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Abstract
Turbulent mixing in geophysics is often affected by the presence of rotation, which renders the
flow anisotropic at large scales. Helicity (correlation between the velocity and its curl) has
relevance for atmospheric and astrophysical flows and can also affect mixing. In this paper,
decaying three-dimensional (3D) turbulence is studied via direct numerical simulations (DNS)
for an isotropic non-rotating flow and for rotating flows with and without helicity. We analyze
the cases of moderate Rossby number and large Reynolds number, focusing on the behavior of
the energy spectrum at large scales and studying its effect on the time evolution of the energy
and integral scales for E(k) ∼ k4 initial conditions. In the non-rotating case, we observe the
classical energy decay rate t−10/7 and a growth of the integral length proportional to t2/7 in
agreement with the prediction obtained assuming conservation of the Loitsyanski integral.
In the presence of rotation we observe a decoupling in the decay of the modes perpendicular to
the rotation axis from the remaining 3D modes. These slow modes show a behavior similar to
that found in two-dimensional (2D) turbulence, whereas the 3D modes decay as in the
isotropic case. We phenomenologically explain the decay considering integral conserved
quantities that depend on the large-scale anisotropic spectrum. The decoupling of modes is
also observed for a flow with a net amount of helicity. In this case, the 3D modes decay as an
isotropic fluid with a constant, constrained integral length and the 2D modes decay as a
constrained rotating fluid with maximum helicity.

PACS numbers: 47.27.ek, 47.27.Ak, 47.27.Jv, 47.27.Ff

1. Introduction

Turbulent mixing affects the global decay of fluid motions as
well as the decay of coherent structures embedded in the flow.
A realistic consideration of the effect of turbulent mixing in
geophysics (i.e. for large-scale atmospheric flows) requires
the study of anisotropies such as the ones created by rotation.
In this context, freely decaying flows allow for an isolated
study of the anisotropies, because, if anisotropies arise, the
absence of any external force permits us to concentrate
on the sources associated with the inherent dynamics of
the freely evolving flow. Turbulent mixing also leads to
power-law decay of the energy, and a knowledge of the

integral invariant quantities in the flow is required in order to
build phenomenological theories to explain this decay as well
as the evolution of integral length scales.

However, controversy on the invariance of integral
quantities in decaying turbulence has arisen over the last
few years [1]. For isotropic and homogeneous turbulence,
the conservation of the Loitsyanski integral I for an initial
spectrum E(k → 0) ∼ I k4 was called to derive the classical
energy decay rate E ∼ t−10/7 and a growth of the integral
length L proportional to t2/7 [2]. In a similar fashion, for an
initial spectrum E(k → 0) ∼ Sk2, the assumed conservation
of the integral quantity S associated with the conservation of
linear momentum leads to E ∼ t−6/5 [3]. In practice, these
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quantities were shown to be only approximately conserved in
closures [4] and in numerical simulations [5, 6] depending on
the large-scale spectrum of the initial conditions.

Less is known about the decay of turbulent flows in
rotating reference frames. These flows have been largely
studied due to their relevance for scientific and engineering
problems. Their importance has motivated numerous theo-
retical, experimental and numerical works. The applications
of them are broad, including areas as diverse as turbo
machinery and rotor-craft, the convective region of the sun
and stars, large-scale flows in oceans and convective scales in
the atmosphere.

It is well known that solid-body rotation inhibits the
nonlinear direct cascade of energy toward small scales,
reducing the dissipation rate of kinetic energy in comparison
with non-rotating flows. This reduced dissipation has been
observed in simulations [7, 8] and experiments [9, 10]
and studied theoretically [11]. An increase in the integral
length parallel to the rotation axis with time has also been
reported [12, 13] for these flows.

