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ABSTRACT: We present a fully relativistic formulation of the energy loss of a
charged particle traversing a number of graphene layers and apply it to the case of
two spatially separated layers probed by an energetic electron. We focus on the
THz frequency range, using a Drude model to describe the conductivity of
graphene and allowing for different doping density in each layer. We distinguish
two types of contributions to the electron energy loss: the energy deposited in
graphene layers in the form of electronic excitations (Ohm losses), which include
the excitation of Dirac plasmon polaritons (DPP), and the energy that is emitted in
the form of transition radiation. We study in detail the contribution of each layer to
the ohmic losses and analyze the directional decomposition of the radiation emitted
in the half-spaces defined by the graphene planes. By increasing the interlayer distance and changing the relative doping densities
in graphene layers, we find surprisingly strong asymmetries in both the directional and layer-wise decompositions with respect to
the direction of motion of the external electron. A modal decomposition is also performed in the limit of vanishing damping in
graphene, exposing quite intricate roles of bonding and antibonding hybridization between DPPs in ohmic losses.
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The study of plasmons in graphene is the subject of a vast
experimental and theoretical effort in the last years, due to

its remarkable properties that make it preferable to other
plasmonic materials like noble metals.1−4 Researchers have
explored its capabilities taking advantage of the long plasmon
lifetimes, low losses,5 high spatial confinement, and versatile
tunability,6,7 together with the large electro-optical response
provided by its two-dimensional (2D) geometry and peculiar
electronic structure.8 Graphene-based devices are designed for
applications in optoelectronics,1,9,10 solar cells,11,12 sensing of
gases and molecules,13−16 photocatalysis,17,18 THz technol-
ogy,19 and so on. Also, the fine biocompatibility of graphene
makes it a very good candidate for applications in
biotechnology and medical sciences.20,21 From a fundamental
point of view, the simplicity of its atomic structure as well as the
definiteness and richness regarding its electronic structure,
makes graphene an excellent material to test methods for
modeling emerging new phenomena of other low-dimensional
systems.22−24

Although the optical response of graphene presents collective
oscillations at frequencies in the low ultraviolet (UV) range
(∼4−30 eV, the so-called π and σ + π plasmons),25−28 it is in
the terahertz (THz) to infrared (IR)29 region (with frequencies
<1 eV) where it stands out for the aforementioned applications.

In this regime, heavily doped graphene supports the so-called
Dirac plasmons, originated in intraband π-electron excita-
tions.30,31 A distinct property of these plasmons is the high
tunability of frequencies, which can be controlled by altering
the chemical potential through external gates,6,7 a unique
feature not applicable in the higher energy regime. The
associated plasmon polariton shows strong confinement in the
direction perpendicular to graphene’s sheets and propagates
along them for relatively long distances.32 Tunable plasmons
have been detected also in a variety of graphene nanostructures,
like ribbons, nanodisks, rings, and others,33 which add
localization properties in the plane of the layers. Nevertheless,
extended graphene remains a central topic for theoretical as
well as experimental investigation, both monolayered and
multilayered, isolated or combined with other materials and
heterostructures,5,34−37 and even in nonparallel configura-
tions.38 Furthermore, stacks of multiple graphene layers,
which are typically separated by distances in excess of some
10 nm, have shown great promise for nanophotonic and
nanoplasmonic applications due to hybridization taking place
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between Dirac plasmons in individual layers, which may be
tuned by controlling their doping densities.39−41

Currently associated with optical spectroscopies and
techniques, surface plasmons were first observed in electron
energy loss experiments, where energetic free electrons interact
with the plasmon fields losing defined amounts of energy.42,43

Nowadays, electron energy loss spectroscopy (EELS) benefits
from the high spatial and energetic resolutions available in
transmission electron microscopy (TEM), allowing new
insights in the study of plasmons, for example, the mapping
of plasmon modes at a nanoscopic scale.44,45 Also, the
experimental setting of a TEM allows for measurements of
cathodoluminescence (CL) light emission from the material,
which can also be applied to plasmon detection.46−48 In
particular, angle-resolved measurements of CL can be used
within TEM experiments to distinguish between transition
radiation (TR) and incoherent CL in the form of, for example,
luminescence from various materials.49,50 In addition, a number
of experiments have been carried out using different energetic
electron sources to generate electromagnetic radiation from
graphene,51−53 increasing the interest in studying the coupling
between moving electrons, plasmons, and radiation fields. In
that context, electron beam irradiation of graphene has been
recently explored for its prospects to fill in technological gap
regarding the lack of radiation sources at THz frequencies.54

In a recent article,55 we presented fully relativistic
calculations of the energy loss spectra in the THz to UV
frequency range, generated by TEM electrons at normal
incidence passing through a single layer of graphene. In this
paper, we generalize the theoretical framework to multilayer
graphene with an arbitrary number of parallel sheets. We
assume that graphene layers are well separated so that the only
interaction between their electronic systems is due to
electromagnetic fields. We solve the corresponding Maxwell
equations within the dielectric response formalism with
adequate boundary conditions.56,57 As in the previous work,
we elucidate two contributions to the total energy loss of the
external particle: the ohmic losses in graphene and the
electromagnetic energy emitted in the far field region in the
form of TR. We further show that ohmic losses are related to
excitation of the Dirac plasmon polaritons (DPPs) in graphene,
as well as to generation of the Joule heat due to decay of those
DPPs in the presence of dissipative processes in graphene.
Focusing on the THz range, we use the Drude model of
conductivity and apply our model to double-layer graphene,39

onto which a ∼100 keV electron beam impinges perpendicu-
larly. We emphasize that we do not consider a bilayer graphene
in the sense of two electronically coupled layers.34

Besides calculations of the total ohmic and radiative energy
loss spectra, we also derive a layer-wise decomposition of the
ohmic losses and a directional decomposition of the radiation
emitted in the upper and lower half-spaces. Also, relative roles
of the bonding and antibonding hybridization modes in the two
graphene layers are elucidated by developing a modal
decomposition for ohmic losses in the limit of vanishing
dissipation in graphene.
Finally, in addition to the case of graphene layers with equal

conductivities, we also study an inherently asymmetric structure
with two graphene layers having different conductivities due to
doping with different densities of charge carriers. We analyze
the dependence of the ohmic loss spectra and the angular
distribution of the emitted radiation with parameters such as
the interlayer distance and the relative doping density.

The paper is organized as follows: in the Theory section, we
give a derivation of the electromagnetic fields and define
probability densities for various energy losses for the general
case of N graphene layers, and apply it to the case of two
graphene layers, for which we study a modal decomposition of
plasmon excitation probability. The Results and Discussion
section is divided in two parts, dedicated to layers with equal
conductivities and different conductivities, and is followed by
the Conclusions section. Unless otherwise stated, Gaussian
units of electrodynamics are used throughout the paper.58

■ THEORY
We consider a structure with N parallel graphene layers with
large area placed in the planes z = zl with l = 1, 2, ..., N in a
three-dimensional (3D) Cartesian coordinate system with
coordinates R = {r, z}, where r = {x, y}, as shown in Figure
1. We assume that the structure is placed in vacuum in order to

be able to neglect any other sources of radiation or dissipation,
apart from those pertaining to the graphene layers. We find it
convenient to use the Hertz vector Π(R, t),59 which can be
easily obtained by solving a nonhomogeneous Helmholtz
equation with an electric current density as source term by
means of a free-space, retarded Green’s function in scalar form.
The background of our formalism was outlined in ref.55 for
single-layer graphene, while some details pertaining to
multilayer graphene are given in the Supporting Information
(SI) for the present paper.

