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Abstract: Gauge symmetry enhancing, at specific points of the compactification space,

is a distinguished feature of string theory. In this work we discuss the breaking of such

symmetries with tools provided by Double Field Theory (DFT). As a main guiding ex-

ample we discuss the bosonic string compactified on a circle where, at the self-dual radio

the generic U(1)×U(1) gauge symmetry becomes enhanced to SU(2)×SU(2). We show

that the enhancing-breaking of the gauge symmetry can be understood through a de-

pendence of gauge structure constants (fluxes in DFT) on moduli. This dependence, in

DFT description, is encoded in the generalized tangent frame of the double space. The

explicit T-duality invariant formulation provided by DFT proves to be a helpful ingredi-

ent. The link with string theory results is discussed and generalizations to generic tori

compactifications are addressed.
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1 Introduction

The extended nature of strings is responsible for several amazing phenomena that are

not conceivable from a field theory of point particles. When moving on compact space,

besides the expected states associated to KK compact momenta, a string can wind around

non-contractible cycles leading to the so-called winding states, with the winding number

being an integer counting the number of times that the cycle is wrapped by the string.

Quantum states are thus labelled by specific values of KK momenta and windings.

The interplay among winding and momentum modes underlies T-duality, a genuine

stringy feature. Such interplay manifests itself by connecting the physics of strings defined

on geometrically very different backgrounds. At specific points of moduli of the compact

space, states in some combinations of windings and momenta become massless and can

give rise to enhanced gauge symmetries (see for instance [1, 2]). The simplest example is

provided by the compactification of the bosonic string on a circle of radio R. The resulting

theory, which contains a U(1)× U(1) gauge group, is equivalent to a string compactified

on a circle of radio R̃ = α′

R
(where α′ is the string constant) if momenta and winding

are exchanged. At the self-dual point R = R̃ =
√
α′ the gauge symmetry is enhanced to

SU(2)× SU(2).

When the compact space is a r dimensional torus T r, characterized by some back-

ground moduli (internal metric and anti-symmetric fields), T-duality implies that back-

grounds related by the non-compact groupO(r, r,Z) are physically equivalent. Generically

a richer structure of points of gauge enhancing appear.

Recall that, from the world sheet point of view, states are created by vertex oper-

ators involving both coordinates associated with momentum excitations and dual co-

ordinates associated to winding excitations or, equivalently, to left (L) and right (R)

moving coordinates. For generic values of moduli an Abelian symmetry U(1)rL × U(1)rR

appears. However, at specific points, the symmetry becomes enhanced to a gauge sym-

metry GL ×GR where GL(R) are non-Abelian gauge groups of rank r. For example, in a

two torus T 2, a generic (U(1)×U(1))L× (U(1)×U(1))R is enhanced to SU(3)L×SU(3)R

or (SU(2)× SU(2))L × (SU(2)× SU(2))R etc. at different points.

2



Let us sketch, as motivation of our work, the case of circle compactification at self-dual

point1. The effective action in d dimensional space, computed from string theory 3-point

amplitudes [3] reads

S =
1

2κ2
d

∫

ddx
√
ge−2ϕ

(

R+ 4∂µϕ∂µϕ− 1

12
HµνρH

µνρ

)

− 1

8

(

δijF
iµνF j

µν + δijF̄
iµνF̄ j

µν −
1

2
gd
√
α′MijF

i
µνF̄

jµν

)

− DµMijDνM
ijgµν +

16gd√
α′ detM +O(M4), (1.1)

where the first row contains the universal gravity contribution, the second one contains

the gauge field strength for the vector fields of SU(2)L and SU(2)R (that we denote here

as Ai
Lµ, A

i
Rµ respectively). Mij is the matrix of scalars living in the (3, 3) representation.

DµMij = ∂µMij + gdf
k
liA

l
µMkj + gdf

k
ljA

l
µMik are the usual covariant derivatives and

fijk = −f̄ijk ∝ ǫijk (i, j = 1, 2, 3) are the structure constants where ǫijk is the usual

Levi-Civita completely antisymmetric tensor and gd = κd

√

2
α′ .

Interestingly enough, this action can be embedded into an O(d+ 3, d+ 3) framework.

This is discussed in Ref[3] (and briefly reviewed below) where it was observed that the

spectrum of the bosonic string has (d+3)2 massless states: d2 from gµν and Bµν , 6d from

the vector states and 9 the scalar states. The number of degrees of freedom precisely

agrees with the dimension of the coset

O(d+ 3, d+ 3)

O(d+ 3)× O(d+ 3)
(1.2)

that counts the number of degrees of freedom in the DFT formulation with symmetry

O(d+ 3, d+ 3).

In general a DFT action with O(D,D) symmetry with D = d+ n, can be written as

Seff =
1

2κ2
d

∫

ddx
√
ge−2ϕ

[

R+ 4∂µϕ∂µϕ− 1

12
HµνρH

µνρ

−1

8
HIJF

IµνF J
µν +

1

8
(DµH)IJ(D

µH)IJ

− 1

12
fIJ

KfLM
N
(

HILHJMHKN − 3HILηJMηKN

+2 ηILηJMηKN)− Λ
]

. (1.3)

1Details are presented in next section.
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after a generalized Scherk-Schwarz[5] like n dimensional compactification. In this expres-

sion HIJ with I, J = 1, . . . , 2n is the, so-called, generalized metric containing the scalar

fields coming from the internal components of the n-dimensional metric and B-field. R
is the d-dimensional Ricci scalar and the field strengths FA

µν and Hµνρ are

F I = dAI +
1√
2
fJK

IAJ ∧AK

H = dB + F I ∧AI , (1.4)

The covariant derivative of the scalars is

(DµH)IJ = (∂µH)IJ +
1√
2
fK

LIA
L
µHKJ +

1√
2
fK

LJA
L
µHIK (1.5)

The structure constants fNLI = ηNKf
K

LI are completely antisymmetric and ηNK is the

O(n, n) metric

ηPQ =





1n 0

0 −1n



 . (1.6)

In our example D = d + 3, thus I = 1, . . . 6. The gauge fields are AI
µ = (Ai

Lµ,−Ai
Rµ)

and the structure constant splits into

fIJ
K =











( 2
α′ )

1
2 ǫijk

−( 2
α′ )

1
2 ǭijk

.

After expanding around a fixed background the internal generalized metric HIJ can be

written as

H ≃





13 M

MT 13



 = I +





0 M

MT 0



 (1.7)

By replacing above expressions into the action (1.3), and after absorbing constants into

the fields, the SU(2)×SU(2) theory given in (1.1) is reproduced. Of course, any reference

to DFT could be omitted and just present the above (1.3) action as an interesting way of

writing the original expression.

It is worth looking at the term containing the derivatives of scalar fields. Since the

metric H = I + . . . contains a constant term, the identity, the action could have a

contribution,
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|DµH|2 ≡ (· · ·+ 1√
2
fK

LIA
L
µδKJ +

1√
2
fK

LJA
L
µδIK)

2 (1.8)

= · · ·+ 1

2
([fJ

LI + f I
LJ ]A

L
µ)

2.

Namely, a potential “mass term” for the vector bosons.