Resonant wave theory has been used to take into account
the effect of rapid rotation in turbulence [14–17]. According
to this approach, the energy is transferred from small to
large scales by resonant triadic interactions of inertial waves.
The theory also argues that the resonant interactions are
responsible for driving the flow to a quasi-two-dimensional
state. Resembling the classic Taylor–Proudman theorem for
steady flows [14], this result is often called the ‘dynamic
Taylor–Proudman theorem’ (see e.g. [18]) and leads to the
decoupling of slow modes, which behave as an autonomous
system of two-dimensional (2D) modes for the horizontal
velocity components (perpendicular to the rotation axis) for
strong rotation [16, 19].

As a result of this reduced nonlinear coupling and
dissipation, for decaying flows in the laboratory different
scaling laws were observed as the flow decays [9, 20],
from classical non-rotating values at small times changing
to different power laws after a time of the order of 1/�.
In [21], for example, an initial isotropic decay is observed,
followed by a cross-over for Ro ≈ 0.25 after which the energy
decays more slowly (E(t) ∼ t−3/5). Such a decay law was
proposed in [8] based on the assumption of the energy transfer
being governed by the linear time �−1. A strong correlation
of the vertical flow leading to the growth and subsequent
saturation of the integral length by vertical confinement was
observed in [10, 12, 21]. This saturation was observed at
a time proportional to �−5/7 in [10]. In [22], large-scale
columnar-structure formation through linear inertial wave
propagation was observed. Large scales form columnar eddies
aligned with the rotation axis and a linear growth of the axial
integral length takes place once the Rossby number passes
below a certain threshold (Ro ∼ 0.4). With the increase of
rotation, energy is retained by stable large-scale structures
and prevented from cascading to small scales. In some
cases, energy was observed to decay faster for larger rotation
frequency.

In simulations, the authors of [23, 24] reported depletion
of the non-linear energy cascade and growth of anisotropy.
Also, an increase of the energy decay rate with rotation
frequency was observed for the isotropic as well as the

perpendicular modes. Two-dimensionalization was reported
in several works (see e.g. [25]), together with the formation
of columnar structures [26] as seen in experiments. In
[27], three distinct regimes were observed depending on the
rotation frequency. At low rotation rates the flow behaves as
non-rotating. At intermediate rotation rates, a strong coupling
between rotation and nonlinear interactions dominates (with
a slower decay of the energy), and at high rotation rates
viscous effects are dominant, damping the nonlinear effects.
Recently, the cases of helical and non-helical rotating
decaying turbulence with the integral scale of the size of the
box were numerically studied in [28], where it was found
that the presence of net helicity decreases even further the
decay rate of energy (see also [29]). Rotating helical flows
have applications in atmospheric research, helical convective
storms being an example [30].

To explain some of the experimental and numerical
results, an extension to phenomenological predictions on the
rotating turbulence for E(k →0)∼ Sk2 and E(k →0)∼ I k4

initial spectra (usually known as the Saffman and Batchelor
spectra, respectively) has been proposed [8]. It includes a
slow-down factor of the energy flux due to the presence
of Rossby waves involving two different timescales: a
long timescale representative of the turbulence evolution
and a short one associated with the rotation frequency �.
Conservation of S and I is then called to derive the asymptotic
decay of energy for both initial spectra, resulting in
E ∼ t−3/5 and E ∼ t−5/7, respectively. In the case of
constrained turbulence, phenomenology leads to E ∼ t−1.
However, these phenomenological arguments do not consider
the effect of anisotropies in the integral conserved quantities
or in the decay laws.

In this work, we numerically study the decay of rotating
helical and non-helical turbulence with an emphasis on the
anisotropies that arise when rotation is present, and on how
integral quantities may be modified. The paper is divided
into five sections. In section 2, we introduce the equations
and describe how we solved them, with information on the
initial conditions. In section 3 we consider as an example a
non-rotating flow, which behaves in agreement with previous
results. In sections 4 and 5 we show and analyze results for
the rotating non-helical and helical cases, respectively. In the
presence of rotation, we observe a decoupling of the energy
decay rates for the 2D and three-dimensional (3D) modes.
Studying the low wave number behavior, we propose that
the conservation of 2D integral moments may explain these
decays. In section 6, we finally summarize the results.