General Formulation for N Layers. Assuming transla-
tional invariance inside each graphene layer, we may perform a
two-dimensional (2D) spatial Fourier transform (r = {x, y}→ k

Figure 1. Geometry of the structure for probing the multilayer
specimen by an electron in TEM.
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= {kx, ky}), as well as a Fourier transform with respect to time (t
→ ω), enabling us to express the Hertz vector as

∬ ∫
π

ω
π

ωΠ Π= ω·

−∞

∞
−t

d d
zR

k
k( , )

(2 )
e

2
e ( , , )i i tk r

2

2
(1)

This vector may be decomposed into two contributions as Π =
Πind + Πext, resulting from the external charged particle and the
currents induced in graphene layers, see Figure 1. Considering
the external particle to be a point charge Ze that moves along
the z axis with constant velocity v = zv̂ (enabling us to neglect
its braking radiation), where z ̂ is a unit vector in the direction of
t h a t a x i s , t h e a s s o c i a t e d c u r r e n t d e n s i t y ,

ω = ̂ωz ZeJ k z( , , ) eiz v
ext

/ , yields the corresponding Hertz

vector as ω ω ωΠ =
ω

z A k zk J k( , , ) ( , ) ( , , )i
ext ext , with ampli-

tude A(k, ω) given in the SI. Using standard vector relations,
one may retrieve from Πext the usual expressions for electric
and magnetic fields associated with a uniformly moving point
charge in free space.58,59

Defining jl(k, ω) as the in-plane current in the lth graphene
layer, which arises due to dynamic polarization of charge
carriers in that layer, we may express the total induced current
in the system in terms of a sum involving Dirac’s delta functions
as

∑ω δ ω= −
=

z z zJ k j k( , , ) ( ) ( , )
l

N

l lind
1 (2)

We assume that the lth graphene layer is characterized by its
own equilibrium density of charge carriers, nl, giving rise to an
in-plane, scalar conductivity σl(k, ω), which may be generally

dependent on both the wavenumber = +k k kx y
2 2 and

frequency ω. Then, the polarization current in that layer may
be expressed as jl(k, ω) = σl(k, ω)E∥(k, zl, ω), where E∥(k, zl,
ω) is the tangential or the in-plane component of the total
electric field evaluated at z = zl. Equation 2 allows us to express
t h e t o t a l i n d u c e d H e r t z v e c t o r ,

ω ωΠ = ∑
ω

π
=

− | − |zk j k( , , ) e ( , )i
q l

N q z z
lind

2
1

l , which only has

components parallel to the graphene layers, as superposition
of the longitudinal components of the electric field in the lth
layer, El ≡ k̂·E∥(k, zl, ω), where k̂ is a unit vector in the
direction of k. A self-consistent set of values for El is obtained
by solving the system of equations (for a derivation please see
eqs S1−S4 in the SI)
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v
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Here, we have defined α and κ as the inverse decay length of
evanescent fields and the wavenumber of radiation in the far-

field regions in directions perpendicular to graphene layers,
respectively.
Having obtained Πind, one may use standard vector relations

to express the induced electric and magnetic fields as55,59

∑

∑
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∑ω π σ= − ̂ × ̂ −
=

− | − |z
c

E z zH k z k( , , )
2

( ) e sign( )
l

N

l
q z z

l lind
1

l

(6)

with “sign” being the signum function.
The energy balance of the system composed of the incident

particle traversing a number of graphene layers gives the
condition Wext = Wohm + Wrad, where Wext > 0 is the total
energy lost by the external charged particle, Wohm > 0 is the
Joule (or ohmic) energy deposited in the graphene layers, and
Wrad > 0 is the electromagnetic energy radiated in the far field
region. We use appropriate physical definitions for each term to
deduce expressions for the corresponding probability densities
while upholding the conservation of the total energy. Each of
those energy contributions may be further suitably decomposed
into physically motivated and experimentally observable
components.
Invoking the parity property of the Fourier transformed

quantities, we may express the total energy loss for each of
these channels as the integral

∬ ∫ ωω ω=
+∞

W d d F kk ( , )L L
2

0 (7)

where L = ext, ohm, rad, which defines the corresponding joint
probability (or spectral) density FL(k, ω) associated with the
transfer of energy ℏω ≥ 0 and the transfer of in-plane
momentum ℏk from the incident electron to graphene layers.
In the case of ohmic energy losses, the total joint probability

density may be written as a layer decomposition, Fohm(k, ω) =
∑l=1

N Fohm, l(k, ω), where Fohm, l(k, ω) describes losses in the lth
graphene layer. In the case of radiation energy losses, the total
joint probability density may be written as a directional
decomposition, Frad(k, ω) = Frad

↑ (k, ω) + Frad
↓ (k, ω), where

Frad
↑↓ (k, ω) describes radiation emitted in the upper half-space

(↑) and the lower half-space (↓).
Any differences between the radiation emitted in the upper

and the lower half-spaces would be most feasibly observed in
the joint spectral density and the angular distribution, θ ω( , ),
defined so that the total radiation energy loss is written as

∬ ∫ ω θ ω≡ Ω̂
∞

W d d ( , )rad
2

0 (8)

where d2Ω̂ = sin θdθdϕ is the element of solid angle in
spherical coordinates (0 ≤ θ ≤ π and 0 ≤ ϕ < 2π, see Figure 1),
with the angle θ defining the direction of radiation with respect
to the z axis. One may express the joint spectral density and the
angular distribution of radiation as
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In various electron energy loss spectroscopies it is often of
interest to study quantities after performing integration over
the momentum transfer, so that for each joint probability
density function FL(k, ω), we define an associated total
integrated probability density as

∬ω ω=
ℏ

P d F kk( )
1

( , )L L2
2

(10)

where L = ext, ohm, rad. In the case of ohmic and radiation
losses, one may also express the corresponding integrated
densities in terms of layer-wise and directional decompositions,
Pohm(ω) = ∑l=1

N Pohm, l(ω) and Prad(ω) = Prad
↑ (ω) + Prad

↓ (ω),
respectively.
Two Graphene Layers. We apply the above general

formulation of the problem to the case of two parallel graphene

layers with distance d between them. Letting = ∓z d
1,2 2

, we

solve the system of equations in eq 3 for E1,2 and obtain
expressions for joint probability densities, which can be shown
to verify the conservation of energy in the form Fext(k, ω) =
Fohm(k, ω) + Frad(k, ω).
We next show that both the ohmic and the radiative losses

exhibit an asymmetry with respect to the direction of motion of
the external charge, that is, the corresponding decompositions
of those two types of losses depend on the sign of the external
charge velocity component along the z axis. This is best
illustrated by considering the special case of the symmetric
structure consisting of two graphene layers with equal
conductivities. In that case, we may write the probability
densities for ohmic losses in the layers 1 and 2 as
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and the probability densities for radiative losses in the upper/
lower half-spaces as
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π ω
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where λ σ= + ∓π
ω∓

−i q1 (1 e )qd2 are the eigenvalues of a 2 ×
2 matrix, which defines the system of equations in eq 3 upon
setting σ1 = σ2 = σ. Clearly, asymmetries arise in the layer-wise
decomposition of ohmic losses and in the directional
decomposition of radiative losses from the last terms in eqs
11 and 12, respectively. Those terms will be canceled out when
we evaluate the total ohmic and the total radiative losses as Fohm
= Fohm,1 + Fohm,2 and Frad = Frad

↓ + Frad
↑ , respectively.