Moreover, by splitting the O(n, n) indices into Left and Right indices, that we denote

as A = (a, â) and by using that fABC = ηAA′fA′
BC is completely antisymmetric, the above

term can be recast as

(

fABCA
B
µ δ

C
D + fDBCA

B
µ δ

C
A

)2 ∼ AB
µA

E µfABCfDEF

(

ηADηCF − δADδCF
)

∼ AB
µA

E µfaBĉfaEĉ

(1.9)

where a sum over repeated indices is understood.

Since in our example fIJK = (fijk, f̄îĵk̂) the first three “Left” indices do not mix with

the last three “Right” ones, such terms vanish.

However, we could envisage a situation where Left and Right indices do mix. In

fact, this is what we expect from string theory when we move away from the self dual

point. Vertex operators that at the dual point depend only on Left coordinates (or Right

coordinates) acquire a mixed dependence and the group breaks down to U(1)L × U(1)R

(in the circle example). From this observation we could imagine a description of the

symmetry breaking where the structure constants have a dependence on the moduli,

namely fIJ
K(R), such that for the dual point R = R̃ =

√
α′ Left and Right indices do

not mix but generically do, away from the fixed point. Let us propose, out of the blue,

the following constants

fij
k = ǫijk

1√
2α′m+ = −fîĵ

k̂

f12
3̂ = f1̂2̂

3 = f13̂
2 = f1̂3

2̂ = f32̂
1̂ = f3̂2

1 = − 1√
2α′m− (1.10)

with î ≡ i+ 3 and

m± =
1

R
± 1

R̃
(1.11)

If we go back to equation (1.9) and replace above flux values we find

AB
µA

E µfaBĉfaEĉ ∝ m2
−(A

+
µ )

2 +m2
−(A

−
µ )

2 (1.12)
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with A±
µ = A1

µ± iA2
µ acquiring a mass m− whereas A3 and Ā3 remain massless, indicating

that the gauge group is spontaneously broken to U(1)L×U(1)R. Moreover, by looking at

the couplings ηINηJM∂µHIJf
K

LIδNSA
L
µ we notice that there is a coupling

∝ m−∂µM±,3̂A
∓
µ (1.13)

with M±,3̂ = M1,3̂ + iM2,3̂, identifying M±,3̂ as would be Goldstone bosons

In fact, by replacing the proposed structure constants in the action (1.3) and after some

redefinitions it can be shown that the full string theory effective action [3], computed away

from the self-dual point (and keeping slightly massive terms), is reproduced.

Interestingly enough, the structure constants in the action (1.3) can be understood

from a DFT perspective. In generalized Scherk-Schwarz reduction of DFT [5, 4] they

appear as the generalized fluxes of the algebra associated to a generalized vielbein on a

doubled internal space. Indeed, it was shown in [3] that such a generalized frame can

be explicitly constructed to account for the description of the circle compactification at

the self-dual point. In the following sections we indicate how to generalize this frame in

order to provide a description valid also (slightly) away from the point of enhancing. The

constants presented in (1.10) are then obtained as generalized fluxes from this frame. It

is worth emphasizing that, therefore, the resulting DFT construction involves, besides

massless states, massive states that become massless at the fixed point. The breaking

is not achieved by giving vacuum expectation values (vev’s) to scalar fields. We also

indicate how to extend the construction to toroidal compactifications in more dimensions

and provide some examples for the T 2 case. An interpretation from the string theory

point of view is provided as well.

In Section 2 we review the basic ideas of Double Field Theory, with special emphasis

on the symmetry enhancing situation and by highlighting the ingredients needed in our

construction. In particular we discuss how to extend the frame description, away from

points of enhancing, from the circle compactification example.

In Section 3 we discuss how to extend the DFT construction to describe the enhancing-

breaking of gauge symmetries at different points of m dimensional toroidal compactifica-

tion. The structure of the gauge groups associated to fixed points is known to be of the

form GL ×GR where GL(R) are non Abelian gauge groups of rank m.
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Concluding remarks and a brief outlook are presented in Section 4.

2 DFT and enhanced gauge symmetries

Generalized Complex Geometry (GCG) [7, 8, 9] and Double Field Theory (DFT) [10]

are proposals that aim at integrating T-duality as a geometric symmetry. In DFT the

presence of windings, an essential ingredient of T-duality, is achieved by introducing new

coordinates associated to the winding numbers. Thus in DFT fields depend on a double

set of coordinates. This idea, first proposed in [11, 12, 13], received new impulse in recent

years [14, 15, 16] (see [4, 17] for some reviews on the subject and references therein).

Generically, these double field theories are constrained theories since some consistency

conditions must be satisfied to ensure closure of generalized diffeomorphism algebra. A

quite restrictive condition, the so called section condition (or strong constraint), ensures

consistency at the price of eliminating half of the coordinates and, therefore, abandoning

the original motivation. However, it is worth emphasising that this constrained DFT,

which in this case essentially coincides with GCG, still provides an interesting description

for understanding underlying symmetries and stringy features (for instance α′ corrections

have been recently incorporated [18, 19] in these formulations). An alternative constraint

is provided by generalized Scherk-Schwarz like compactifications [20] of DFT [5]. These

compactifications contain the generic gaugings of gauged supergravity theories [21, 22]

allowing for a geometric interpretation of all of them. In this framework, the double

coordinates enter in a very particular way through the twist matrix. Constant gaugings

are computed from this matrix and, generically, closure of the algebra is ensure if these

gaugings satisfy some quadratic constraints [23] with no need of a strong constraint re-

quirement. A generalization of this formalism was proposed in [3] in order to account

for the description of gauge enhancing. The proposal of [3], discussed for the example of

circle compactification on D = d + 1 and inspired in the relation with the coset (1.2),

requires to introduce an extended tangent space with d + 1 → d + 1 + 2. However, the

“physical space” of DFT is still a double circle. The frame vectors do depend on both

circle compact coordinates y and its dual ỹ thus being truly non-geometric. We strongly

7



rely on these results below in order to describe the breaking of enhanced symmetries when

moduli do slide slightly away from the fixed points. In this process slightly massive states

(those that become massless at the self dual points), with Kaluza Klein(KK) momenta

and windings, are expected to appear and are associated to an unpaired number (N 6= N̄)

of Left and Right moving oscillators. We keep these states and disregard other massive

states contributions. Such a situation was addressed in [3] from the point of view of

string theory. Here we show that DFT is able to capture it. Let us recall that massive

states, including winding and momenta, were also considered in DFT context in [24] as

generalized Kaluza Klein modes but with equal number of L and R oscillators .

In what follows we, briefly, review some basic features of GCG and/or DFT. The

theory is defined on a generalized tangent bundle which locally is TM ⊕ T ∗M and whose

sections, the generalized vectors V , are direct sums of vectors v plus one forms ξ, V = v+ξ.

A generalized frame EA on this bundle is a set of linearly independent generalized

vectors that belong to the vector space of representations of the group G = O(D,D). It

parametrizes the coset G/Gc, the quotient being over the maximal compact subgroup of

G. A Lorentz signature is assumed on the D-dimensional space-time, i.e. Gc = O(1, D−
1)×O(D− 1, 1). In DFT, this generalized tangent bundle is locally parametrized with a

double set of coordinates, XM = (xµ̂, x̃µ̂, ), defined in the fundamental representation of

O(D,D). Here M = 0, · · · , 2D and µ̂ = 0, · · · , D − 1.

