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We use strong subadditivity of entanglement entropy, Lorentz invariance, and the Markov property of the
vacuum state of a conformal field theory to give new proof of the irreversibility of the renormalization
group in d ¼ 4 space-time dimensions—the a theorem. This extends the proofs of the c and F theorems in
dimensions d ¼ 2 and d ¼ 3 based on vacuum entanglement entropy, and gives a unified picture of all
known irreversibility theorems in relativistic quantum field theory.
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Introduction.—The central idea of the renormalization
group is that the change of physics with scale in a quantum
field theory (QFT) can be assimilated to a change in the
parameters of the Hamiltonian describing the relevant
degrees of freedom. This flow in the space of theories
brings us from the ultraviolet (UV) fixed point at short
scales to the infrared (IR) one at large scales. At the fixed
points, the physics stops changing, and we focus on
relativistic systems in d spacetime dimensions, where the
end points of the flow are conformal field theories (CFTs).
It has long been known that the renormalization group

(RG) is irreversible in two spacetime dimensions [1]. This
result, known as the c theorem, shows that the conformal
anomaly c (a dimensionless quantity depending on the
CFT) decreases between the UV and IR fixed points. The
value of c at conformal fixed points is thus interpreted as a
precise measure of the number of field degrees of freedom;
Zamolodchikov’s theorem then realizes the intuitive idea
that this number should decrease at larger scales due to the
decoupling of massive modes. It also establishes an order-
ing of CFTs: theories with smaller c in the UV cannot flow
to theories with larger c in the IR, and the renormalization
group is irreversible.
In four spacetime dimensions, Cardy [2] gave arguments

suggesting that a particular coefficient of the conformal
anomaly, the a coefficient of the Euler term, should also
decrease under the RG. After long being sought, the a
theorem was proved by Ref. [3].
For odd dimensions the situation was initially unclear

because there are no conformal anomalies. Based on RG
irreversible quantities in holography, Ref. [4] proposed that
in odd dimensions the relevant monotonic quantity is the
constant term of the entanglement entropy of a sphere. This
conjecture, now known as the F theorem, was established
for d ¼ 3 in Ref. [5], extending the proof [6] of the c
theorem in d ¼ 2. The crucial property here is the strong
subadditivity of entropy, which ultimately gives a different
perspective on unitarity and irreversibility. In a related
development in supersymmetric QFTs, Ref. [7] conjectured
that the constant term in the free energy of a 3-sphere is
monotonic–hence the name F. In fact, this quantity is the

same as the constant term of the entanglement entropy of a
sphere [8], and the proposals of Refs. [4] and [7] actually
coincide.
These developments suggest that in any dimension the

monotonic quantity is the universal part of the entangle-
ment entropy of a sphere. This is proportional to the Euler
anomaly for even dimensions. While this points to some
underlying principle behind the irreversibility of the RG
across dimensions (see, e.g., Ref. [9]), so far the techniques
employed have been quite specific to each particular
dimension. Only an entropic proof exists for d ¼ 3, and
so far only a proof based on local field theoretic quantities
has been known in d ¼ 4; both entropic and correlator
techniques can be used to prove the theorem in d ¼ 2. An
important difficulty for proofs based on correlation func-
tions in odd dimensions is that the F quantity is, in contrast
to anomalies, a rather nonlocal object.
In this work we prove the a theorem using entropic

techniques, and provide a unifying approach to the irre-
versibility of the RG. The new key ingredient here will be
the recently discovered Markovian property of the vacuum
state of a CFT [10]. Based on this we will extend the
approach in Ref. [5] to d ¼ 4, resolving previous obstacles
from problematic terms in the entanglement entropy (EE)
of unions and intersections of spheres.
The setup.—We consider a RG flow between UVand IR

CFT fixed points in d spacetime dimensions. The flow is
triggered by a perturbation with some relevant operator O
of dimension Δ < d,

