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Micropillar Resonators for Optomechanics in the Extremely High 19-95-GHz
Frequency Range
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Strong confinement, in all dimensions, and high mechanical frequencies are highly desirable for
quantum optomechanical applications. We show that GaAs/AlAs micropillar cavities fully confine not
only photons but also extremely high frequency (19-95 GHz) acoustic phonons. A strong increase of the
optomechanical coupling upon reducing the pillar size is observed, together with record room-temperature
Q-frequency products of 10'*. These mechanical resonators can integrate quantum emitters or polariton
condensates, opening exciting perspectives at the interface with nonlinear and quantum optics.
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Operating mechanical devices at their quantum limit
opens interesting perspectives not only in ultrasensitive
mass and force sensing but also in the wider field of
quantum technologies. Coupling trapped ions to a common
vibrational mode has allowed entangling long chains of
quantum bits [1]. Ensembles of cold atoms have been used
to emulate a macroscopic optomechanical system [2], and
hybrid resonators combining quantum electrodynamics and
optomechanics have been theoretically predicted to evolve
to the single atom limit in the near future [3]. Dynamical
backaction of large coherent states of photons has been
successfully used to cool mechanical resonators down to
their quantum ground state of motion [4-8]. However, the
starting bath temperature, which must guarantee a small
enough number of excitations in the mechanical mode to
start with, scales with the resonator frequency. It is typically
of a few microkelvins for a MHz resonator [6,8], and of
10 K for the GHz frequencies attained today by microdisk
and optomechanical crystals [9-12]. Reaching higher
mechanical frequencies, up to the extremely high frequency
range (~100 GHz), has been hampered so far by top-down
nanofabrication techniques such as lithography, as well as
the lack of suitable detection methods for the associated fast
and minute mechanical motions. Our work shows that this
new frequency range is now available in optomechanical
resonators with three dimensional optical and mechanical
confinement that allow for the integration of single quan-
tum emitters, opening the way to observing novel quantum
optomechanical phenomena at high temperatures.

Semiconductor microcavities, based on alternating layers
of GaAs and AlAs and etched into micropillar shapes are well
known optical resonators [13]. The high refractive index
contrast between GaAs and AlAs allows defining optical
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Bragg mirrors surrounding a cavity spacer, confining light in
one direction. Confinement in the two other directions results
from high refractive index contrast between the semicon-
ductor and air. These cavities offer strong flexibility in their
design: the optical quality factor can be adjusted through the
number of layers in the mirrors and the optical mode volume
through the spacer thickness and pillar lateral size. They have
been successfully used to obtain state of the art single photon
sources [14,15], polariton condensates [16], and to imple-
ment quantum simulations [17]. GaAs and AlAs also show
a strong acoustic impedance contrast, a property that has
been used to fabricate acoustic mirrors. Benefiting from the
atomic layer deposition accuracy of epitaxial growth,
one-dimensional acoustic cavities have been fabricated in
the GHz to THz range [18,19]. Demonstrating a three-
dimensional confinement of acoustic phonons in this plat-
form would open exciting perspectives for research at the
interface with nonlinear and quantum optics.

In the present work, we demonstrate full three-dimensional
confinement for acoustic phonons in GaAs/AlAs micro-
pillar cavities. We implement a pump-probe differential
reflectivity measurement that allows measuring the
dynamical optomechanical response at high frequency
(up to THz). The pillars are designed to operate at
880 nm for the optical mode, close to the GaAs energy
gap at room temperature to enhance the optomechanical
response [20]. Confined acoustic modes are observed at 19,
58, and 95 GHz with room temperature mechanical quality
factors in the 200 to 1600 range. The three dimensional
confinement leads to a strong increase of the optomechan-
ical response when reducing the pillar size.