2. Numerical simulations

The Navier–Stokes equation for an incompressible fluid in a
rotating frame is solved numerically. When rotation is present,
the equation reads

∂t u +ω× u + 2Ω× u = −∇P + ν∇
2u, (1)

together with the incompressibility condition

∇ · u = 0. (2)

Here, u is the velocity field, ω = ∇ × u is the vorticity,
P = p/ρ − (Ω× r)2/2 + u2/2 is the total modified pressure,
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Table 1. Parameters used in the simulations. Here, t∗ refers to the
time of maximum enstrophy; Re, Ro, Rw

o , H and h are, respectively,
the Reynolds, Rossby and micro-Rossby numbers, the total helicity
and the relative helicity. All quantities have been calculated at time
t∗. A resolution of 5123 grid points was used in all runs.

Run ν � Re Ro Rw
o H h t∗

1 8.5 × 10−4 0 420 − − 0.01 1 × 10−4 0.6
2 8.5 × 10−4 10 450 0.1 0.95 0.05 4 × 10−3 0.7
3 8.0 × 10−4 10 530 0.07 0.7 6.5 0.5 1.5

ρ is the (unit) density and ν is the kinematic viscosity. We
chose the rotation axis in the z direction so that Ω= �ẑ, �

being the rotation frequency. Our integration domain is a cubic
box of length 2π with periodic boundary conditions and the
equations were solved using a pseudo-spectral method with
the 2/3-rule for de-aliasing. All runs were performed with a
resolution of 5123 grid points. The initial conditions were a
superposition of Fourier modes with random phases and an
energy spectrum E(k) ∼ k4 with modes randomly distributed
in a spherical shell of wave numbers between 1 and 14. Details
of the simulations are given in table 1.

In table 1, Re = LU/ν is the Reynolds number,
RL

o = U/(2L�) is the Rossby number based on the integral
scale L , Rw

o = w/(2�) is the micro-Rossby number with
ω=〈ω2

〉
1/2, H =〈u ·ω〉 is the total helicity, h = H/〈|u||ω|〉

is the relative helicity and t∗ is the time when maximum
enstrophy is attained and when these quantities are measured.
We use L defined as

L = 2π E−1
∫

E(k)k−1dk. (3)

Note that Rw
o and RL

o are one order of magnitude apart.
This is required for rotation not to completely damp the
nonlinear term in the Navier–Stokes equation leading to a pure
exponential decay (see [17] for more details).

3. Non-rotating flow

3.1. Phenomenological arguments

The classical Kolmogorov phenomenology leads to the well-
known energy spectrum

E(k) ∼ ε2/3k−5/3, (4)

which, for a decaying self-similar flow with E(t) ∼ k E(k) and
using the balance equation dE/dt ∼ ε, gives the result

dE

dt
∼

E3/2

L
. (5)

L can depend on time and extra hypotheses are required for
obtaining the energy decay.

If L ∼ L0 (where L0 is the size of the simulation domain),
then dE/dt ∼ E3/2/L0 and it follows that

E(t) ∼ t−2. (6)

If L 6= L0 but the spectrum at large scales is ∼ k4, the
conservation of an integral quantity can be assumed to derive
the decay rate of this flow. Traditionally the conservation of
an initial k4 dependence in the low wave number spectrum

Figure 1. Energy decay for the non-rotating case (run 1). After a
transient, the self-similar decay agrees with the classical
Kolmogorov theory. The t−10/7 slope is shown as a reference.

E(k) has been related to the invariance of the Loitsyanski
integral I , which we define as

I =

∫
∞

0
r4

〈u · u′
〉dr , (7)

where 〈u · u′
〉 is the isotropic two-point longitudinal

correlation function, which depends solely on r . If conserved,
from dimensional analysis it follows that I ∼ L5U 2, then
dE/dt ∼ E17/10/I 1/5 and we finally get

E(t) ∼ t−10/7, (8)

as obtained by Kolmogorov [2].
In practice, I evolves slowly in time and is only

approximately conserved for an initial large-scale spectrum
∼ k4. If the large-scale spectrum is ∼ k2, then another integral
quantity is approximately conserved [3], which leads to
a decay E(t) ∼ t−6/5. In the next section, we present a
simulation (run 1 of table 1) that approximately follows
the Kolmogorov decay (see also [5]). The rotating cases in
sections 4 and 5 have the same large-scale energy spectrum.
The conditions when the integral length saturates (reaching
the box size in numerical simulations) have been reported
in [28].