Going back to a more general case of two graphene layers
with different conductivities, σ1 ≠ σ2, we emphasize that the
function Frad(k, ω) for radiative losses is nonzero only for
frequencies above the light line, ω > ck, whereas ohmic losses
may generally occur at all frequencies, ω > 0. Thus, the function
Fohm(k, ω) for ohmic losses has nonzero contributions both
below and above the light line, which may be accordingly
defined via

ω
ω ω

ω ω
=

<

>

<

>⎪

⎪⎧⎨
⎩

F k
F k ck

F k ck
( , )

( , ),

( , ),
ohm

ohm

ohm (13)

It should be stressed, however, that the probability density
Fohm
> (k, ω) in the second line of the above equation is not

associated with any radiation, even though that contribution to
ohmic losses covers the region of frequencies above the light
line.
Conductivity of each graphene layer has both a dissipative

part, σℜ{ }l , and a reactive part, σℑ{ }l , which are generally
different from zero. While the collective oscillations of charge
carriers in each graphene layer or, equivalently, the excitation of
its DPP gives rise to σℑ >{ } 0l , scattering of those carriers on
phonons, charged impurities or atomic-size defects in graphene
gives rise to σℜ >{ } 0l , signaling the existence of several
possible decay channels for the DPPs. Referring to the result

obtained in the SI, ω σ= | | ℜ
π ω

F k E( , ) { }l l lohm,
1

4
2

3 , one may

assert that the ohmic losses describe both the process of
plasmon excitation in graphene layers and the decay of those
plasmons, which ultimately generates Joule heat at all
frequencies whenever σℜ >{ } 0l .
In an idealized case of clean graphene layers at zero

temperature, and at frequencies well separated from the
phonon frequencies, it is worthwhile considering a theoretical
limit of vanishing dissipation, σℜ → +{ } 0l , when no heat is
generated in those layers. It may be then shown that the
function in the second line of eq 13 vanishes, Fohm

> (k, ω) → 0,
leaving the radiation to be the only cause of energy losses of the
external charged particle at frequencies ω > ck, governed by a
probability density Frad(k, ω), which turns out to be only
marginally affected by reduction of dissipation in graphene
layers. On the other hand, it may also be shown that, by taking
the limit σℜ → +{ } 0l , the function in the first line of eq 13
does not vanish, but is rather reduced to a new function, Fohm

< (k,
ω) → Fpl(k, ω), which we define as the probability density for
exciting collective modes that result from hybridization of the
DPPs in two graphene layers. In the SI, we outline a procedure
showing that, in the limit of vanishing dissipation, σℜ → +{ } 0l ,
the total probability density of plasmon excitations may be
expressed in the form of a modal decomposition, Fpl(k, ω) =
Fpl
−(k, ω) + Fpl

+ (k, ω), with the function Fpl
∓(k, ω) containing a

Dirac’s delta function that involves a dispersion relation for the
bonding/antibonding hybridized mode.
The dispersion relations for those modes may be found by

letting σ σℜ = ℜ → +{ } { } 01 2 in a 2 × 2 matrix defining the
system of equations in eq 3. Solving an eigenvalue problem
with that matrix yields two eigenvalues, given by

λ π
ω

α σ σ σ σ= + ∓ + α
∓

−i1
2

( e )m d
d2

1 2
2

(14)
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w h e r e σ = σ σ+
m 2

1 2 a n d σ = σ σ−
d 2

2 1 , a n d

α ω ≡ − ω( )k k( , )
c

2 2
. Those eigenvalues have real-valued

zeros in the (k, ω) plane only for frequencies below the light
line, 0 < ω < ck, that is, when α(k, ω) is real-valued. Note that
the square root in eq 14 is purely imaginary in the limit of
vanishing dissipation, and it should be taken with the same sign
as the sign of the reactive part of graphene conductivities,

σℑ{ }1,2 . By solving the equations λ∓(k, ω) = 0, defined via eq
14, we obtain two dispersion relations, ω = ω∓(k), for two
hybridized DPP modes in graphene layers, where the signs ∓
correspond to the low-energy bonding and the high-energy
antibonding coupling between the layers, respectively.39,40

Since those dispersion relations are located below the light
line, excitation of long-lived bonding and antibonding DPP
modes is the only cause of energy losses of the external charged
particle at frequencies ω < ck in the limit of vanishing
dissipation in graphene, governed by the probability density
Fpl(k, ω).
We note that our theory may be implemented for any 2D

material, which can be described by a scalar conductivity σ(k,
ω). In order to be specific, we adopt here a Drude model for
optical conductivity of doped graphene, but note that
conclusions of this work are applicable to any 2D conductive
system exhibiting low-energy intraband electronic excitations
that may be described by a Drude-type model.31 Our interest in
doped graphene stems from the fact that it supports the
technologically interesting Dirac plasmon in the THz to IR
frequency range,19 which is well reproduced by the Drude
model.3 At the same time, this range of frequencies implies that
we work in an extreme long-wavelength limit, for which Novko
et al. showed that ab initio calculations of graphene
conductivity give a Drude model as correct k → 0 limit at
low frequencies.60 We further assume that distances between
graphene layers in our work are large enough that the electronic
band structure of each layer is not affected by the presence of
other layers, so that the optical conductivity of each layer may
be adequately described by a Drude model under sufficient
graphene doping.41 The validity of this assumption was
demonstrated in experiments performed by Yan et al. on the
IR plasmonic devices with stacks of graphene layers separated
by 20 nm thick spacers.40

Drude model for optical conductivity of the lth graphene
layer, with l = 1, 2, is given by

σ ω
π ω γ

=
+

i
v v k

i
( )l

l

l

B F F,

(15)

where vB = e2/ℏ ≈ c/137 is the Bohr velocity with c being the
speed of light, vF ≈ c/300 is the Fermi speed of graphene’s π
electron bands, π= | |k nl lF, is the Fermi wavenumber in the
lth graphene layer, and γl is phenomenological damping rate,
which we let γl → 0+ in the limit of vanishing dissipation.
It is convenient to introduce reduced wavenumber and

reduced frequency, k ̅ = k/kc and ω̅ = ω/ωc, respectively.
55 In

the case of two graphene layers, we define kc = vBvF(kF,1 + kF,2)/
(2c2) and ωc = ckc. For typical doping densities in graphene
layers, |nl| ∼ 1013 cm−2, we obtain kc ∼ 1.36 × 10−5 nm−1 and
ωc/(2π) ∼ 0.65 THz. The system also needs to be
characterized by the ratio ρ = kF,1/kF,2, where l = 1 stands for
the “lower” layer and l = 2 stands for the “upper” layer with

respect to the direction of the z axis. Thus, defining the reduced
conductivities by σ̅l = σl/c, we may write

σ ω
π

ρ
ρ ω γ

σ ω
π ρ ω γ̅ ̅ =

+ ̅ + ̅
̅ ̅ =

+ ̅ + ̅
i

i
i

i
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2
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1
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2
1

1
1

1
2

2 (16)

where γl̅ = γl/ωc are the reduced damping rates.
Upon switching to reduced units and setting γ1̅ = γ2̅ = 0 in eq

16, it may be shown that the equations λ∓(k, ω) = 0 become
e q u i v a l e n t t o ω α α̅ − ̅ ∓ ̅ =2 [1 ( )] 02 , w h e r e

α ω̅ = ̅ − ̅k 2 2 and

α ρ
ρ

ρ
ρ̅ = −

+
+

+

α− ̅ ̅⎛
⎝⎜

⎞
⎠⎟( )