A natural pairing between generalized vectors is defined by

V1 · V2 = ιv1ξ2 + ιv2ξ1 = η(V1, V2) = V M
1 ηMNV N

2 , (2.1)

where the O(D,D) metric ηMN has the following off-diagonal form

ηMN =





0 1D

1D 0



 , (2.2)

where 1D is the D × D identity matrix. Note that ηMN is invariant under ordinary

diffeomorphisms. Defining ηAB = η(EA, EB) where A,B = 0, 1, .., 2D are frame indices it

results that ηAB has the same numerical form as (2.2).

A generalized metric can be constructed as HMN = EAM SAB EBN , where SAB =

diag(sab, sab), sab being the Minkowski metric.
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The generalized metric can be parametrized as

HMN (X) =





g−1 −g−1B

B g−1 g − B g−1B



 , (2.3)

satisfying

HMP ηPQHQN = ηMN . (2.4)

where gµ̂ν̂(X), Bµ̂ν̂(X) are a symmetric and an anti-symmetric tensor, respectively.

The generalized vectors transform under generalized diffeomorphisms as

LVW
M = V P∂PW

M + (∂MVP − ∂PV
M)WP . (2.5)

The dilaton field ϕ is incorporated through density field e−2d =
√

|g|e−2ϕ that transforms

like a measure

LV e
−2d = ∂P (V

Pe−2d) . (2.6)

The algebra of generalized diffeomorphisms closes provided a set of constraints is satisfied.

The generalized diffeomorphisms allow to define the generalized dynamical fluxes[4]

FABC = (LEAEB)
MECM . (2.7)

Fluxes are totally antisymmetric in ABC (flat indices) and transform as scalars under

generalized diffeomorphisms, up to the closure constraints.

In generalized Scherk-Schwarz compactifications [5, 4, 6] the frame is split into a

space-time piece and an internal one. The former depends on the external d-dimensional

coordinates2 xµ while the latter strictly depends on the internal n-dimensional (where

D = d + n) coordinates Y
I = (Ỹi, Y

i), defined in the fundamental representation of

O(n, n). Here I = 1, · · · , 2n and

EA(x, Y, Ỹ ) = UA
A′
(x)E ′

A′(Y, Ỹ ) . (2.8)

The matrix U encodes the field content in the effective theory, while E ′ is a generalized

frame that depends on the internal coordinates. All the dependence on the internal

2The x̃µ duals are dropped off, or equivalently the strong constraint is imposed in the space time

sector.
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coordinates is through the frame. By using this splitting ansatz the generalized metric

becomes H = SABUA
A′
E ′

A′UB
B′
E ′

B′ = HA′B′
E ′

A′E ′
B′ where all the field dependence on

space time coordinates is encoded in

HA′B′
(x) = SABUA

A′UB
B′

. (2.9)

parametrizing the moduli space. In particular, we will deal with the “internal piece” HIJ ,

where I, J = 1, ..., 2n are frame indices on the internal part of the double tangent space.

It proves useful to rotate to a Right-Left basis C where left and right coordinates are

yLm =
1

2
[(g +B)mny

n + ỹm] (2.10)

yRm =
1

2
[(g − B)mny

n − ỹm]

in terms of YM = (ym, ỹ
m). Namely, the rotation matrix reads

R =





(g +B) 1

(g − B) −1



 , (2.11)

and therefore from EA → (EC)A = RA
BEB we see that η becomes diagonal

(RηRT )AB =





1D 0

0 −1D



 . (2.12)

Since the internal piece of H lies in O(n, n)/O(n) × O(n) it is possible to show[3, 33]

that the scalar matrix, in the Left-Right basis C can be written as an expansion in scalar

fluctuations

HC =





1n +MMT M

MT 1n +MTM



 +O(M3) (2.13)

with n2 independent degrees of freedom.

By using the expression for the generalized Lie derivative in the specific case of the

frame

LE′
A
E ′

B =
1

2

[

E ′ P
A ∂PE

′ M
B − E ′ P

B ∂PE
′ M
A + ηMNηPQ∂NE

′ P
A E ′ Q

B

]

DM (2.14)

[E ′
I , E

′
J ] = LE′

I
E ′

J = fIJ
KE ′

K . (2.15)
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where the fluxes fIJ
K , for the generalised Scherk-Schwarz reduction, must be constants

and must satisfy the constraints

fIJK ≡ ηKLfIJ
L = f[IJK] , f[IJ

LfK]L
R = 0 . (2.16)

The information about the internal space is encoded in these constants. When replacing

above results into the initial DFT action (1.3) the expression presented in (1.1) is obtained.

2.1 Enhanced gauge symmetry on the circle

In Ref.[3] a specific DFT frame was presented 3 in order to reproduce the effective action,

obtained from string theory compactification on the circle, at the self-dual point. As

mentioned it requires to enhance the tangent space to D = d+ 1 + 2 but the frame only

depends on the circle coordinate and its dual. In a Cartan-Weyl basis the frame vectors

read,

E± = c(e
∓i 2√

α′ yL, ie
∓i 2√

α′ yL, 0, 0, 0, 0), E3 = −c(0, 0, 1, 0, 0, 0, 0)

Ē±̂ = c(0, 0, 0, e
∓i 2√

α′ yR, ie
∓i 2√

α′ yR, 0) Ē3̂ = −c(0, 0, 0, 0, 0, 1) (2.17)

The directions E±̂ ≡ E1 + iE2 (and Ē±̂ = E1̂ + iE2̂ ) encode the extension of the tangent

space. It is easy to check that, by using (2.14) (setting c = i
√
α′) and by noticing that

the only contributions to the partial derivative are

∂A = (0, 0, ∂yL , 0, 0, ∂yR), (2.18)

the SU(2)L × SU(2)R coupling constants (1.7) are obtained. In the Cartan-Weyl basis

they read,

1

2
f+−

3 =
1

2
f+̂−̂

3̂ = f3+
+ = f3̂+̂

+̂ = −f3−
− = −f −̂

3̂−̂ = 1 (2.19)

−1

2
f+̂−̂

3 = −1

2
f+−

3̂ = f3+̂
+̂ = −f3−̂

−̂ = f
3̂+
+ = −f3̂−

− = 0

where we have used a hat to denote the indices constructed up from 4, 5, 6 Right indices.

The construction of the frame is inspired in the coset structure (1.2) and on the

structure of vertex operators in string theory4. Namely the correspondence among frame

3The choice of frame was inspired by a previous work [25] set in a different context.
4Basic ingredients and notation conventions for string theory vertices are briefly presented in Appendix.
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vectors and string current generators[3] can be established (here e±L = e1 ± ie2, e±R =

e1 ± ie2)

Ē± = e
∓ 2i√

α′ y
R

e±R ↔ e
∓ 2i√

α′ y
R(z̄)

dz̄ = J̄∓dz̄ , (2.20)

Ē3 = i/
√
α′ dyR ↔ dyR(z̄) = J̄3dz̄

E± = e
∓ 2i√

α′ y
L

e±L ↔ e
∓ 2i√

α′ y
L(z)

dz = J∓dz , (2.21)

E3 = i/
√
α′ dyL ↔ dyL(z) = J3dz .

where J∓(z) = e
∓ 2i√

α′ y
L(z)

, J3(z) = ∂zY (z) are the string currents satisfying the Operator

Product Expansion (OPE) algebra of SU(2)L (and similarly for the Right sector). The

corresponding string vertex operators V i(z, z̄) for vectors are

V ±,3(z, z̄) = i
g′c

α′1/2 ǫ
±,3
µ : J±,3(z)∂̄XµeiK·X : (2.22)

where i = ±, 3 and Kµ is the space time momentum.