3.2. Numerical results

In run 1, the energy spectrum (not shown) peaks initially at
k = 14 and maintains an approximately k4 scaling for low
wave numbers. The time history E(t) for run 1 is shown in
figure 1. After an initial transient of about six turnover times,
it shows a self-similar decay that is consistent with the t−10/7

law.
In order to test further the behavior at large scales,

we calculate the Loitsyansky integral I for this isotropic
flow. In a recent work, Ishida et al estimated I by fitting
E = I k4/24π2 to the energy spectrum at large scales [5]. In
their simulations (with a spatial resolution of 1024 grid points
and an initial peak of the spectrum near k = 40 or k = 80),
the interval where E ∼ k4 holds is large enough for them to
perform the fitting. In our case (512 grid points), this interval
is shorter and fitting is not possible. Consequently, we checked
spectral isotropy and then estimated I using equation (7). The
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Figure 2. Normalized Loitsyansky integral I as a function of time
for run 1.

Figure 3. 1D integral length scale L z for run 1. After a transient
period of time, L z grows approximately as t2/7, as derived
phenomenologically.

two-point longitudinal correlation function can be estimated
in the isotropic case using [1]:

〈u · u′
〉(r) = 2

∫
∞

0
E(k)(sin kr − kr cos kr)/(kr)3dk, (9)

where E(k) is the isotropic energy spectrum.
The evolution of I (t)/I (0) is shown in figure 2. Although

I (t) decays monotonically, after a transient its evolution is
slow and it decreases only to approximately half its maximum
value after 60 turnover times. In [5], it was shown that its
conservation improves as the extent of the large-scale ∼ k4

spectrum is increased.
The approximate invariance of I can further be used

to estimate the growth of L . Writing L ∼ I 1/5U−2/5 and
replacing in equation (8), we get

L ∼ t2/7. (10)

Figure 3 shows the evolution of the integral scale L z based on
the one-dimensional (1D) spectrum for run 1 calculated as

L z = 2π E−1
∫

E(kz)k
−1
z dk. (11)

After an initial transient, L z asymptotically settles down in the
simulation to a growth rate close to t2/7.

The results we have presented so far are consistent with
Kolmogorov theory for decaying homogeneous and isotropic

Figure 4. Energy as a function of time for run 2. After a transient, a
decay close to, although steeper than, t−5/7 is attained. A t−5/7 slope
is plotted for reference.

turbulence where initial conditions allow for the integral
length to grow. In the next section, we consider the analogy
for the rotating case.

4. Rotating flow

4.1. Phenomenological arguments

In this section, we analyze a flow subjected to solid-body
rotation in the z-axis with a rotation frequency � (run 2). In
non-helical rotating turbulence, a

E(k) ∼ ε1/2�1/2k−2 (12)

spectrum is typically assumed [24, 31–34]. From the balance
equation, this spectrum results in

dE/dt ∼ (E/L)21/�. (13)

Again, there are at least three possible scenarios. For L ∼ L0,
dE/dt ∼ E2 [28] and

E(t) ∼ t−1. (14)

When L 6= L0 and E(k) ∼ k4 at large scales as in our
runs, the constancy of I ∼ U 2L5 can be used again so that
dE/dt ∼ E12/5/(I 2/5�) and [8]

E(t) ∼ t−5/7. (15)

Invariance of I also leads to

L ∼ t1/7. (16)

Finally, details of the rotating case with E(k) ∼ k2 can be
found in [8].

4.2. Numerical results

Figure 4 shows the evolution of E(t). After an initial nearly
inviscid period, a transient period leads to a decay rate slightly
steeper than E ∼ t−5/7.