1
1

4 e
( 1)

d2 2

2
(17)

with d ̅ = kcd. Solving those equations in the region below the
light line, 0 < ω̅ < k,̅ gives the dispersion relations of the
bonding/antibonding modes in reduced units, ω̅ = ω̅∓(k)̅.
Finally, we obtain the probability densities of exciting the

bonding and antibonding modes as

β ω α
ω α β α

ρ
ρ

ρ
ρ

ω
β

δ ω α α

= ̅ + ̅
̅ + ̅

∓
̅

−
+

+
+

̅ ̅

× ̅ − ̅ ∓ ̅

α
∓

− ̅ ̅⎪
⎪

⎪
⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥
⎫
⎬
⎭

F F d
( )

( )
1

1
( )

1
1

4 e
( 1)

cos

( 2 [1 ( )])

c

d

pl

2 2 2

2 2 2 2

2

2

2 (18)

where Fc ≡ 4(Ze)2/(πωc
2kc) and β ≡ v/c. As with the other

contributions to energy losses, we may use the above result in
eq 10 to define the integrated probability densities, Ppl

∓(ω), for
exciting the bonding and antibonding modes per unit interval
of frequency. Note that integration of Fpl

∓(k,̅ ω̅) over k ̅ (or α) is
greatly aided by the presence of the Dirac’s δ function in eq 18,
which is peaked along the dispersion relation ω̅ = ω̅∓(k)̅ for
those two modes.

■ RESULTS AND DISCUSSION
While the formalism developed in the preceding section can be
directly applied to multiple layers of any 2D material described
by a scalar conductivity,61 it may also be readily generalized to
anisotropic 2D materials.62 However, we are primarily
interested in graphene based layered structures of interest for
possible applications in photonic and plasmonic devices that
operate in the THz to IR range of frequencies. For this purpose
it suffices to adopt the Drude model in eq 15, which is accurate
enough for doped graphene satisfying k ≪ ω/vF ≪ kF,

31 or in
terms of the reduced variables, ω̅ ≪ ̅ ≪kv

c
c

v
F

B
.55

For two graphene layers, one of the most important
parameters is the interlayer distance d, which we define in
reduced units as d ̅ = kcd and take it to vary in the range of
values 10−3 ≤ d̅ ≤ 1, corresponding to 73 nm ≲ d ≲ 73 μm for
doping densities of |nl| = 1013 cm−2. At such large distances, one
may neglect the electron hopping between neighboring
graphene layers, as well as the effects of static electric field
between differently doped graphene layers due to potential bias
between them. Hence, the electronic structure of each graphene
layer is treated as independent from other layers, and the only
interaction between them is due to electromagnetic fields.
Our calculations are designed to illustrate interferences due

to retardation effects, which may give rise to asymmetries in (a)
directional decomposition of the radiation emitted in the upper
and lower half-spaces, (b) layer-wise decomposition of the
ohmic losses in graphene, and (c) modal decomposition of the
plasmon excitation probability density for the bonding and
antibonding modes. We analyze what roles are played in those
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interference effects by the distance d and the ratio
ρ = = | | | |k k n n/ /F,1 F,2 1 2 defining asymmetry between the
doping densities of the two graphene layers.
At the same time, we keep the damping rates in graphene

layers fixed at a given value γl̅ = 0.1, except when discussing the
dispersion relations of hybridized DPP modes and the
corresponding modal decomposition. In addition, we assume
the external particle to be an electron (Z = 1) and keep its
(reduced) speed fixed at the value β = v/c = 0.5, corresponding
to a typical electron velocity in TEM. The effects of variation in
the γl̅ and β values are illustrated in the SI.
Equal Conductivities. In this subsection, we study the case

of two graphene layers with equal doping densities (ρ = 1) and,
hence, equal conductivities, σ1 = σ2 = σ(ω), described by the
Drude’s model in eq 15.
In Figure 2, we show the joint probability densities for (a)

ohmic losses, F̅ohm(k,̅ ω̅), and (b) radiation losses, F̅rad(k,̅ ω̅), as
functions of the reduced frequency and wavenumber, ω̅ and k,̅
for an illustrative case of the reduced interlayer distance d ̅ = 0.1.
The color coding for those functions is based on reduced units

using the normalization factor Fc = 4e2/(πωc
2kc). Also shown are

the dispersion relations for the bonding and antibonding modes
with eigenfrequencies ω̅∓(k)̅ for two graphene layers (white
solid lines), the dispersion curve for single graphene layer
( b l a c k d a s h e d l i n e ) w i t h e i g e n f r e q u e n c y

ω̅ = − + + ̅k2( 1 1 )single
2

and the light line (gray dashed
line) ω̅ = k.̅ One notices that, in general, ω̅− < ω̅single < ω̅+, as a
consequence of the DPP hybridization for finite d ̅, whereas ω̅+
< k ̅ as a consequence of retardation effects. While for d ̅ → ∞
we expect that ω̅∓ → ω̅single, the separation between ω̅∓
increases with decreasing interlayer distance. In the long
wavelength limit, when kd = kd̅ ̅ ≪ 1, we find for antibonding

mode ω̅ ≈ − + + ̅+ k2 2 4 2
, corresponding to a single

graphene layer with doubled Fermi wavenumber. On the other
hand, the bonding mode frequency attains a quasi-acoustic

dispersion ω̅ ≈ ̅−
̅

+ ̅
kd

d
2

1 2
, which is not affected by retardation

effects for small intergraphene distances, d ̅ ≪ 1. Dispersion
relations are studied in some detail in the SI, where it is
observed that, generally, the bonding mode frequency ω̅−(k)̅ is
much more affected by variations in the interlayer distance d ̅
than the antibonding mode frequency ω̅+(k)̅.
It is obvious from the panel (a) of Figure 2 that the peak

values of F ohm(k,̅ ω̅) closely follow the dispersion curves for
bonding and antibonding DPP modes, indicating that ohmic
energy losses of the external electron mostly go to excitations of
those modes. However, the finiteness of γ ̅ causes a significant
fraction of ohmic losses to go to generating Joule heat in the
layers, as is indicated by the red regions below and above the
light line in Figure 2a, around small ω̅ and k ̅ values. When the
damping rate is reduced, the energy losses due to the Joule
heating are reduced, leaving the excitation of long-lived
bonding and antibonding DPP modes as the only contribution
to the ohmic losses in the limit γ → 0+. In that limit, F̅ohm(k,̅ ω̅)
in Figure 2a would be represented by a weighted superposition
of two Dirac’s delta functions located at the dispersion relations
ω̅ = ω̅∓(k)̅. On the other hand, in the panel (b) of Figure 2 one
notices that F̅rad(k,̅ ω̅) exhibits a relatively broad spectrum of
radiation energy losses, which are strictly located above the
light line, ω̅ > k.̅ Those losses are not strongly affected by
reduction of the damping rate, and they remain finite in the
limit of vanishing dissipation in graphene.
Changing the interlayer distance d ̅ brings rich variety of

effects due to retardation in both the dispersion relations ω̅ =
ω̅∓(k)̅, and the probability densities F̅ohm(k,̅ ω̅) and F̅rad(k,̅ ω̅).
Figure 3 shows such effects in the radiation spectra, which
should be readily observable by using angle-resolved measure-
ments of TR of double-layer graphene in TEM.47,49,50 In this
figure, the angular distribution of the joint spectral density of
radiation emitted from two graphene layers, θ ω̅ ̅( , ), is plotted
as a function of the angle θ relative to the direction of motion
of the external electron, for several values of the radiation
frequency ω̅. Results are shown using reduced units for the
spectral density with normalization factor = e c/c