A similar construction was presented in [26] (see also [27]) for the case of the S3

reduction in the context of the WZW model, inspired by [28]. The purely geometric

case was studied in [29]. For the non-geometric one [26], the authors were able to show

that allowing for a non trivial dependence on the dual coordinate of the Hopf fibre,

non-geometric gaugings can be obtained [30]. However, unlike the toroidal construction

presented here (and in [3]) where a clear world sheet picture arises, the S3 does not have

non-contractible cycle and, therefore, no winding states were really considered in [26].

For general compactification radios, the dependence on moduli is encoded in the ex-

ponential part of the vertex operators

: exp[ikLyL(z) + ikRyR(z̄)]e
iK·X : (2.23)

where

k
(p,p̃)
L =

p

R
+

p̃

R̃
, k

(p,p̃)
R =

p

R
− p̃

R̃
. (2.24)

in terms of KK momenta p and winding number p̃ satisfying the level matching condition

N̄ −N = pp̃. N = Nx +Ny (N̄ = N̄x + N̄y) is the Left (Right) moving number operator,

involving the sum of the number operator along the circle Ny (N̄y) and the number

operator for the non-compact space-time directions, denoted by Nx (N̄x). At the self-dual

12



radio R = R̃ =
√
α
′
, the vertices separate into a Left part with kR = 0 or into a Right

vertices with kL = 0. The three vector states generating SU(2)L correspond to N̄x = 1,

Nx = N̄y = 0. The assignment Ny = 1, p = p̃ = 0 corresponds to the KK (Cartan field)

mode A3
Lµ, while for Ny = 0, p = p̃ = ±1 (namely, k

(±1,±1)
L = ± 2√

α′ ; k
(±1,±1)
R = 0) the

charged vectors A±
Lµ are obtained (and similarly for SU(2)R).

When moving away from the fixed point, Left and Right parts mix up and, generically,

the original vertex operator becomes ill defined as a conformal field. It must combine with

other vertex operators, that have the same exponential contribution, in order to produce a

new consistent vertex. Interestingly enough, these combinations encode the Higgs mech-

anism by absorption of a vertex corresponding to a would be Goldstone boson field[3].

With this picture in mind we generalize the frame (2.17) by including the dependence

kLyL + kRyR for the found values of momenta and windings.

E± = c(e∓iw,±ie∓iw, 0, 0, 0, 0) Ē+ = c(0, 0, 0, e∓iw̄,±iei∓w̄, 0)

E3 = −c(0, 0, 1, 0, 0, 0, 0) Ē3̂ = −c(0, 0, 0, 0, 0, 1) (2.25)

where

w = m+yL +m−yR, w̄ = m−yL +m+yR (2.26)

and m± = k
(1,±1)
R = 1

R
± 1

R̃
. Notice that m+ → 2√

α′ at self-dual radio R = R̃ =
√
α′.

Again, by using (2.14) we obtain

[

E+, E−
]

= 2 (a+E3 − a−Ē3̂),
[

E+̂, Ē−̂
]

= 2 (a+Ē3̂ − a−E3),

[

E3, E+

]

= a+ E+,
[

Ē3̂, Ē+̂

]

= a+ Ē+̂

[

E3, E−
]

= −a+ E−,
[

E3̂, Ē−̂
]

= −a+ Ē−̂
[

Ē3̂, E+

]

= a− E+,
[

E3, Ē+̂

]

= a− E+̂

[

Ē3̂, E−
]

= −a− E−,
[

E3, Ē−̂
]

= −a− Ē−̂ (2.27)

with

a± =

√
α′m±
2

. (2.28)
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Thus, we find that, by computing the fluxes (2.16), and up to a normalization factor

α′ 32
√
2, the constants proposed in (1.10) are obtained (here written in a complex com-

bination). Notice that, if R → R̃ then a−(a+) → 0(1) and the original SU(2) × SU(2)

algebra is recovered. Moreover, it is easy to check that the algebra is invariant under

T-duality transformation R ↔ R̃.

As mentioned, by systematically replacing the above structure constants (fluxes) into

the general DFT action expression (1.3), the exact spontaneously broken action, with

U(1) × U(1) gauge symmetry, as computed from string theory (see Eq.(3.31) in [3]) is

found. In particular, vector fields A±
Lµ and A±̂

Rµ become massive, with masses m− by

“eating” the would be Goldstone bosons ∂µM±3̂ (and ∂µM3±̂ ) that disappear from the

spectrum.

It appears instructive to see how some of the terms in the broken symmetry action

arise. For instance, by inserting the expansion in scalar fluctuations M in the generalized

scalar matrix (2.13), into the third row of the DFT action (1.3) and using the values

(1.10) for structure constants we find the quadratic the terms

2(m+m− +m2
−)|M±±|2 − 2(m+m− −m2

−)|M±∓|2 (2.29)

=
4

R
m−|M±±|2 − 4

R
m−|M±∓|2

reproducing the exact values m2
±± = 4

R
m− and m2

±∓ = − 4
R
m− as computed from string

mass formula (A.2)5. The terms proportional to m+m− and m2
− come from linear and

quadratic terms in M expansion in (2.13), respectively.

In the same way it can be checked that the masses of the would be Goldstone bosons

M±,3̂,M3±̂ coincide, as it should, with the masses m− of the massive vector bosons.

Moreover, the same row in (1.3) for cubic terms in M lead to

− 4√
α′M+−M−+M33(

√
α′

R̃
)

2

+
4√
α′M++M−−M33(

√
α′

R
)

2

(2.30)

with m2
+ +m2

− + 2m+m− = (m+ +m−)
2 = 4

R2 .

5Recall that, depending on the value of R half of the scalars become tachyonic. This is an artefact

associated to the ill defined bosonic string.
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Coming back to the expressions (2.27), it is worth noticing that the above brackets

close into a Lie algebra for arbitrary values of R. Indeed, by recalling that fIJK = ηKLf
L

IJ

are totally antisymmetric, it is easy to check that Jacobi identity is satisfied. Of course,

the found algebra should correspond to one of the known semi-simple algebras. Since it

involves six charged generators and two Cartan ones the only possibility is SU(2)×SU(2).

Actually, this can be explicitly shown by performing the linear combinations of generators

E ′
± =E±; Ē ′

±̂ = Ē±̂

E ′
3 =a+E3 − a−Ē3̂

E ′
3̂
=− a−E3 + a+Ē3̂,

(2.31)

namely a rotation by the O(3, 3) matrix

















12 0 0 0

0 a+ 0 −a−

0 0 12 0

0 −a− 0 a+

















(2.32)

and using that a2+ − a2− = 1.