The conservation of I , assumed to derive E(t) ∼ t−5/7,
is associated with a preserved k4 spectrum at large scales.
However, in the presence of rotation, an inverse cascade of
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Figure 5. Energy spectrum E(k, t) for run 2 from t = 1 to t = 45 in
steps of 1t = 1. Energy piles up at large scales, shallowing the
spectra. The k4 slope is shown for reference only.

Figure 6. Isotropic Loitsyansky integral I for run 2.

energy develops, shallowing the spectrum at large scales as
the energy piles up at low wave numbers. This effect is
visible in figure 5 where the isotropic energy spectra are
plotted for different times. As a consequence I is no longer
approximately conserved and varies fast. Figure 6 shows the
evolution of I (t)/I (0) departing from a constant value and
increasing by an order of magnitude in clear contradiction
with the hypothesis of constant I .

When there is rotation, isotropy breaks down, the flow
becomes axisymmetric and a privileged direction (the z-axis)
exists. In figure 7, we show the evolution of the energy in the
slow 2D modes of the velocity E(k‖ = 0, t) (where k‖ = kz are
the wave numbers in the direction parallel to the rotation axis),
together with the energy of the remaining 3D modes with
E(k‖ 6= 0, t). The k‖ 6= 0 modes dominate initially having an
amplitude one order of magnitude larger than the modes with
k‖ = 0. This initial dominance is a result of the choice of the
initial conditions where Fourier modes are excited randomly
all over the shells in Fourier space, which results in most of
the energy in modes with k‖ 6= 0.

As time evolves, energy from 3D modes is transferred
to the k‖ = 0 plane and, after approximately six turnover
times, there is a cross-over after which energy in the 2D
modes prevails. Thereafter, 3D modes decay as in an isotropic
flow without rotation following E(k‖ 6= 0) ∼ t−10/7, whereas
perpendicular modes follow a shallower decay close to but
now shallower than E⊥ ∼ t−5/7. This suggests that after t ≈ 6

Figure 7. E(t) for 3D modes with k‖ 6= 0 (solid) and for 2D modes
in the k‖ = 0 plane (dashed) for run 2. Note an apparent decoupling
in the decay rate between the energy in the 2D and 3D modes.

the evolution of the 2D and 3D modes decouple and they
decay separately with their own decay rates. The Rossby
number at that time is Ro ≈ 0.015, and the behavior is
consistent with predictions of wave turbulence theory that
obtains a decoupling for very small Rossby number [18, 19]
with the 2D evolution of the modes described by the 2D
Navier–Stokes equation.

4.3. Phenomenology revisited

This behavior naturally leads us to review 2D integral
moments in addition to the isotropic Loitsyansky integral
already introduced. For 2D turbulence, the authors of [6]
and [35] suggest that three canonical cases exist:
E(k → 0) ∼ Jk−1, E(k → 0) ∼ K k and E(k → 0) ∼ I2Dk3,
where J , K and I2D will be, respectively, defined here as

J =

∫
〈w · w′

〉r dr , (17)

K =

∫
〈u · u′

〉r dr (18)

and

I2D =

∫
r3

〈u · u′
〉 dr . (19)

Moreover, J and K are integral invariants of motion with
the conservation of K being associated with the conservation
of linear momentum and invariance of J a consequence of
vorticity conservation. In the 3D rotating case, since the
k‖ = 0 modes are the ones approximately decoupled for
Ro � 1, and the equations for these modes are equivalent to
the 2D Navier–Stokes equations [18, 19], we may wonder
whether these integral quantities are conserved (or at least
evolve slowly with time) in that manifold. In the rotating case,
the relevant increments are then r = r⊥ with r⊥ perpendicular
to Ω, and the associated wave vectors are k⊥.

We start by showing in figure 8 the energy spectrum for
the vertically averaged velocity field, that is to say, for wave
numbers k2

⊥
= k2

x + k2
y (hereafter, the perpendicular spectrum).

This spectrum maintains a form proportional to k3
⊥

(albeit
slightly shallower).