S1 ¼ S0 þ
Z

ddxgOðxÞ: ð1Þ

The theory at the UV fixed point is denoted by T 0, while
T 1 is the theory Eq. (1). In order to understand the
irreversibility of the RG, we will study the entanglement
entropy on spheres. Let ρX be the reduction of the global
state to the region X and SðXÞ ¼ −TrðρX log ρXÞ its von
Neumann entropy. This is the entanglement entropy
between X and the complementary region X̄, which we
seek to compute.
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For the vacuum state of a QFT, the EE of a sphere is in
general a complicated function of the radius r, a distance
cutoff ϵ, and the dimensionful parameters of the theory. At
fixed points and for a sufficiently geometric cutoff (such as
Ref. [11]) the entropy simplifies to

SðrÞ ¼ μd−2rd−2 þ μd−4rd−4 þ � � �

þ
�
ð−Þðd=2Þ−14A logðR=ϵÞ deven:
ð−Þ½ðd−1Þ=2�F dodd:

ð2Þ

See, e.g., Refs. [12–14]. The last term gives the universal
part of the EE. A is the Euler trace anomaly coefficient for
even dimensions [15], and F is the constant term of the free
energy of a d-dimensional Euclidean sphere.
The reason for this expression is that the large distance

entanglement does not change with dilatations at a fixed
point (with the exception of the anomaly term), and hence
the r dependence comes from contributions that are local
on the entangling surface, i.e., integrals of curvature
tensors. Curvature tensors with an odd number of dimen-
sions change sign when they are evaluated on the two sides
of the entangling surface and cannot appear in the expan-
sion because of the identity of entropies for complementary
regions SðXÞ ¼ SðX̄Þ. Hence, only powers below the area
term differing by an even number appear in Eq. (2).
The coefficients μd−k have dimension d − k. For a CFT

(such as T 0 above), the only dimensionful parameter is the
cutoff ϵ, so that μd−k ∼ ϵ−ðd−kÞ. For the theory T 1 with the
relevant perturbation Eq. (1) the situation is richer. For
small spheres r ∼ 0, where we can apply conformal
perturbation theory near the UV, we expect

μUVd−k ∼ ϵ−ðd−kÞ þ g2ϵ−ðd−kÞþ2ðd−ΔÞ þ � � � ð3Þ

This is UV divergent (and perturbatively computable) for
Δ ≥ ðdþ kÞ=2. Additionally, for small r we expect finite
perturbative corrections to the entropy of the form
SðrÞ ∼ g2r2ðd−ΔÞ, which are nonlocal. See Ref. [13] for
holographic examples. On the other hand, taking r → ∞
the IR fixed point is approached; besides the UV divergent
terms just discussed, the EE will contain finite renormal-
izations to μIRd−k. These contributions, which should be
regularization independent, depend on the full RG flow,
and are generally nonperturbative. Nonlocal corrections,
however, are absent at the IR fixed point.
Irreversibility from strong subadditivity.—The idea is to

relate EE coefficients of the UVand IR fixed points using a
property of entropy called the strong subadditivity inequal-
ity (SSA) [16]. For two regions A and B it reads

SðAÞ þ SðBÞ ≥ SðA∩BÞ þ SðA∪BÞ: ð4Þ

This motivates the construction in Ref. [5] of the geomet-
rical setup illustrated in Fig. 1. A large number of rotated
copies Xi, i ¼ 1;…; N of a boosted sphere are placed on a

null cone. All these spheres are chosen to have the same
radius

ffiffiffiffiffiffi
Rr

p
, and are equally distributed in the angular

directions. The t ¼ 0 projection of these spheres lies
between radii r and R. Repeated use of the SSA gives
X
i