We thus see that, even in the broken phase, there is still an underlying SU(2) symmetry

(now mixing massive and massless states). However, once the above frame is chosen, the

O(3, 3) full symmetry gets broken and, therefore, it can not be rotated to the starting

point. Recall also that, in terms of fields, the combination of U(1) gauge bosons

A3′µ = a−A
3µ
L + a+A

3̂µ
R = V µ +Bµ (2.33)

is the right combination in terms of

Vµ =
1

2R
(A3

µ + Ā3
µ) , Bµ =

1

2R̃
(A3

µ − Ā3
µ) (2.34)

which are the KK reductions of the metric and antisymmetric fields and with respect to

which massive states carry integer charge (see [3]).

It is instructive to look at the above results from the string theory point of view.

There, the structure constants can be essentially read from the 3-gauge vector bosons
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vertices with vertex operators V i. For the massless case they read (see [3] for notations

and explicit computations), for Left vectors,

< V i
LV

j
LV

k
L > = πgc

i√
α′ ǫ

ijk
[

(ǫk3 ·K1)(ǫ
i
1 · ǫj2)− (ǫj2 ·K1)(ǫ

i
1 · ǫk3)

+ (ǫi1 ·K2)(ǫ
k
3 · ǫj2)

]

where K1, K2, K3 are the space time momenta of vertices i, j, k respectively. Namely, we

can read the ǫijk structure constants of SU(2)L (and similarly for SU(2)R) and there is

no mixing between L-R sectors.

On the other hand, away from the self-dual point we find the three-point coupling of

Left and Right vectors can be written as

〈V +
L V −

L V 3
L 〉 =

πg′c
2
√
α′ (a+)E(ki, ǫi)

〈V +
L V −

L V 3
R〉 =

πg′c
2
√
α′ (a−)E(ki, ǫi)

〈V +
R V −

R V 3
L 〉 =

πg′c
2
√
α′
(a−)E(ki, ǫi)

where E(Ki, ǫi) = (ǫ
′
1+ · ǫ′2−)(K1 · ǫ3)+(ǫ

′
1+ · ǫ3)(K3 · ǫ

′
2)+(ǫ3 · ǫ

′
2−)(K2 · ǫ

′
1+) is a factor that

depends on space time momenta and vector polarizations. Thus, if by analogy with the

dual point case, we interpret the coefficients as the moduli dependent coupling constants

we find; f+−3(R) = a+, f+−3̂(R) = a− etc. Moreover, by considering the combinations

(2.33) above, we can again identify the underlying SU(2) structure. The SU(2) con-

trols the allowed three point functions through conservation of internal Right and Left

momenta.

3 Enhancing-breaking of gauge symmetries for

generic toroidal compactifications

In this section we briefly discuss possible realizations of the enhanced symmetry breaking

mechanism, through moduli dependent structure constants, for general toroidal compact-

ifications. Bosonic string compactification [2] on a T r torus of r dimensions gives rise to a
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gauge symmetry group GL×GR of rank 2r (r coming from Left and Right vectors associ-

ated to the metric and B field degrees of freedom). At generic points of the compactified

manifold this group is simply U(1)rL × U(1)rR but, at special moduli points, GL is a non

abelian group with dimGL = n = nc+r. Here nc counts the number of charged generators

associated to the presence of non trivial winding and KK momenta. By reasoning as in

the circle case, if we assume that the number of massless degrees of freedom at some point

of enhancing is given by

dim(
O(d+ n, d+ n)

O(d+ n)× O(d+ n)
) = d2 + 2nd+ n2 (3.1)

this appears to correspond to the d2 degrees of freedom of gravity (plus B field), the 2n

vectors of a GL × GR and n2 scalars in bi-adjoint representations. If n = r it gives the

correct counting for U(1)rL × U(1)rR degrees of freedom.

For a circle compactification r = 1 and by choosing n = 2+1 the counting corresponds

to an SU(2)L × SU(2)R gauge group with scalars in the (3, 3) representation, as it is the

case for the self-dual point R = R̃.

For a T 2 toroidal compactification, when n = 2×3, the number of massless degrees of

freedom for SU(2)L×SU(2)L×SU(2)R×SU(2)R with scalars in (3, 1, 3, 1)+(1, 3, 1, 3)+

(3, 1, 1, 3)+(1, 3, 3, 1), corresponding to a possible torus enhancing point, is reproduced.

Also, the correct counting occurs for nc = 6, for the degrees of freedom of SU(3)L×SU(3)R

with scalars in the (8, 8) representation at the point of maximal enhancing [2].

The generalization of the exponential contribution (2.23) to the string vertex operators

for a general torus (with lattice vectors eam) reads (see Appendix for notation)

: eikL.yL(z)+ikR.yR(z̄) eiK·X : (3.2)

with Left and Right momenta

ka
L = eamp

m
L , ka

R = eamp
m
R

where

pmL = p̃m + gmn(pn − Bnkp̃
k) , pmR = −p̃m + gmn(pn −Bnkp̃

k) . (3.3)

gmn = eame
a
n defines the internal metric whereas Bmn are the internal components of the

Kalb-Ramond field.
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Notice that, by using (2.11) the following relation holds

kL.yL + kR.yR = P.Y (3.4)

Gauge symmetry enhancing occurs at specific values of moduli (g0, B0), encoded in

the frame vectors eam(g, B) and of windings and momenta (encoded in the generalized

momentum P = (p1, p2, . . . ; p̃
1, p̃2 . . . ). At such values, ka

L become roots of a semi simple

algebra (ka
R = 0) and similarly for the right sector. Namely, at such points, the internal

part of vertex operators in (3.2) becomes

Eα ≃ eik
P

L
.y(z) (3.5)

with k
(P) a
L ≡ αa

m a root of the semi simple algebra and where m = 1, 2, . . . (associated

to P values) labels the charged operators. These vertex operators, together with the

corresponding Cartan operators, close the OPE of a GL group affine algebra.

Let us consider the 2-torus example discussed in the Appendix. For generic values of

E = g+B the gauge group is U(1)2L×U(1)2R but enhancings occur at different points [2].

For instance, by choosing the basis6 em = 1√
2
αm with m = 1, 2 with α1,2 the simple roots

of SU(3) and B12 = g12 = −1
2
we see that there are six generalized momentum vectors

P = ±(1, 0, 1, 0),±(−1, 1, 0, 1),±(0, 1, 1, 1) (3.6)

that satisfy the LMC, and such that Pm
R = 0. They give rise to six extra massless states

with

PL = ±(1, 0),±(0, 1),±(1, 1) (3.7)

Similarly P = ±(−1, 1, 1, 0),±(0,−1, 0, 1),±(1, 0,−1,−1) lead to same roots for PR while

PL = 0. At the end, the enhanced SU(3)L × SU(3)R gauge group is generated.

Also, for

Gmn =





1 0

0 1



 (3.8)

and B = 0 an enhancing to (SU(2) × SU(2))L × (SU(2) × SU(2))R is obtained for

P = (±1, 0,±1, 0), (0,±1, 0,±1), etc.