In order to find slowly varying 2D-like integral quantities
in the simulation, we calculate the time evolution of K and I2D
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Figure 8. Evolution of the 2D perpendicular spectrum E(k⊥, t) for
run 2 from t = 0.5 to t = 45 in steps of 1t = 0.5. Note a slightly
shallower than k3 scaling for low wave numbers.

Figure 9. Normalized K (solid) and I2D (dashed) as a function of
time for run 2. Both parameters have a slow, almost constant
behavior in time, showing little variation.

inverting the following equation which follows from assuming
axisymmetry [1]:

E(k⊥) =

∫
1
2 〈u · u′

〉k⊥r⊥ J0(k⊥r⊥)dr , (20)

so that
〈u · u′

〉(r⊥) =

∫
2E(k⊥)J0(k⊥r⊥)dk⊥ (21)

can be estimated from the perpendicular spectrum. The results
for K (t)/K (0) and I2D(t)/I2D(0) are plotted in figure 9.
Both magnitudes behave in a similar fashion, showing slow
variations with a relatively constant value over the simulated
time.

Invariance of K or I2D leads to different energy decay
rates. For constant K , we can write K ∼ L2

⊥
U 2

⊥
L0‖ (where

L0‖ is the size of the box in the direction parallel to Ω) and
assuming the slow-down factor in the energy dissipation rate
by waves, as done in equation (13), dE⊥/dt ∼ (E⊥/L⊥)2/�.
Replacing L⊥ in the last equation, we get dE⊥/dt ∼

E3
⊥

L0‖/(K�), leading to

E⊥ ∼ t−1/2. (22)

For constancy of I2D, we have I2D ∼ L4
⊥

U 2
⊥

L0‖, and using
the same arguments, from dE⊥/dt ∼ (E⊥/L⊥)2/� we obtain
dE⊥/dt ∼ E5/2

⊥
L1/2

0‖
/(I 1/2

2D �), which finally leads to

E⊥ ∼ t−2/3. (23)

Figure 10. Energy decay for perpendicular (k‖ = 0) modes
compensated by t−α for α = 5/7 (solid), α = 2/3 (dot-dashed) and
α = 1/2 (dashed); α = 2/3 adjusts our data better.

Figure 11. Integral length parallel to the rotation axis for run 2
compensated by t−α for α = 2/7 (solid) and α = 1/7 (dashed); t2/7

adjusts our data better.

In order to see whether any of these decay laws adjust
our data better than the isotropic ∼t−5/7 law, we plot the
2D energy evolution compensated by t−5/7, t−1/2 and t−2/3

(figure 10). The decay law E⊥ ∼ t−2/3 seems to adjust better
our simulation, which is consistent with the slow variation of
I2D and with the initial perpendicular spectrum close to k3

⊥
.

The integral length parallel to the rotation axis L‖ = L z

also behaves as in the isotropic case. In figure 11, we plot the
evolution of L‖ compensated by the laws for the isotropic and
axisymmetric cases already deduced. Clearly, the isotropic
t2/7 scaling adjusts the results better, in agreement with the
isotropic-like decay of the energy in the 3D fast modes.

5. Helical rotating flow

We finally discuss briefly the effect of helicity upon the decay
rate of energy in a rotating fluid. In order to incorporate
net helicity into the flow, we use a superposition of the
Arnold–Beltrami–Childress (ABC) [36] initial conditions,
achieving an initial relative helicity h ≈ 0.99. As in run 2, the
ABC flows were added in all shells in Fourier space between
wave numbers k = 1 and 14 with an isotropic spectrum ∼k4.

Figure 12 shows a comparison between the energy as a
function of time for the helical and non-helical rotating flows.
The helical energy decay, shown by the dashed line, is slower
than the non-helical case. This retard has been associated
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Figure 12. Total isotropic energy decay for helical (dashed) and
non-helical (solid) rotating turbulence. The results show a decreased
decay rate in the presence of helicity.

