved in calcium-induced
calcium release, enhancing long-term potentiation (LTP). In addition,
iron activates prolyl hydroxylases, such as PHD2, to mediate its

effects on LTP.
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modifications of RyRs (Kemmerling et al. 2007; Huddleston
et al. 2008). In addition, recent studies show that iron
stimulates NMDAR-mediated calcium-induced calcium
release hereby increasing ERK activation and synaptic
plasticity (Fig. 3) (Munoz et al. 2011). The precise mech-
anisms by which iron regulates the physiology of RyRs and
other compounds of the postsynaptic compartment are still
unknown. The capacity of iron to transition between two
oxidation states under physiological conditions makes this
metal a preferred co-factor in several redox enzymes,
particularly hydroxylases; alternatively, free iron could also
mediate the non-enzymatic transformation of H2O2 into the
highly reactive hydroxyl radical through the Fenton reac-
tion (N�u~nez et al., 2012; Dixon and Stockwell 2014).
How redox-active transition metals, such as iron and
copper, modulate NMDAR-mediated synaptic plasticity
has recently been hypothesized (Hidalgo et al. 2007; Gaier
et al. 2013).
In glutamatergic neurons, nitric oxide production by NOS

leads to covalent modification of Cys11 in a small GTPase
named Dexras1, stimulating hereby iron entry through the
two classical routes of cellular uptake: transferrin-mediated
entry, which specifically incorporates iron bound to the
plasma protein transferrin, and divalent metal transporter 1
(DMT-1)-mediated entry, which allows the entry of iron that
is not bound to transferrin directly from the extracellular
milieu (Cheah et al. 2006). Iron entry mediated by activation
of the NMDAR apparently increases hydroxyl radical
production as measured by an increase in fluorescence of
hydroxyphenyl fluorescein, a hydroxyl radical-sensitive
probe (Cheah et al. 2006). Hydroxyl radical production in
the postsynaptic terminal is favored, because the activation of
the NMDAR is coupled to activation of NOX2, which
increases the levels of O2

•�, which then dismutates to H2O2

via activity of the superoxide dismutase 1 enzyme or
spontaneously. These actions thus generate the conditions
for the Fenton reaction in a microdomain in close proximity
to the NMDAR, and can explain how iron-mediated
hydroxyl radical generation induces the oxidative activation
of the RyR, inducing increases in intracellular calcium and
activation of ERK1/2, hereby stimulating synaptic plasticity
(Fig. 3) (Munoz et al. 2011). Alternatively, iron may be
involved in the activation of prolyl hydroxylases in the
postsynaptic compartment as suggested by the observation
that incubation of hippocampal slices or isolated hippocam-
pal neurons with 10 lM deferoxamine, an iron chelator,
impairs LTP, similar to the prolyl hydroxylase chemical
inhibitor dimethyloxalyl glycine. Moreover, genetic models
specific for inactivation of the prolyl hydroxylase domain 2
enzyme exhibit similar deficits in LTP, which cannot be
exacerbated by the use of deferoxamine or dimethyloxalyl
glycine (Corcoran et al. 2013). These findings suggest that
activation of prolyl hydroxylase domain 2 by iron underlies
its observed effects in promoting LTP (Fig. 3).

Future directions

Although the involvement of ROS as second messengers in
cell signaling is a well-accepted concept in the physiology of
multiple cell types, our understanding of ROS-mediated cell
signaling in neurons is not yet complete. During the process
of neuronal differentiation from NPC to their integration into
neural circuits, the fragmentary evidence suggests that ROS
are essential regulators in the formation and function of the
central nervous system. In the next few years, studies related
to this issue will likely focus on two essential mechanistic
questions: the nature of the signals that regulates ROS
concentrations inside the neurons and the putative targets
susceptible to oxidation related to neuronal function in health
and disease.
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