2 , for two
interlayer distances, (a) d ̅ = 0.1 and (b) d ̅ = 1. One sees typical
“butterfly” patterns of TR, with no noticeable difference
between contributions to the upper and lower half-spaces for
the shorter distance d ̅ = 0.1, similar to the case of single-layer
graphene.55 On the other hand, there is quite large asymmetry
between the angular distributions of radiation emitted in the
upper and lower half-spaces at the longer distance d ̅ = 1, which

Figure 2. (a) The total ohmic, F̅ohm(k,̅ ω̅), and (b) the total radiative,
F̅rad(k,̅ ω̅), joint probability densities for two graphene layers having
equal conductivities with the damping rate γ ̅ = 0.1, for interlayer
distance d ̅ = 0.1, and the reduced electron speed β ≡ v/c = 0.5. Results
are shown in reduced units using the normalization factor Fc = 4(Ze)2/
(πωc

2kc). Also shown are the dispersion relations for the bonding and
antibonding modes with eigenfrequencies ω̅∓(k)̅ for two graphene
layers (white solid lines), the dispersion curve for single graphene layer
( b l a c k d a s h e d l i n e ) w i t h e i g e n f r e q u e n c y

ω̅ = − + + ̅k2( 1 1 )single
2

, and the light line (gray dashed line)

ω̅ = k.̅
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is particularly emphasized with increasing frequencies. This
asymmetry results from the interference terms in eq 12, which
contain the factor sin(ωd/v)sin(κd) = sin(ω̅d̅/β)sin(ω̅d ̅
cos(θ)), explaining the retardation origin of the asymmetry,
as well as why the asymmetry is diminished when ω̅d ̅ ≪ 1.
Further discussion of the effects of changing d ̅ is included in SI.
In the panel (a) of Figure 4 we show the integrated

probability densities for the total energy loss of the external
electron, P̅ext(ω̅) (solid lines), total ohmic loss, P̅ohm(ω̅) (dash-
dotted lines), and the total radiation loss, P̅rad(ω̅) (dashed
lines). Results are displayed in reduced units using the

normalization factor =
π ωℏPc

v
c

4 1

c

B , for several values of the

intergraphene distance in the interval 0.001 ≤ d ̅ ≤ 1. While

those three functions were computed from their respective
definitions, we remark that each set of curves in Figure 4(a)
upholds the conservation of energy in the sense P̅ext(ω̅) =
P̅ohm(ω̅) + P̅rad(ω̅). One notices that P̅ext(ω̅) is almost
completely determined by the ohmic losses P̅ohm(ω̅) for
frequencies ω̅ > 1, where the main channel of the total energy
loss of the external charged particle is due to excitation of the
hybridized DPP modes, see Figure 2. On the other hand,
radiation losses P̅rad(ω̅) are comparable to the ohmic losses
when ω̅ ∼ 1, and they become a dominant contribution to
P̅ext(ω̅) for ω̅ ≲ 0.1.
It is interesting to see in Figure 4a that there is almost no

dependence on the interlayer distance in radiation losses,
P̅rad(ω̅), indicating that integration of the angular distributions
shown in Figure 3 over a full range of angles 0 ≤ θ ≤ π removes
the dependence on d ̅. This may be traced to the presence of
factors [1 ∓ cos(κd)] in eq 12, which exhibit strong oscillations
as functions of κ (and k) for large d values. When integration
over k is performed in Frad(k, ω) to obtain Prad(ω), then the d-
dependence that would result from the nearby factors [1 ∓
cos(ωd/v)] in eq 12 is washed out. On the other hand, the
integrated ohmic losses in Figure 4a, P̅ohm(ω̅), show rather
strong dependence on the interlayer distance in the range d ̅ ≥

Figure 3. Angular joint probability density θ ω̅ ̅( , ), normalized using
the factor = Ze c( ) /c

2 , for two graphene layers having equal
conductivities with the damping rate γ ̅ = 0.1, for the reduced electron
speed β = 0.5, and for two interlayer distances: (a) d̅ = 0.1 and (b) d ̅ =
1, and for several reduced frequencies ω. A strong directional
asymmetry arises between the radiation emitted in the upper and
lower half-spaces for the larger interlayer distance.

Figure 4. (a) Integrated probability density P̅ is shown in reduced

units using the normalization factor =
π ωℏPc

v
c

4 1

c

B as a function of the

reduced frequency ω̅ for the total energy loss of the external charged
particle, P̅ext(ω) (solid lines), the total ohmic loss, P̅ohm(ω) (dot-
dashed lines), and the total radiative loss, P̅rad(ω) (dashed lines) for
several interlayer distances, d̅ = 1, 0.1, 0.01, and 0.001. (b) The results
for P̅ext(ω) in two graphene layers at the distances d ̅ = 0.001 and 1, as
well as those for P̅ext(ω) in single graphene layer (solid lines) are
compared with the corresponding results obtained in the nonretarded
limit (dotted lines). For both panels: γ ̅ = 0.1 and β = 0.5.
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0.1. This may be explained by absence of any factors exhibiting
strong oscillations as a function of k in eq 11. Then, the factors
[1 ∓ cos(ωd/v)], which are present in that equation, survive
integration over k in Fohm(k, ω), giving rise to strong
interference effects in the resulting distribution of ohmic losses
Pohm(ω) for two graphene layers at a large distance.
In the panel (b) of Figure 4, we compare the results for

P̅ext(ω̅), including retarded effects with the nonretarded case,
P̅ext
NR(ω̅) ≡ P̅ohm

NR (ω̅) (discussed in the SI), for two graphene
layers at the distances d ̅ = 0.001 and d ̅ = 1, as well as for a single
graphene layer. One sees that the effects of retardation are
quantitatively relevant for ohmic losses at frequencies ω̅ < 10,
giving rise to a significant increase in magnitude of P̅ohm(ω̅) in
comparison to P̅ohm

NR (ω̅). When combined with the radiation
losses, this increase amounts to P̅ext(ω̅) ≫ P̅ext

NR(ω̅) for ω̅ ≲ 1.
On the other hand, one sees in Figure 4b that the results for
two graphene layers with short separation of d ̅ = 0.001 exhibit
energy losses that are quite similar to those for single graphene
layer, both in the retarded and nonretarded cases, whereas two
layers with larger separation of d ̅ = 1 exhibit substantially larger
energy losses in both cases.
From Figure 4, one may conclude that interesting

interference effects arise in the ohmic losses of two graphene
layers at large distances. For example, a curious peak-and-valley
structure develops in P̅ohm(ω̅) in the retarded case for d ̅ = 1 in
the interval of frequencies 1 ≲ ω̅ ≲ 5, which degenerates in a
structure with two peaks in the nonretarded case. Hence, it is
worthwhile analyzing separate ohmic losses in each graphene
layer. In addition, recalling the strong asymmetries observed in
Figure 3b for d ̅ = 1 at higher frequencies, it appears also
worthwhile analyzing the angle-integrated energy losses due to
radiation emitted in the upper and the lower half-spaces.
Accordingly, we show in Figure 5 the integrated probability
density of the total energy loss of the external electron, P̅ext(ω̅),
along with the layer-wise decomposition of the integrated
probability density for ohmic losses in the lower and upper
graphene layers, P̅ohm,1(ω̅) and P̅ohm,2(ω̅), and the directional
decomposition of the integrated probability density for
radiation losses in the upper and lower half-spaces, P̅rad