SðXiÞ ≥ Sð∪iXiÞ þ S½∪fijgðXi∩XjÞ�

þ S½∪fijkgðXi∩Xj∩XkÞ� þ � � � þ Sð∩iXiÞ:
ð5Þ

There are N terms on each side of Eq. (5). The right-hand
side contains entropies of regions that approach spheres for
large N but have wiggly boundaries in a null direction. The
aim is to get inequalities involving only spheres in the limit.
The main question is then how to relate entropies of

wiggly spheres with those of regular spheres. Since the
surfaces are on the light cone, the area term along the
boundary of a wiggly sphere matches that of a regular
sphere passing through the middle of the wiggles; see
Fig. 1. However, the local curvature is different, and so
generically we do not expect the entropies to agree (we will
see an example below). Unfortunately, a direct calculation
of the wiggly contributions seems too complicated, and a
different route is needed. It is important to realize, however,
that the differences in the EE of wiggly and regular spheres
are purely UVat large N. If we managed to subtract the UV
contributions while still maintaining strong subadditivity,
the wiggly contributions would go smoothly to regular
contributions. This is the point where the recently discov-
ered Markov property [10] comes into play.
For any two regions A and B with a boundary lying on

the light cone, the CFT vacuum in any dimension is a
Markov state, namely, it saturates the SSA inequality [10]

SðAÞ þ SðBÞ − SðA∩BÞ − SðA∪BÞ ¼ 0: ð6Þ
This follows from the form of the modular Hamiltonian on
the light cone, as well as from algebraic QFT methods, but

FIG. 1. Boosted and uniformly distributed circles lying on the
null cone in d ¼ 3 spacetime dimensions. The vertical axis of the
cone gives the time direction. A wiggly sphere, corresponding to
one of the sets in Eq. (5), is highlighted in black, and its
corresponding limiting circle is highlighted in green.
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at first it looks rather surprising. Indeed, intersections and
unions of regions contain additional local singularities that
may produce divergent terms in the entropy, see, e.g.,
Refs. [17,18].
Let us then briefly describe how this works out in d ¼ 4,

where all interesting features already appear. The area term
always cancels in the combination Eq. (6), as is the case for
the logðϵÞ term coming from a local integral of the
curvature outside the singular points from intersections.
This would also hold for spheres in a plane. A new feature
comes from the intersection of two spheres; it gives a term
that scales with the length l of the line of intersection as
l=ϵ. This must be an integral along this line that is locally
the same as the one of the intersection of two planes tangent
to the spheres at a point of the intersection. These two
spatial planes are contained in a null hyperplane of
dimension 3. Hence, we can boost one of the planes with
a boost that keeps the other plane fixed and the null
hyperplane invariant. There is then no local notion of angle
between the two planes—this feature cannot contribute
since we have no local geometrical quantity to distinguish it
from two parallel planes. Next, the intersection lines are
curved and can produce a logðϵÞ contribution times a line
integral of the curvature. This cannot be eliminated by
boosting but we note that it is a signed curvature; the union
and intersection of two spheres have exactly opposite
contributions of this form and hence cancel out. Finally,
we have the vertices where three spheres intersect. This
trihedral angle is immersed in a null hyperplane, and does
not contribute by the same boost argument as before.
Because of the Markov property, the difference in EE

between the CFT T 0 and the theory T 1 along the flow,

ΔSðrÞ ¼ Sρ1ðrÞ − Sρ0ðrÞ ð7Þ

still satisfies the strong subadditivity Eq. (4), and Eq. (5)
applies to ΔS. In this way, all UV effects associated to
wiggles cancel out from the inequality (recall that we take
N → ∞with fixed coupling g) andΔSwiggly can be replaced
by ΔSregular inside the SSA formula.
The wiggly spheres lie approximately on constant t

planes, with radius l ranging from r to R. Let lk be the
radius of the wiggly sphere of order k, that is, the one
formed by the union of the intersections of k spheres.
Defining the density of wiggly spheres

βðlÞ ¼ 1

N
dk
dl

; ð8Þ

the geometry gives [5]