6The
√
2 is just a normalization factor in order to keep the usual convention for α2 = 2 for the roots.
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The description of the enhancing-breaking of the gauge symmetry could be, in prin-

ciple, described by generalizing the steps presented in the previous section for the circle

particular situation. We have not pursued this construction systematically but we present

some examples for the 2-torus case7. For a general r-torus compactification, from a DFT

point of view, we should consider a doubling of the internal manifold T r × T̃ r, incorpo-

rating both tori coordinates ym as well as their duals ỹm with m = 1, . . . r ( in a O(r, r)

writing it corresponds to the double coordinate Y
M with M = 1, . . . 2r.).

Following the counting (3.1) it appears that the tangent frame must be enlarged further

in order to incorporate information about charged operators. Thus, if we were to describe

a GL × GR point, besides the r + r frame vectors, associated to the internal coordinates

Cartan generators, 2nc extra frame vectors should be incorporated with nc = (dimG− r)

associated to the left charged generator vertices (3.5) (and similarly for Right vertices).

Thus, in principle, we should have a 2dimG tangent frame space where the frame vectors

only depend on Y internal coordinates. Each frame vector could be written in a given

2dimG basis and frame vectors associated to charged operators are expected to depend

on an exponential factor eik
(P)
L

.yL (and similarly for R vectors) where P encodes the specific

values of momenta and winding characterizing the enhanced vectors.

For generic points in the compact manifold we will have internal directions eam(g, B)

depending on the moduli fields and, therefore, so do k
(P)
L (g, B) and k

(P)
R (g, B)8. At selected

values of g, B these directions become the simple roots of the enhancing algebra. There-

fore, away from fixed points we expect the frame vectors to depend on both eik
(P)
L

.yL+ik
(P)
R

.yR,

as in fact, we found in the circle case (recall that the possible values of P are fixed). When

moving into the fixed point, P values will produce the roots of GL (and kP

R = 0) and the

roots of GR (and kP

L = 0 ). This is indeed what we found in the circle case and we now

illustrate in its simplest generalization of the 2−torus case near the SU(2)4 fixed point.

Let us name Y
M = (ỹm, y

m), m = 1, 2, the double torus coordinates or (yLm, yRm) in

a L− R basis. The exponential contributions can now be written in terms of eiθj where

θ(j) = km
(j)LyLm + km

(j)RyRm = k1
(j)LyL1 + k2

(j)LyL2 + k1
(j)RyR1 + k2

(j)LyR2 (3.9)

7A systematic derivation is proposed in [33] with a modification of the generalized Lie derivative.
8We avoid writing the dependence on moduli in order to lighten the notation
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Here (j) encodes the P = (p1, p2, p̃
1, p̃2) values that would lead to SU(2)j at the self-dual

point. For instance, P = (±1, 0,±1, 0) generates a km
(1)L and km

(1)R (where km
(1)R = 0 at

self-dual point) etc. Overall we find

P = (±1, 0,±1, 0) → km
(1)L(R) (3.10)

P = (0,±1, 0,±1) → km
(2)L(R)

P = (±1, 0,∓1, 0) → km
(3)L(R)

P = (0,±1, 0,∓1) → km
(4)L(R)

where at the corresponding self-dual point km
(1)R = km

(2)R = 0 and km
(3)L = km

(4)L = 0. Fol-

lowing the general steps sketched above we thus propose a generalized twelve dimensional

( 2dimGL = 12) frame with frame vectors depending only on Y
M . A straightforward

generalization of the circle case leads us to the frame vectors

E+(j) =
(

03(j−1); v+(j); 0
3(4−j)

)

e−iθj = E∗
−(j) (3.11)

E0(j) =
(

03(j−1); v0(j); 0
3(4−j)) (3.12)

where v±j = (0, 1,±i) (v 0j = (i, 0, 0)) is a 3 dim vector inserted at position j. Notice

that E+(j+3) ≡ Ē+(j) correspond to Right vectors. At the self-dual point these vectors

lead to SU(2)L × SU(2)R algebra for each value of j.

Moving away from the SU(2)4 fixed point generically mix the twelve generators leading

to moduli dependent structure constants fIJK(g, B) (I, J,K = 1, . . . 12). Actually, due to

the frame structure (3.12), the mixing occurs between Left and Right components for a

given value of (j), namely for the same would be SU(2)j frame.

For instance, by setting for simplicity for B = 0 but for generic metric, we find

f+−0̄(1)(G) ∝ kR(1) =
√
2[G11 +

G22

det(G)
− 2]

1
2 (3.13)

f+−0̄(2)(G) ∝ kR(2) =
√
2[G11 +

G11

det(G)
− 2]

1
2 (3.14)

which generalizes the expression (1.10) found for the circle. By inserting these constants

into the generic DFT action it is possible to check, as sketched in the introduction, that the
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action for a generic spontaneous symmetry breaking to U(1)4 is achieved. The complete

computation was performed by using a computer program.

The masses of the Left-vectors bosons are

m2
1 = f 2

+−0(1)(G) (3.15)

m2
2 = f 2

+−0(2)(G) (3.16)

and (similarly for the R-vectors). They coincide with the masses computed from string

theory (A.2). The values G12 = 0, G11 = G22 = 1 lead to m2
1 = m2

2 = 0 thus leading

to the SU(2)4 enhancing. Also, G12 = 0, G11 = 1, G22 = (
R(2)√
α′ )

2 corresponds to a partial

breaking stage to SU(2)1L × U(1)2L × SU(2)R × U(1)2R etc.

Recall that, generically, for a given point of enhancing (g0, B0) with GL × GR gauge

group, once the values of fluxes fABC(g, B) are found, we just have to plug them into the

DFT action to obtain the effective gauge symmetry broken action. We have shown how

to compute these fluxes from a generalized tangent frame construction. However, we can

easily read them from string theory 3-vector bosons amplitudes, as we saw for the circle

case. Namely, at a given fixed point, as mentioned k
(P)
L (g0, B0) = α(P)(g0, B0) become

simple roots of the GL group algebra and K
(0)
L(R) = 0 for Cartan vectors. Let us consider

the 3-point amplitudes for massless bosons. For charged bosons we can write, up to an

antisymmetric factor in vertex indices depending on vector polarizations (see (2.35)), as

〈V (k
(P1)
L )V (k

(P2)
L )V (k

(P3)
L )〉 ∝ fα(P2)α(P2)α(P3)(g, B) (3.17)

where fα(P2)α(P2)α(P3)(g, B) = 1 if P3 = −P1−P2 and vanishing otherwise due to momentum

conservation. The constants are antisymmetric. At the self-dual point this indicates that

structure constants fα1α2α3 vanish unless α1 + α2 is a root (and similarly for Right the

sector). For the same reason mixings of Left and Right indices vanish. On the other

hand, by denoting by V (IL(R)) with I = 1, . . . r the Cartan vectors, the only non vanishing

amplitudes are

〈V (k
(P)
L )V (k

(−P)
L )V (IL(R))〉 ∝ k

(P)
L(R)(g, B)I
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and, by identifying the amplitudes coefficients with algebra structure constants, we have

k
(P)
L (g, B)IL = fα(P)α(−P )I(g, B), k

(P)
R (g, B)IR = fα̂(P)α̂(−P )Î(g, B) (3.18)

k
(P)
L (g, B)IR = fα(P)α(−P )Î(g, B), k

(P)
R (g, B)IL = fα̂(P)α̂(−P )I(g, B)

where we have used hatted indices for Right generators. Thus, we propose the algebra

[

Eα, E−α

]

= k
(α)I
L HI + k

(α)Î
R ĤÎ

[

Êα̂, Ê−α̂

]

= k
(α̂)I
L HI + k

(α̂)I
R ĤI

[

HI , Eα

]

= k
(α)I
L Eα

[

ĤÎ , Êα̂

]

= k
(α̂)Î
R Êα̂

[

HI , Êα̂

]

= k
(α̂)I
L Êα̂

[

ĤI , Eα

]

= k
(α)I
R Eα (3.19)

where we have used α = α(P) to alleviate the notation. It is easy to show that (3.19)

satisfies Jacobi identities. and therefore defines a Lie algebra.