We study micropillar cavities made from a planar cavity
consisting of a A1/2 GaAs spacer with 1 = 880 nm,
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sandwiched between Gag gAlj | As/Gag gsAlygsAs A/4 dis-
tributed Bragg reflectors (DBR). Because of the peculiar
material properties of GaAs and AlAs, a planar optical
microcavity is also an acoustic cavity confining phonons
of the same wavelength [18]. Considering the difference
between light and sound speeds, at A= 880 nm the
corresponding fundamental mode for the acoustic cavity
is around 19 GHz. To obtain the microresonators, the planar
cavity is etched into circular or square micropillars with
lateral sizes ranging from 50 to 1 ym, as shown in Fig. 1(a).
The results presented in this Letter correspond to square
pillars such as the one presented in the figure inset. The
three dimensional confinement of the optical field [21] is
evidenced by a photoluminescence k-space mapping of the
modes, as illustrated for a 8§ um pillar in Fig. 1(b). Lateral
confinement leads to a discretization of the parabolic
dispersion of the cavity mode, with mode spacing increas-
ing when reducing the pillar lateral size [13].

In such micropillar structures, a three dimensional
mechanical confinement is also expected from the boun-
dary conditions at the pillar edge, where & - 7 = 0, with &
the stress tensor and 7 the normal to the surface. Figure 1(c)
shows a numerical simulation of a mechanical mode around
19 GHz (corresponding to a breathing of the cavity spacer
along z) calculated for a 3 um circular pillar, where the
absolute value of the volumetric strain |dV/V| shows a
strong three dimensional confinement.
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FIG. 1. (a) SEM images of an array of circular and square
pillars with lateral sizes ranging from 50 to 1 ym. The inset
presents a zoom on a 5 um square pillar. (b) k-space image of the
optical cavity modes for a square pillars of 8 um lateral size.
The shaded ellipse represents the profile (energy broadening and
angular dispersion) of the pump and probe laser pulses. (c) Spatial
distribution of |dV/V| associated with a confined mechanical
mode around 19 GHz, calculated using finite element methods.
(d) Scheme of the ultrafast resonant laser microspectroscopy
setup. (e) Scheme of the process leading to mechanical signals in
reflectance difference time resolved spectroscopy.

To experimentally probe these high frequency confined
acoustic modes, standard motion measurement techniques
used in cavity optomechanics are not readily available. We
implement a time-resolved differential optical reflectivity
(pump-probe) measurement [22,23] with micrometer lat-
eral spatial resolution. The resolution is ~4 ym, implying
that single pillars are addressed in the experiments. A
scheme of the setup is presented in Fig. 1(d). A pump
picosecond optical pulse generates coherent mechanical
vibrations. The changes induced on the shape and the
indices of refraction of the micropillar are then probed
by measuring the reflectivity of a delayed second pulse.
Figure 1(e) is a scheme of the spectrum of the incoming
probe beam (thin line), with a spectral linewidth of
~1.5 meV exceeding the optical mode linewidth (about
~0.7 meV). The red shaded curve illustrates the spectrum
of the reflected probe beam, where the cavity mode is
evidenced as a dip that is modulated at the mechanical
frequency. By changing the delay between the pump and
probe pulses, we reconstruct the time evolution of the
optical reflectivity modulated by the mechanical vibrations.

Two main effects contribute to the optical modulation
induced by the pump pulse. First, an electronic contribution
arising from two-photon and free carrier absorption leading
to a very fast modification of the GaAs index of refraction,
blueshifting the optical cavity mode by a few meV.
Equilibrium is recovered through carrier recombination
typically within 2-5 ns [24]. Second, a mechanical con-
tribution, resulting from coherent mechanical excitations
generated by the photoexcited carriers through the defor-
mation potential mechanism [25]. These coherent vibra-
tions lead to a displacement of the interfaces, and modulate
the index of refraction through the photoelastic mechanism
[18,26,27].

Figure 2 presents a typical signal measured on a 5 ym
pillar. The top panel displays the as-measured reflectance
difference as a function of the delay 7 between the pump
and probe pulses. This signal is dominated by the electronic
contribution at short delay and by the mechanical one at
long time delays. The middle panel shows the mechanical
signal obtained by filtering out the slowly varying spectral
components (frequencies smaller than 5 GHz) and leaving
only frequencies up to 100 GHz characteristic of the
mechanical contributions. The time dependent spectrum
of the mechanical signals, shown in the bottom panel as a
color intensity map, is obtained from the windowed Fourier
transform calculated using 1000 ps windows with the
center spanning from ¢t = 500 to 4500 ps. Below 2 ns,
the electronic excitation leads to a complex intermixed
behavior between mechanical vibrations and the optical
mode shift. We focus on the delays above 2 ns, where the
modulation is dominated by the coherent mechanical
vibrations as clearly seen on the bottom panel of Fig. 2.