↑ (ω̅)
and P̅rad

↓ (ω̅), for two interlayer distances, (a) d ̅ = 1 and (b) d ̅ =
0.1.
It is interesting to see in Figure 5 that there is almost no

asymmetry between P̅rad
↑ (ω̅) and P̅rad

↓ (ω̅), which are obtained by
integrating the angular distributions shown in Figure 3 over two
ranges of angles, 0 ≤ θ ≤ π/2 and π/2 ≤ θ ≤ π, respectively.
The fact that the asymmetry seen in the angular distributions
shown in Figure 3b for d ̅ = 1 has disappeared upon integration
may be traced to the same reason as the lack of dependence on
the interlayer distance d̅ in the total radiative losses, P̅rad(ω̅) =
P̅rad
↑ (ω̅) + P̅rad

↓ (ω̅). Namely, the presence of the factor sin(κd) in
the interference terms in eq 12 gives rise to strong oscillations
as a function of κ (and k), which will largely diminish
contributions of those terms upon integration of F̅rad

↑↓ (k, ω̅) over
k.
On the other hand, one sees in Figure 5 that P̅ohm,1(ω̅) and

P̅ohm,2(ω̅) exhibit relatively large differences for ω̅ ≲ 1 with
increasing d̅ values, resulting from the interference terms with
the factor sin(ωd/v) in eq 11, which survives integration of
Fohm,1,2(k, ω) over k. It is interesting that P̅ohm,2(ω̅) < P̅ohm,1(ω̅)
at ω̅ ≲ 1 for both interlayer distances in Figure 5, showing that
lower graphene layer absorbs more ohmic losses than the upper
layer at low frequencies. Moreover, there are some other
interesting features in ohmic losses of individual graphene

layers at high frequencies, ω̅ ≳ 1. For example, it appears that
the peak-and-valley structure seen in P̅ext(ω̅) in the interval of
frequencies 1 ≲ ω̅ ≲ 5 in Figure 5a for d ̅ = 1 results from partial
cancelation of a local minimum in P̅ohm,1(ω̅) and a local
maximum in P̅ohm,2(ω̅). This effect also explains the double-
peak structure seen in the total ohmic loss, P̅ohm(ω̅) = P̅ohm,1(ω̅)
+ P̅ohm,2(ω̅), in Figure 4a for d ̅ = 1. Likewise, even though
P̅ext(ω̅) exhibits a single peak near ω̅ = 5 in Figure 5b for d ̅ =
0.1, ohmic losses of individual layers, P̅ohm,1,2(ω̅), show
somewhat unexpected features at frequencies ω̅ > 5.
In the SI, we show that dominant contributions to the joint

probability densities for ohmic losses in both the lower and
upper graphene layers, F̅ohm,1(k,̅ ω̅) and F̅ohm,2(k,̅ ω̅), are
contained in two peak regions centered at the frequencies ω̅∓
corresponding to the bonding and antibonding DPP modes.
Relative weights describing the participation of these modes in
the ohmic losses in each graphene layer strongly depend on the
interlayer distance d. Accordingly, it is worthwhile to take the
limit of vanishing damping rates in graphene layers and to
evaluate the modal decomposition of the integrated probability
density for ohmic energy losses in both graphene layers. Such
decomposition gives the probability densities, P̅pl

−(ω̅) and
P̅pl
+ (ω̅), for exciting the bonding and antibonding DPP modes

per unit frequency, respectively. As a result, we reveal below in

Figure 5. Layer-wise decomposition of the integrated ohmic energy
losses, P̅ohm,1,2(ω̅), and a directional decomposition of the integrated
radiative losses, P̅rad

↑↓(ω̅), are shown in reduced units for two
graphene layers at the distances: (a) d ̅ = 1 and (b) d ̅ = 0.1. The ohmic
decomposition (dot-dashed lines) shows strong asymmetry with
respect to the direction of motion for increasing d̅, while the radiation
decomposition (dashed lines) shows no such asymmetry. Also shown
are the results for the total integrated energy loss of the external
charged particle, P̅ext(ω̅) (solid lines). All results are obtained with γ ̅ =
0.1 and β = 0.5.
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Figure 6 that oscillations arise in the modal decomposition,
which may shed light on the features observed at large

frequencies in the total ohmic losses P̅ohm(ω̅) in Figure 4, and
in their layer components P̅ohm, 1, 2(ω̅) in Figure 5.
In Figure 6 we show the modal decomposition of the

probability density for plasmon excitations, P̅pl(ω̅) = P̅pl
−(ω̅) +

P̅pl
+ (ω̅), for (a) d ̅ = 1 and (b) d ̅ = 0.1. Results are shown in

reduced units using the normalization factor =
π ωℏPc

v
c

4 1

c

B . One

notices strong oscillations in the components P̅pl
∓(ω̅) at large

frequencies, which nevertheless superimpose into a rather
smooth frequency dependence of the total probability density
for plasmon excitation, P̅pl(ω̅), in that range. The origin of
these oscillations may be explained by setting ρ = 1 in the
expressions within curly brackets in eq 18, giving factors 1∓ cos
(ωd/v) = 1 ∓ cos(ω̅ d̅/β), which survive upon integrating Fpl

∓(k,
ω) over k to obtain Ppl

∓(ω). The onset of these oscillations
around the frequency ω̅ ∼ πβ/d ̅ seems to give rise to the
features observed in ohmic losses at high frequencies in Figure
5. For example, referring to Figure 6a, one may ascertain that
the double peak seen in P̅ohm(ω̅) in Figure 4a for d ̅ = 1, which is
a result of coupling of the external electron to the bonding and
antibonding modes, is accompanied by an interference that
gives rise to the peak-and-valley structure seen in P̅ext(ω̅) in
Figures 4a and 5a for d̅ = 1. On the other hand, referring to
Figure 6b, one may ascertain that the main peak seen near ω̅ =

5 in both P̅ext(ω̅) and P̅ohm(ω̅) in Figure 4a for d ̅ = 0.1
predominantly originates from the antibonding mode, whereas
features seen in P̅ohm,1,2(ω̅) at ω̅ > 5 in Figure 5b for d ̅ = 0.1 are
the signature of interferences between the bonding and
antibonding modes.
By comparison of P̅pl(ω̅) in Figure 6 with the function

P̅ohm(ω̅) for d ̅ = 1 and 0.1 in Figure 4a, one may assert that the
total integrated ohmic losses at frequencies ω̅ ≳ 1 are
dominated by the excitation of both the bonding and
antibonding DPP modes. Further comparison reveals that the
plasmon excitation probability densities in Figure 6 approach
constant values at low frequencies, ω̅ < 1, in contrast to the
behavior of the ohmic losses in Figures 4 and 5, which grow in
magnitude with decreasing ω̅. This difference is a consequence
of the fact that the integrated probability densities for ohmic
losses in Figures 4 and 5 were calculated with finite damping
rate of γ ̅ = 0.1, whereas the plasmon excitation probability
densities in Figure 6 are calculated in the limit of vanishing
damping rates. Accordingly, the competition between the
ohmic and radiation losses seen in Figures 4 and 5 at
frequencies ω̅ ≲ 1 is strongly affected by increasing the
damping rates in graphene layers, which ultimately leads to
deposition of the Joule heat in those layers at such frequencies,
as discussed in Figure 2.
Finally, regarding the role of the interlayer distance in Figure

6, it is interesting to note that P̅pl
−(ω̅) and P̅pl

+ (ω̅) settle at
different constant values at low frequencies, ω̅ < 1. In particular,
the probability density of exciting the antibonding mode at such
frequencies, P̅pl

+ ≈ 0.2, is not affected by the value of d ̅, whereas
the bonding mode is excited with a probability density that
strongly depends on d ̅, which goes from P̅pl

− < P̅pl
+ for d̅ = 0.1 to

P̅pl
− > P̅pl

+ for d ̅ = 1. This may be related to the strong sensitivity
of the bonding mode eigenfrequency ω̅−(k)̅ on variations in the
interlayer distance. On the other hand, we recall the
relationP̅ohm,2(ω̅) < P̅ohm,1(ω̅) between the integrated ohmic
energy losses in the lower and upper graphene layers, seen in
Figure 5 at frequencies ω̅ ≲ 1 for both d ̅ = 1 and 0.1, which
primarily results from the interference terms with sin(ωd/v) in
eq 11. Therefore, it appears that the interlayer distance plays
different and somewhat intricate roles in the modal
decomposition of plasmon excitation probability and the
layer-wise decompositions of ohmic losses at sub-THz
frequencies.