βðlÞ¼ 2d−3Γ½ðd−1Þ=2�ffiffiffi
π

p
Γ½ðd−2Þ=2�

ðrRÞ½ðd−2Þ=2�½ðl− rÞðR− lÞ�½ðd−4Þ=2�
ld−2ðR− rÞd−3 :

ð9Þ

Hence, the inequality becomes

ΔSð
ffiffiffiffiffiffi
rR

p
Þ ≥ 1

N

XN
k¼1

ΔSk ≈
Z

R

r
dlβðlÞΔSðlÞ; ð10Þ

where at large N the sum is replaced by an integral, and we
have already replaced the contribution ΔS from wiggly
spheres by that of regular spheres. Finally, expanding for
small R − r we arrive at our main result,

rΔS00ðrÞ − ðd − 3ÞΔS0ðrÞ ≤ 0: ð11Þ

The entropic a theorem.—Before proving the a theorem,
let us discuss the implications of this inequality in lower
dimensions.
For d ¼ 2 Eq. (11) gives

(rΔS0ðrÞ)0 ≤ 0: ð12Þ
In fact, this is valid directly for SðrÞ since wiggly spheres
are just ordinary intervals. Defining ΔcðrÞ ¼ cðrÞ − cUV ¼
rΔS0ðrÞ, this gets the coefficient of the logarithmic term in
the entropy for fixed points. Since it decreases with size,
Eq. (12) gives a proof of the c theorem.
For d ¼ 3, Eq. (11) becomes (ΔSðrÞ)00 ≤ 0 and this has

two implications. First, it gives an “area theorem,” implying
that the quantity

Δ ~μ1ðrÞ≡ ΔS0ðrÞ ð13Þ

decreases along the flow. This is finite for Δ < 5=2, and
coincides with the subtracted area coefficient at fixed
points. Hence, ΔμIR1 ≤ ΔμUV1 . For larger Δ, the nonlocal
UV term discussed below Eq. (3) dominates, making Δ ~μ1
diverge as r → 0. (The area theorem in d dimensions was
proved using positivity of the relative entropy in Ref. [19].)
The other consequence of the inequality is that

½rΔS0ðrÞ − ΔSðrÞ�0 ≤ 0: ð14Þ
The CFT contribution drops out (both the area and constant
term cancel out), and hence the quantity FðrÞ ¼ rS0ðrÞ −
SðrÞ decreases monotonically and agrees with F at fixed
points. This gives a proof of the F theorem; it agrees with
that in Ref. [5], where the wiggly circles were replaced by
regular ones because in d ¼ 3 the wiggles do not contribute
to the SSA inequality.
Finally, let us consider d ¼ 4. The CFT contribution is

Sρ0ðrÞ ¼ μ02r
2 − 4AUV logðr=ϵÞ; ð15Þ

where AUV is the a-anomaly coefficient of the UV fixed
point. Replacing this into Eq. (11) obtains

rS00
ρ1
ðrÞ − S0

ρ1
ðrÞ ≤ 8AUV

r
: ð16Þ
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Evaluating the left-hand side at the IR fixed point gives

AIR ≤ AUV: ð17Þ

This completes our proof of the a theorem using entropic
techniques.
Let us emphasize that this is the point where the Markov

property of the CFT plays a key role. Had we just replaced
wiggly contributions by regular contributions to the
entropy (instead of doing it for ΔS), we would have
obtained that the left-hand side in Eq. (16) is nonpositive.
And this is violated at fixed points. Therefore, we see
explicitly in this case that the entropy contributions of
wiggly spheres do not tend smoothly to those of regular
spheres. With our present approach we have avoided this
problem by using the strong subadditivity property of ΔS.
Therefore the Markov property of the CFT vacuum is
essential for obtaining the a theorem.
Let us end with two remarks. First, an analog to a c

function can be written as ΔcðrÞ ¼ rΔS0ðrÞ − 2ΔSðrÞ. It is
decreasing, it vanishes at the UV, and at the IR it
approaches