The spectrum of a 5 ym square pillar obtained from the
Fourier transform between 2 and 10 ns is shown in Fig. 3(a).
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FIG. 2. Top: As-measured differential reflectance time trace for
a 5 um pillar, varying the delay ¢ between the pump and probe
pulses. The inset is a schematic representation of the laser pulse
energy distribution, and the cavity mode (dip in the reflected
probe) at different times after pump excitation. The time before
(after) the arrival of the pump is indicated with the initial red(blue)
star and dip. Excited carrier relaxation leads to the recovery of the
cavity mode, which around 2000 ps passes through the central
energy of the laser (vertical dashed line, green star, and dip). At
longer times the equilibrium situation is recovered (final red star
and dip). Middle: filtered time trace corresponding to frequencies
between 5 and 100 GHz. Bottom: windowed Fourier transform
(WFT) of the filtered trace, obtained with 1000 ps windows.

Three mechanical resonances are observed at ~19, ~58, and
~95 GHz. Because the pump induced perturbation is con-
centrated in the GaAs-spacer layer, the generated localized
strain mainly corresponds to vibrations vertically confined
in the cavity. The observed resonances correspond to
the fundamental mode, and the third and fifth overtones.
The absence of even order gaps for 1/4, 1/4 mirrors prevents
the existence of even order acoustic modes confined in the
vertical direction.

The mechanical signal observed at each frequency
~19, ~58, and ~95 GHz actually corresponds to a group
of fully confined mechanical resonances. Indeed, like
for the optical field, several mechanical modes with differ-
ent lateral profiles arise from the three-dimensional con-
finement. Moreover, a blueshift of each of these mechanical
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FIG. 3. (a) Vibrational spectra of a5 ym pillar obtained through

the Fourier transform of the oscillating part extracted from the
reflectance difference signal. The fundamental cavity mode at
approximately 19 GHz and two overtones at 58 and 95 GHz are
highlighted. The inset compares the 19 GHz mode of pillars of
3, 4, and 5 um size. (b) Lifetime of the 19 and 58 GHz cavity
confined mechanical vibration as a function of pillar size L. Error
bars reflect the measured amplitude uncertainty. The colored
region marks the resolution limit of our pump and probe
technique. (c) Mechanical signal amplitude (AR/R|)) correspond-
ing to the three confined acoustic modes. Values are normalized
to the amplitude observed for the 50 um pillar, and have been
vertically shifted for clarity. Dashed curves are fits with a 1/L
dependence (see text for details).

resonances is expected when reducing the pillar size.
Both mode frequency spacing and blueshift are expected
to be around 40-60 MHz for a 3 micron-size pillar, which is
the smallest size we can study with our present spatial
resolution. This is slightly below our spectral resolution of
100 MHz, which is Fourier-transform limited by the length
of the multiple-pass delay line used. Note that cross talk in
degenerate pump-probe experiments makes measurement
of vibrational signals in pillars smaller than 2 microns
very challenging. Notwithstanding these limitations, clear
signatures of mode shift and transverse level splitting
(appearing as a high-energy asymmetry) can be consis-
tently and reproducibly identified in the vibrational spectra
[see the inset for the 20 GHz mode in Fig. 3(a)]. To provide
further evidence of the lateral confinement of the mechani-
cal modes, we study next both their lifetime and opto-
mechanical signal intensity.