Different Conductivities. In the previous subsection, we
have analyzed asymmetries, which arise in the ohmic energy
losses and radiation spectra with respect to the direction of the
external particle trajectory, for a symmetric structure consisting
of two graphene layers with equal conductivities. In this
subsection we focus on a structure that is inherently
asymmetric due to different doping densities of two graphene
layers, |n1| ≠ |n2|, which we parametrize by the ratio
ρ = = | | | |k k n n/ /F,1 F,2 1 2 . Some of the results shown in this
subsection will exhibit an asymmetry with respect to changing
the ratio from a value ρ > 1 to 1/ρ, which is equivalent to
changing the direction of motion of the external charged
particle, while other results will not exhibit such asymmetry.
Accordingly, whenever a set of results for some ρ > 1 cannot be
distinguished from results for the corresponding value 1/ρ, we
shall only discuss a range of values ρ ≥ 1. Otherwise, we shall
show results for both ρ > 1 and the corresponding 1/ρ values.
In the SI, we discuss the effects of variation in the asymmetry

ratio ρ on the dispersion relations for the hybridized DPP

Figure 6. Modal decomposition of the integrated probability density
for plasmon polariton excitations in two graphene layers having equal
conductivities with zero damping, γ ̅ = 0, for two interlayer distances:
(a) d ̅ = 1 and (b) d ̅ = 0.1. The reduced speed of the external electron is
β = 0.5. The blue dotted lines label excitations of the bonding and the
green dashed lines label excitations of the antibonding modes, while
the red solid lines show the total excitation probabilities.
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modes with eigenfrequencies ω̅∓(k)̅. We find that the distance
between ω̅−(k)̅ and ω̅+(k)̅ increases as the ratio ρ departs
further away from the value ρ = 1 and that the mode with lower
frequency ω̅−(k)̅ is much more affected by variations in ρ than
the mode with higher frequency ω̅+(k)̅. In particular, in the
limit of long wavelengths, kd = kd̅ ̅ ≪ 1, we find for the higher-

frequency mode ω̅ ≈ − + + ̅+ k2 2 4 2
, which is independ-

ent of the ratio ρ and corresponds to a single graphene layer
with the effective Fermi wavenumber kF = kF,1 + kF,2, whereas
the lower-frequency mode exhibits quasi-acoustic dispersion

ω̅ ≈ ̅ρ
ρ ρ−

̅
+ + ̅

kd
d

8
(1 ) 82 , which in the limit of short distances, d ̅

≪ 1, becomes independent of retardation effects.

Figure 7 displays angular distribution of the joint spectral
density of radiation losses, θ ω̅ ̅( , ), which we show in reduced
units using the normalization factor = e c/c

2 for d ̅ = 1 at fixed
frequency ω̅ = 1, for several values of the asymmetry ratio in
the range 0.01 ≤ ρ ≤ 100. Notice that the curve with ρ = 1 is
reproduced from Figure 3b for ω̅ = 1 in order to recall that
there exists an asymmetry between the radiation patterns
emitted in the upper and lower half-spaces. While that figure
showed substantial variability of the patterns for different ω̅
values due to the oscillating terms in eq 12, we see in Figure 7
that, for fixed ω̅ = 1 and fixed d̅ = 1, there also exists great
variability with ρ in the asymmetry of the emitted radiation
patterns, especially in the interval 0.1 ≤ ρ ≤ 10.
Furthermore, it should be noted in Figure 7 that the emitted

spectra in the upper and lower half-spaces are not completely
reversed when going from ρ = 0.1 to ρ = 10, which points to an
interesting interplay of the inherent asymmetry of a structure
with ρ ≠ 1 and the asymmetry due to retardation effects upon

changing the direction of motion of the charged particle. On
the other hand, it seems that the asymmetry between the
spectra emitted in the upper and lower half-spaces is
significantly reduced when either ρ = 0.01 or ρ = 100,
corresponding to situations when one graphene layer is almost
removed from the structure on the account of having a
negligibly small charge carrier density compared to the other
layer. Finally, it is worthwhile to remark that, similarly to the
trends discussed in Figure 3a, the asymmetry with respect to
varying the ratio ρ is also diminished when ω̅d ̅ ≪ 1. This
describes a situation where the two graphene layers are almost
blended into a single layer with an effective Fermi wavenumber
kF = kF,1 + kF,2.

55

Figure 8 displays the integrated probability densities for the
total energy losses of the external electron, P̅ext(ω̅)(solid lines),

total ohmic losses, P̅ohm(ω̅) (dash-dotted lines), and the total
radiation losses, P̅rad(ω̅) (dashed lines), which we show in
reduced units using the normalization factor =

π ωℏPc
v
c

4 1

c

B for

(a) d ̅ = 1 and (b) d ̅ = 0.1, and for three values of the asymmetry
ratio, ρ = 1, 10, and 100. Note that each set of curves upholds
the conservation of energy in the sense P̅ext(ω̅) = P̅ohm(ω̅) +
P̅rad(ω̅). One notices in the panel (a) of Figure 8 a progression
of peak structures in P̅ext(ω̅), which grow in magnitude and
move to lower frequencies with increasing ρ values. When ρ = 1

Figure 7. Angular distribution of the joint spectral density of radiation
losses, S(θ,ω), at fixed frequency ω̅ = 1, for two graphene layers at a
distance d ̅ = 1, having equal damping rates, γ1̅ = γ2̅ = 0.1, but different
doping densities giving rise to several values of the asymmetry ratio ρ.
The reduced speed of the external electron is β = 0.5.

Figure 8. Integrated probability densities for the total energy losses of
the external electron, P̅ext(ω̅) (solid lines), total ohmic losses, P̅ohm(ω̅)
(dot-dashed lines), and the total radiation losses, P̅rad(ω̅) (dashed
lines), are shown in reduced units for two graphene layers with equal
damping rates, γ1̅ = γ2̅ = 0.1, at distances (a) d ̅ = 1 and (b) d̅ = 0.1, for
three values of the asymmetry ratio, ρ = 1, 10, and 100. The reduced
speed of the external electron is β = 0.5.
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and 10, those structures are related to ohmic losses, P̅ohm(ω̅),
which dominate at frequencies ω̅ ≳ 1, whereas radiation losses,
P̅rad(ω̅), are comparable to the ohmic losses when ω̅ ∼ 0.1 and
become dominant for ω̅ ≲ 0.1. On the other hand, when ρ =
100 in Figure 8a, a peak in P̅ohm(ω̅) that occurs at a frequency
0.1 < ω̅ < 0.5, is converted to a shoulder in P̅ext(ω̅) in the same
frequency interval owing to the presence of a strongly
increasing P̅rad(ω̅) at decreasing frequencies. In the case of a
shorter interlayer distance d ̅ = 0.1 in Figure 8b, the peak
structures that arise from P̅ohm(ω̅) are moved to higher
frequencies, so that the effects of radiation losses are not so
prominent in the features observed in P̅ext(ω̅). It is interesting
to observe in Figure 8a that the total energy losses of the
external electron, as well as the ohmic losses, decrease in
magnitude with increasing ρ at frequencies ω̅ ≳ 2, whereas the
opposite is true for those losses at frequencies ω̅ ≲ 0.5. Similar
observations are made in Figure 8b, but for frequencies ω̅ ≳ 5
and ω̅ ≲ 1, respectively.
Finally, it is noteworthy in Figure 8 that the integrated

radiation energy losses, P̅rad(ω̅), do not show any appreciable
dependence on the value of the asymmetry ratio ρ or on the
interlayer distance d̅. This is similar to observations made in
Figure 4a regarding the d ̅-dependence of P̅rad(ω̅). Our
calculations for directional decomposition of the radiation
losses (not shown) also confirm that the integrated probability
densities for radiation losses in the upper and lower half-spaces,
P̅rad
↑ (ω̅) and P̅rad