At the self dual point (where kα
R(g0, B0) = kα̂

L(g0, B0) = 0) and fα−αI = αI , (and

similarly for Right sector) the algebra reduces to to the gauge algebra of GL ×GR in the

Cartan-Weyl basis. For instance notice that [Eα, E−α] = αIHI for charged generators Eα

and Cartan generators HI , as expected.

As an example let us specify to the SU(3)L×SU(3)R case (the expressions are, however,

general). Since this algebra must be continuously connected with the SU(3)L × SU(3)R

algebra at the fixed point and has four Cartan generators the only possibility left is an

SU(3)×SU(3). Again, away from the fixed point, we detect the same underlying algebra,

now mixing massive and massless (associated to Cartan generators) vector fields.

Let us underscore that, by replacing above fluxes into the DFT action (1.3) and by

performing the scalars expansion (2.13), as we did for the circle case example, the full

broken GL × GR symmetry action is found. Recall that this is valid for an arbitrary

fixed point in a general r dimensional toroidal compactification. As a check we show in

the Appendix that the resulting masses for vector fields and scalar fields, as functions of

moduli, coincide with the string theory ones.

4 Summary and outlook

A well known distinguished feature of string theory is the enhancing of gauge sym-

metries at certain values of moduli backgrounds. In this work we have shown that
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DFT formulation helps to identify an interesting description of enhancing phenomena.

Namely, enhancing information appears encoded into moduli dependent generalized fluxes

fABC(g, B) with A,B,C = 1, . . . 2n indices in an O(n, n) vector representation. Splitting

indices in a Left-Right basis A = (a, â), it appears that enhancing occurs for moduli

values (g0, B0) such that generalized fluxes with mixed indices vanish. In this situation

fabc(g0, B0)(fâb̂ĉ(g0, B0)) become the structure constants of a GL(GR), dimGL = n dimen-

sional non-Abelian gauge group. In fact, the vector boson masses are proportional to

mixed indices fluxes (B.3).

As mentioned, when replacing these moduli dependent fluxes into the generic DFT

action the effective string theory action is reproduced, as long as up to slightly massive

states are kept. Therefore, DFT is providing us with a generic field theory action that

leads to an accurate description of string theory results even in a non trivial stringy

situation of gauge symmetry enhancing-breaking when massive states with associated

momenta and winding are present. As discussed in [3] for the circle case (and extended in

[33] for other situations) by giving vev’s to some specific scalar fields, the string broken

symmetry action can be approximately obtained as an expansion in powers of the vev,s. It

is worth insisting that the DFT construction we are presenting here is already producing

the broken symmetry phase. Moreover, different coefficients and masses in the string

action are exactly reproduced as functions of moduli and not as an expansion.

In addition, we have shown (at least for some examples) that generalized fluxes can

be computed by introducing a generalized frame in tangent space with extended tangent

directions but depending only on the coordinates of the double “physical torus”. The

DFT generalized Lie algebra closes even though the strong constraint is not satisfied. In

fact, the frame is explicitly non-geometric since it is a function of the double coordinates

Y = (Y, Ỹ ).

The idea of doubling the number of coordinates in order to describe winding modes was

one of the original motivations of DFT. However, only recently windings were actually

included in DFT. In [3] a step in this direction was performed by showing that DFT

can describe the massless sector of an enhanced gauge symmetry situation with windings

playing a fundamental role and where an unpaired number of Left and Right N−N̄ = ±1
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moving oscillators is implied in string theory (see also [33]). Also in [24] a generalized KK

toroidal compactification (GKK) of DFT containing towers of massive states with generic

windings and KK momenta was considered, for the case N − N̄ = 0, namely with the

level matching condition P
2 = 0. The present work is a contribution in between, in the

sense that it incorporates slightly massive states with paired and unpaired oscillators but

disregards higher massive states.

The tangent space extra dimensions in the above construction are associated to states

with non vanishing momenta and windings, actually with P
2 = ±1. It may appear

somewhat awkward that moving continuously from one point of enhancing to another

could lead to a discrete change in the number of these extra tangent dimensions, even if

these are just tangent directions and not physical dimensions at all. In string theory the

vector fields that become massless to lead to gauge enhancing are part of the spectrum

and they are associated to N − N̄ = ±1. It appears that in this situation DFT in lower

dimensions should allow for the presence of new vector fields, say Aν
L(R)(x,Y) where Y

are coordinates on a double torus.

A possible way these jumps could be actually understood is through a GKK mode

expansion, as considered in [24], but allowing for states with LMC δ(P2) = ±1, 0. For

instance,

ALν(x,Y) =
∑

P

A
(P)
Lν (x)e

iPMY
M

δ(P2, 1) (4.1)

=
∑

P

A
I(P)
Lν (x)eikL.yL+kR.yR δ(P2, 1),

(4.2)

where PL, PR depend on moduli (3.3). When moving continuously along the moduli

space, for certain values of P, GKK modes kR = 0 and the corresponding fields A
(P)
Lν (x)

become massless. For instance for the T 2 × T̃ 2 the six modes (3.6) become massless for

g11 = g22 = −2g12 = −2B12 = 1 leading to the charged operators of SU(3)L. Sliding away

from this point the masses of these modes vary continuously from zero. When reaching

the moduli point g11 = g22 = 1;B12 = 0 other modes (the six modes shown in (3.11))

become massless9 and lead to SU(2)2L enhancing. The massless vector fields are those

9Notice that there are two common modes P = (±1, 0,±1, 0).
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captured by the extended tangent frame vector in DFT. Moreover, we saw that at the

neighbourhood of the point of enhancing associated to a gauge generator algebra G, there

is still an underlying global G algebra, mixing massless (Cartans) and slightly massive

states. When moving away from that point other fields, now with comparable masses,

will come into play and will have non neglectable 3-point amplitudes indicating a possible

infinite enhancing of the global algebra. This appears to be an indication of the presence

of a Generalized Kac-Moody algebra of the kind discussed in [24] but including unpaired

LMC conditions. Of course these ideas need further investigation.

For the sake of simplicity we have dealt with the bosonic string example. However the

reasoning should be straightforwardly applicable to the (bosonic sector) of Heterotic the-

ories ([14]) or Type II theories obtained from U-dual Extended Field Theories (EFT)[32].

It could also be interesting to explore the inclusion of extra tangent dimensions directly

in gauged supergravity theories [21, 22].
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A Vertex operators and enhancing

We summarize here some string theory ingredients needed in the body of the article.

A generic vertex operator contains an exponential contribution that can be written

in terms of Left and Right moving coordinates yL(z), yR(z̄)as eik·X+ikL·yL+ikR·ȳR : where
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Kµ stands for the space-time momentum while kL(R) are the internal L(R) momenta.