Figure 3(b) shows the lifetime of the 19 and 58 GHz
cavity confined acoustic vibration as a function of pillar
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size L. The lifetime dependence cannot be accessed for the
modes around 95 GHz due to limited signal intensity. The
colored region marks the present resolution limit of our
pump-probe technique. The results indicate that the life-
times for the 19 GHz mode are at least of 20 ns for pillar
lateral sizes larger than 6 ym. Such observation shows the
high quality of the fabricated resonators since this value is
close to the phonon lifetime in the GHz range studied in
bulk GaAs/AlAs structures at room temperature. For pillar
sizes below 7 ym a decrease of the mechanical mode
lifetime is observed down to 5 ns for a pillar of 3 ym. As
also observed for confined photons [28], phonon losses
induced by lateral surfaces are expected to become more
relevant for smaller devices because of an increased surface
to volume ratio. The phonon lifetime is lower at 58 GHz
than at 19 GHz for all pillar sizes, presumably due to
phonon intrinsic anharmonicity. Indeed, phonons can decay
into two or more phonons, or can scatter with background
phonons. These processes are not significant at MHz
frequencies, but become relevant in the GHz-THz range
at room temperature [19]. Since in principle we do not
couple to a single mechanical mode but rather to a group of
unresolved transverse modes, mode dephasing could also
be contributing to the observed signal decay. Thus, the
measured lifetimes can be considered a lower bound to the
mechanical Q factor; see Supplemental Material [29].
We now study the dependence of the mechanical
response intensity with pillar size. The intensity of the
signal scales as the optomechanical coupling factor g
which determines the net effect a single phonon produces
on the optical cavity resonance. The phonon generation
process saturates with the incident power: the pump laser
intensity is set beyond this saturation so that the optical
force does not depend on the pump power and can be
assumed as the same in all cases. The intrinsic optome-
chanical response then scales as the reflected probe
intensity AR normalized to the reflected probe power,
Ry [29]. The absolute mechanical response for a given
pillar size decreases when going from 19 to 95 GHz, similar
to what is observed for a planar cavity [see Fig. 3(a)].
Indeed, this behavior is mostly dominated by the z
dependence of the optomechanical coupling factor [18].
What is more relevant here is the optomechanical response
for the three confined modes as a function of the pillar size,
as shown in Fig. 3(c). For all frequencies, a strong increase
of the mechanical signal with decreasing pillar size is
observed. The optomechanical coupling is related to the
overlap between the optical and mechanical modes.
Because the amplitude of confined modes scale as
1/ \/V), with V the mode volume, it can be shown that
the optomechanical coupling should scale as 1/L when the
pillar lateral area shrinks if both optical and mechanical
modes are confined [29]. This behavior well accounts for
the observed dependence as illustrated with the dashed
curves in Fig. 3(c). We note that a rough theoretical

estimation of the optomechanical coupling factor g,/2x,
assuming a nonresonant photoelastic mechanism, leads to
values close to the MHz range. This implies that far from
the gap, where, for example, quantum dots could be
excited, the system remains in a weak coupling regime.

The strong dependence of the mechanical signal as well
as of the mechanical Q factor with the pillar diameter
provide strong evidence for the three dimensional confine-
ment of the mechanical modes in the micropillars. The
measured lifetimes correspond to room temperature
mechanical Q factors between 200 and 1000 for the
19 GHz mode, and between 750 and 1600 for the
58 GHz mode. These numbers result in Q-frequency
products between 10'?> and 10'* that approach state of
the art values and, to the best of our knowledge, are record at
room temperature, showing the strong potential of this new
optomechanical platform [4]. In practice, this implies that
about 100 coherent quantum control operations could be
performed on this mechanical mode at room temperature.

We finally briefly discuss the complex dynamics observed
at shorter times in Fig. 2. Pulsed studies in cavity opto-
mechanics have only been recently reported to access the
transient backaction dynamics [32]. Insight on such dynam-
ics with picosecond time resolution can be grasped from the
traces displayed in the middle and bottom panels of Fig. 2.
Complex multiple frequency spectra are observed, with
additional frequencies observed around 19 and 58 GHz.
The same systematics is observed in all the studied pillars
immediately after pump excitation. These observations hint
towards a form of nonlinear optomechanical backaction.
Indeed, the standard radiation pressure optomechanical
coupling itself is nonlinear, and has been shown to lead to
frequency doubling, multistabilities [33,34], and chaotic
behavior [35,36]. At the shorter times where the complex
dynamics is observed, the laser detuning varies on a time
scale itself commensurable with mechanical periods [37].
Advanced modeling, beyond existing models of optome-
chanics, is required to account for these observations.

Our work shows that a new frequency range is now
available in three dimensionally confined optomechanical
resonators, opening the way to observing quantum opto-
mechanics phenomena at high temperature. The studied
micropillar structures can naturally integrate semiconductor
quantum wells [38] or be optimally coupled to single
quantum dots [39]. The acoustic manipulation and control
of interactions involving polaritons [38] and quantum
emitters, and the possibility of cooling and control of
quantum mechanical states at the single photon level [3],
are only examples of the exciting prospects offered by this
new optomechanical platform.
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