↓ (ω̅), do not show any appreciable dependence
on ρ or d ̅, similar to the observations made in Figure 5a.
In the SI we further analyze effects of the asymmetry ratio ρ

in the layer-wise decomposition of the integrated probability
density for ohmic energy losses, P̅ohm(ω̅) = P̅ohm,1(ω̅) +
P̅ohm,2(ω̅), and find much larger differences between contribu-
tions from the lower and upper graphene layers for values ρ ≠ 1
when d ̅ = 1 than differences observed in Figure 5a for ρ = 1.
This is further elucidated in the SI by analyzing modal
decomposition of the probability density for plasmon
excitations, P̅pl(ω̅) = P̅pl

−(ω̅) + P̅pl
+ (ω̅), which reveals an intricate

interplay between the effects of increasing interlayer distance d ̅
and variations in the asymmetry ratio ρ in ohmic losses at
frequencies ω̅ ≳ 1.

■ CONCLUSIONS
We have presented a fully relativistic treatment of energy losses
and transition radiation from multilayer graphene traversed by
an electron at a speed typical for Transmission Electron
Microscope. Adopting the Drude model for the conductivity of
graphene we have concentrated on a THz range of frequencies
and analyzed the case of two graphene layers. Our main interest
was to reveal the effects of interlayer distance d and the
difference in doping densities of charge carriers in those layers,
n1 and n2, as the two parameters that are most relevant for the
design of graphene-based nanophotonic and nanoplasmonic
devices. For this structure, strong hybridization takes place
between the Dirac plasmon polaritons in individual graphene
layers, giving rise to a low-frequency, quasi-acoustic mode
designated as bonding mode, and a high-frequency, quasi-
optical mode designated as antibonding mode.
Our model uses standard definitions, which demonstrate that

probability density of the total energy loss of an external
charged particle is given by a sum of the probability densities
for ohmic losses in graphene layers and the energy emitted in
the far-field region as transition radiation. In particular, ohmic
losses are dominated by excitations of the bonding and

antibonding modes at frequencies located outside the light
cone, and are accompanied by release of the Joule heat in the
presence of finite damping rates in graphene, taking place at
frequencies located both outside and inside the light cone.
We have seen that the effects of retardation are quantitatively

relevant for frequencies ≲10 THz for typical doping densities of
graphene. Moreover, the total energy loss of the external
particle is completely determined by the ohmic losses for
frequencies ≳1 THz, whereas radiation losses are comparable
to the ohmic losses around ∼1 THz, and they become
dominant in a sub-THz range of frequencies.
Our calculations also aimed at analyzing interferences due to

retardation effects, which may give rise to observable
asymmetries in directional decomposition of the radiation
emitted in the upper and lower half-spaces, layer-wise
decomposition of the ohmic losses in graphene, and modal
decomposition of the excitation probability density for
hybridized plasmon polariton modes.
We have found that differences between the angular

distributions of radiation spectra emitted in the upper and
lower half-spaces show strong asymmetry with respect to the
direction of motion of the external charged particle for
frequencies satisfying ω ≳ c/d, where c is the speed of light
in vacuum. This effect of retardation was observed when the
graphene layers have equal doping densities, and was found to
be greatly magnified when there is a difference in doping
densities, such that the ratio of the Fermi wavenumbers in
graphene layers, ρ = = | | | |k k n n/ /F,1 F,2 1 2 , falls in an interval
0.1 ≲ ρ ≲ 10. This asymmetry in the radiation spectra is
reduced when ω ≲ c/d or when the ratio ρ falls outside the
indicated interval. On the other hand, when the radiated spectra
are integrated over all angles, both their asymmetry and their
dependence on the interlayer distance and the ratio ρ are
diminished.
We have further discovered a surprising asymmetry in ohmic

energy losses at frequencies ω ≲ kFvFvB/c (i.e., sub-THz
frequencies for typical doping densities), such that a graphene
layer with given doping density absorbs more ohmic energy
when it is first traversed by the external charged particle than
when it is last traversed. While this is true for both the case of
graphene layers with equal doping densities and the case of
layers with different doping densities for a distance d ∼ c2/
(vBvFkF) (≈ 73 μm for typical doping densities), a reduction of
the interlayer distance diminishes such asymmetry in ohmic
losses.
At higher frequencies (typically supra-THz), excitations of

the hybridized Dirac plasmon polariton modes play a decisive
role in the ohmic energy losses and, accordingly, in the total
energy losses of the external charged particle. We have found
that, if two graphene layers have equal doping densities, then
there is onset of strong oscillations in the modal decomposition
at a frequency ω ∼ πv/d (where v is the speed of the external
particle), giving rise to observable interference features in the
ohmic energy spectra. If the graphene layers have sufficiently
different doping densities, then oscillations subside in the
modal decomposition. In that case it was found that the
graphene layer with smaller doping density predominantly
absorbs ohmic energy by excitation of the bonding mode,
whereas the layer with higher doping density absorbs ohmic
energy by excitation of the antibonding mode. In general,
ohmic losses at supra-THz frequencies were found to be
strongly dependent on both d and ρ in a nontrivial manner,
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mostly owing to the sensitivity of the bonding mode to
variations in values of those two parameters.
Besides the effects of varying interlayer distance and doping

densities of graphene layers, we have also investigated in the
Supporting Information (SI) the effects of varying damping
rates in graphene layers and varying speed of the external
electron. As in the case of single-layer graphene,55 we have
found a strong increase in ohmic losses at sub-THz frequencies
with increasing damping rate(s). In particular, when graphene
layers are characterized with different damping rates, γ1 ≠ γ2,
there arises a surprisingly large asymmetry in the layer-wise
decomposition of ohmic losses with respect to the direction of
motion of the external charged particle, even in the case of
graphene layers with nominally equal doping densities. On the
other hand, radiative losses were found in the SI to be rather
independent of the damping rate when γ ≲ 0.1 THz, but
strongly decreasing when the damping rate increases above γ ∼
1 THz, while still exhibiting directional asymmetry in the
angular spectra at frequencies ω ≳ c/d.
As for the speed v of the external electron, we have found a

strong increase in the magnitude of radiation losses with
increasing v, as expected. While the overall shapes of the
angular spectra of emitted radiation change with increasing v in
a manner similar to that observed for single-layer graphene,55

the directional asymmetry in the spectra from two layers is
observed over a broad range of the electron speeds for large
interlayer distances. On the other hand, ohmic losses also
exhibit a strong increase in magnitude with increasing v at
frequencies ω ≲ 1 THz, whereas this effect is reversed at
frequencies ω ≳1 THz. Finally, an analysis of the average
numbers of the hybridized DPP modes, performed in the SI,
has revealed an intricate interplay between the speed v and the
intergraphene distance.
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