Δc ≈ 8ðAIR − AUVÞ logðMrÞ; ð18Þ

whereM is some scale of the RG. It does show the decrease
of A; however, it does not converge to a finite value for
large r. Finally, as for d ¼ 3 we have here also an area
theorem. Defining the quantity

Δ ~μ2ðrÞ ¼
ΔS0ðrÞ
2r

¼ 1

2r
(S0

ρ1
ðrÞ − S0

ρ0
ðrÞ); ð19Þ

this is always decreasing Δ ~μ02ðrÞ ≤ 0. For Δ < 3 it is finite
and approaches the subtracted area coefficient at fixed
points. Hence ΔμIR2 ≤ ΔμUV2 . In d ¼ 2 the area theorem
coincides with the c theorem, as discussed in Ref. [19].
Extension to higher dimensions and final remarks.—For

dimensions higher than 4 we have more than two coef-
ficients of the entropies Sρ0 and Sρ1 in the IR. Equation (11)
gives two relevant inequalities. The first is for the area term.
This follows from the interpolating quantity

Δ ~μd−2ðrÞ ¼
ΔS0ðrÞ

ðd − 2Þrd−3 ð20Þ

that always decreases. From Eq. (2), the structure of UV
divergences ignoring order one coefficients is

Δ ~μd−2ðrÞ ¼ g2ϵdþ2−2Δ
�
1þ ϵ2

r2
þ � � �

�
þ finite: ð21Þ

In the UV r ≪ g−1=ðd−ΔÞ, the finite term is of order
g2rdþ2−2Δ. Near the IR fixed point we expect, on dimen-
sional grounds, a finite term of order gðd−2Þ=ðd−ΔÞ.

Therefore, Δ ~μd−2ðrÞ is finite for Δ < ðdþ 2Þ=2 and
interpolates between area terms, so ΔμIRd−2 ≤ ΔμUVd−2.
However, if Δ ≥ ðdþ 2Þ=2, Δ ~μd−2ðrÞ is divergent, while
its change with r can still be finite if Δ < ðdþ 4Þ=2. The
total running of this quantity from r ¼ 0 to r ¼ ∞ is
infinite due to the finite terms in the UV.
The other inequality comes from observing the IR value

of Eq. (11). This is dominated by the next leading term
proportional to rd−4 in the entropies and gives

ΔμIRd−4 ≥ 0: ð22Þ

This is finite or not according to whether Δ < ðdþ 4Þ=2 or
Δ ≥ ðdþ 4Þ=2, respectively. For d ¼ 4 this gives the a
theorem discussed before.
The area term is related to the renormalization of

Newton’s constant. Along similar lines, it would be
interesting to analyze the implications of Eq. (22) for
gravitational corrections.
It seems strong subadditivity does not allow us to

examine the other terms—in particular we cannot get to
the terms that are universal for CFTs in d ≥ 5. However,
this suggests that the renormalization of Δμd−k may have
alternating signs ð−Þk=2. We have shown this for k ¼ 2, 4,
that in d ≤ 4 give the c, F, and a theorems. The statement
for the last term in the expansion of the entropies of spheres
corresponds to the irreversibility of the RG in any dimen-
sion. This sign is in agreement with the expected alternating
signs of the universal coefficients.
Let us conclude by discussing the connection with

relative entropy. The Markov property is equivalent to
the cancellation

HA þHB −HA∩B −HA∪B ¼ 0 ð23Þ
of modular Hamiltonians for a CFT [10]. Hence, −ΔS can
be replaced by the relative entropy Srelðρ1jjρ0Þ without
modifying the outcome of the inequalities. We hope to
revisit these results in terms of relative entropies, extending
previous work on the RG flow [19]. This would also
include, in the same scheme, the g theorem for CFTs with
defects [20].
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