It is convenient to use coordinates yaL(R) = em
aymL(R) with tangent space indices a, b, ...,

defined in terms of the vielbein em
a (δab = em

agmnen
b) since they have the standard OPEs.

Namely, the propagators read

〈Xµ(z, z̄)Xν(w, w̄)〉 = −α′

2
ηµνln|z − w|2 ,

〈Y a(z)Y b(w)〉 = −δab
α′

2
ln(z − w) , 〈Ȳ a(z̄)Ȳ b(w̄)〉 = −δab

α′

2
ln(z̄ − w̄) .

and the vertex operator momenta are

ka
L = eamp

m
L , ka

R = eamp
m
R , (A.1)

where

pmL = p̃m + gmn(pn − Bnkp̃
k) , pmR = −p̃m + gmn(pn −Bnkp̃

k) .

The stress energy tensor is

T (z) = − 1

α′ (ηµν : ∂zX
µ(z)∂zX

ν(z) : +δab : ∂zY
a(z)∂zY

b(z) :) ,

The mass of the string states is

M2 =
1

2
m2

L +
1

2
m2

R =
1

2
kaL.kaL +

1

2
kaR.kaR + 2(N + N̄ − 2) (A.2)

where N, N̄ are the number of string oscillators and the level matching condition reads

1

4
kaL.kaL − 1

4
kaR.kaR − (N − N̄) = pnp̃

n − (N − N̄) = 0 (A.3)

and similarly for the right moving one.

A.1 Torus example

The frame base can be written as (as mention the factor
√
2 is included to maintain the

normalization conditions α2 = 2 for simple roots)

e1 =
1√
2
(0,

√

G11), e2 =
1√
2
(

√
detG√
G11

,
G12√
G11

), (A.4)
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leading to the matrix gmn = em.en = 1
2
Gmn. with dual lattice vectors (e∗m = em)

e∗1 =
√
2(− G12√

detG
√
G11

,
1√
G11

), e∗2 =
√
2(

√
G11√
detG

, 0)

A field B = B12





0 1

1 0



 can also be introduced. When

G =





2 −1

−1 2



 (A.5)

the SU(3) Cartan matrix is obtained and frame vectors become em = 1√
2
αm where

α1 = (0,
√
2), α2 = (

√
3√
2
,− 1√

2
) (A.6)

(A.7)

are the SU(3) simple roots.

On the other hand, G22 = G11 = 2;G12 = 0 corresponds to an SU(2)×SU(2) algebra.

Metric and B field define the complex structure U = U1 + iU2 and Khaler structure

T = T1 + iT2 of the torus with U1 =
g12
g22

, U2 =
√
detg
g22

, T1 = B12, T2 =
√
detg. In terms of

complex moduli, SU(3)L × SU(3)R enhancing occurs at

T = −1

2
+ i

√
3

2
= U (A.8)

whereas (SU(2)× SU(2))L × (SU(2)× SU(2))R enhancing is achieved for

T = i = U (A.9)

B General enhancing groups

We show here that, in the general case of an enhancing from U(1)rL × U(1)rR to a gauge

group GL × GR the generalized fluxes lead to the the exact vector and scalar massive

terms. Namely, the corresponding masses coincide with the masses computed from string

theory. Consider the L-R splitting of indices in the C base A = (a, â) where the first

(second) entries belong to left group GL (right group GR). Let us focus on GL and

further split left indices as a = (α, I) corresponding to charged generators and Cartan

generators I = 1, . . . r (and similarly for Right group).

27



B.1 Vector masses

The vector mass terms in the Lagrangian read

(

fABCA
B
µM

C
D + fDBCA

B
µM

C
A

)2 ∼ AB
µA

E µfABCfDEF

(

ηADηCF − δADδCF
)

∼ AB
µA

E µfaBĉfaEĉ (B.1)

If the fluxes do not mix Left and Right sectors (as it happens at the self dual point) then

all vectors are massless. From momentum conservation we know that faIĉ = faĪĉ = 0.

Moreover a and ĉ can not be charged indices simultaneously. Then

faBĉfaEĉ = fIBγ̂fIEγ̂ + fαBÎfαEÎ (B.2)

We conclude that indices B,E in the previous expression must be charged indices and,

moreover, they must be equal by momentum conservation

AB
µA

E µfaBĉfaEĉ ∼
∑

γ̂

Aγ̂
µA

γ̂ µ

r
∑

I=1

fI−γ̂ γ̂fI−γ̂ γ̂ +
∑

α

Aα
µA

αµ

r
∑

Î=1

fα−αÎfα−αÎ

=
∑

γ̂

Aγ̂
µA

γ̂ µm2
γ̂ +

∑

α

Aα
µA

αµm2
α

(B.3)

where the sum runs over the positive roots. By using that (see (3.18)) fI −γ̂ γ̂ = KI
L, γ̂

i.e. the I-component of the Left γ momentum (similar for the right case) we can write

the masses as m2
γ̂ =

∑r
I=1(K

I
L, γ̂)

2 and for the γ-left vector is m2
γ =

∑r
I=1(K

I
R, γ̂)

2, that

coincide with vector masses computed from (A.2).

B.2 Scalar masses

We denote the, (dimG−r)2, massless scalars charged under Left and Right gauge group as

Mαβ̂ . In string compactification they are described by the vertex operators V αβ̂(z, z̄) ∝
Jα(z)Ĵ β̂(z̄) with Jα(z) = ekLα.y. When moving away from the self-dual point a non

vanishing Right contribution kRα (m− in circle example) appears and similarly a kLβ̂,

from the Right sector. Therefore, the scalar Left and Right internal momenta become

kLαβ̂ = kLα + kLβ̂ (B.4)

kRβ̂α = kRβ̂ + kRα
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Recall that, since N = N̄ = 0 level matching requires k2
Lαβ̂

= k2
Rβ̂α

.

The mass of the scalar is (A.2)

M2
αβ̂

=
1

2
k2
Lαβ̂

+
1

2
k2
Rβ̂α

− 4 (B.5)

By replacing the values (B.5) into this formula and by using LMC for vector currents

k2
Lα − k2

Rα = 1 (B.6)

k2
Lβ̂

− k2
Rβ̂

= −1

we obtain

M2
αβ̂

= kRα.(kRα + kRβ̂) + kLβ̂.(kLβ̂ + kLα) (B.7)

that, as expected, vanishes at the fixed point. By using the identification with fluxes

(3.18) this expression can be recast as

M2
αβ̂

= fÎα−α(fÎα−α + fÎ β̂−β̂) + fIβ̂−β̂(fIβ̂−β̂ + fIα−α) (B.8)

This is exactly the combination of fluxes that appears in front of the quadratic scalar

term when we mimmick the steps we followed for the circle case(2.30). Namely, insert the

expansion in scalar fluctuations M (2.13), into the third row of the DFT action (1.3) and

use the values (1.10).
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Field Theory,” JHEP 1111, 052 (2011) [arXiv:1109.0290 [hep-th]].

D. Geissbuhler, “Double Field Theory and N=4 Gauged Supergravity,” JHEP 1111,

116 (2011) [arXiv:1109.4280 [hep-th]].
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