Figure 13. Decay of the energy for 3D modes with k‖ 6= 0 (solid)
and for 2D modes in the k‖ = 0 plane (dashed) for the helical
rotating flow (run 3) showing different scaling laws.

with an inhibition of the nonlinear transfer of the energy
toward smaller scales by a direct cascade of helicity [37].
The behavior has also been observed in [28], where rotating
helical and non-helical flows with constant integral length
were studied.

The distinct evolution in the free decay of the helical
flow can also be understood in terms of a phenomenological
theory similar to those already presented. In this case, the
direct transfer is dominated by the helicity cascade. Assuming
maximal helicity, we have [37]

E(k⊥) ∼ ε1/4�5/4k−5/2
⊥

. (24)

Then it follows that

dE⊥/dt ∼ E4
⊥
/(L6

⊥
�5). (25)

It is unclear at this point whether in the phenomenological
analysis we should separate the decay of the 2D modes from
the 3D modes as in run 2, or whether the integral scale changes
in time or not. Therefore, in figure 13 we plot the 2D and
3D energy decay for run 3 (the same as figure 7 but for the
helical case). Note the anisotropic initial state with a relative
excess of energy in the modes with k‖ = 0 due to the ABC
initial conditions used. After the first nearly inviscid transient,
both sets of modes seem again to decouple and decay with
different laws: ∼t−2 for the 3D modes and ∼t−1/3 for the 2D

Figure 14. Integral length scales parallel (solid) and perpendicular
(dashed) to the rotation axis as a function of time. Both lengths
saturate fast to an almost constant value near the simulation domain
length (2π ).

Figure 15. Isotropic energy spectrum E(k, t) for run 3 from t = 1
to t = 45 in steps of 1t = 1.

modes. As in the non-helical case, the 3D modes decay faster,
following the same law derived for an isotropic non-rotating
flow where L ∼ L0. Indeed, in this run the integral scales grow
fast during the transient and reach lengths close to the size of
the box L0 (=2π) before the self-similar decay starts. This
is illustrated in figure 14, which shows the evolution of the
parallel and perpendicular integral scales. After t ≈ 6, L‖ is
almost saturated, and L⊥ keeps growing slowly but close to
its maximum value. This results from a fast inverse transfer
of energy (see the evolution of the isotropic energy spectrum
in figure 15) that may be associated with the large amount of
energy in the k‖ = 0 modes in the initial conditions.

The fast increase and saturation of L‖ and L⊥ give as a
result the decay of the 2D and 3D modes as in constrained
turbulence. For the 3D modes, the ∼t−2 decay then follows.
For the 2D modes, using equation (25) and the approximate
constancy of the integral lengths, we get a decay

E⊥ ∼ t−1/3 (26)

in agreement with the simulation. The study of the cases
where the integral scales are not constant are left for a future
work and may require the identification of anisotropic integral
conserved quantities as in the previous section.
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Figure 16. Perpendicular energy spectrum E(k⊥, t) for run 3 from
t = 1 to t = 45 in steps of 1t = 1.

6. Conclusion

In this work, we presented studies of decaying turbulence in
the presence of rotation and helicity. A simulation (run 1)
without rotation and helicity was used to introduce some of
the phenomenological arguments in unconstrained decaying
turbulence. The simulation, with a large-scale spectrum close
to ∼k4, shows a slowly varying Loitsyansky integral and a
decay law consistent with Kolmogorov’s E(t) ∼ t−10/7 law.
Detailed studies of such a decay can be found in [5].

When extending these arguments to rotating turbulence,
approximate conservation of isotropic integral moments (e.g.
the Loitsyansky integral) is often assumed (see e.g. [8]).
A simulation of non-helical rotating turbulence (run 2)
was shown to decay slightly faster than what is predicted
by these arguments. We argued that the approximate
decoupling of slow and fast modes predicted in wave
turbulence theory for rotating flows at very small Rossby
numbers leads to different decay laws for the energy in
the 2D and 3D modes. The decay of the 3D modes is in
agreement with phenomenological predictions for isotropic
and homogeneous turbulence, whereas the decay of the 2D
modes is consistent with phenomenological results obtained
assuming that integral moments of the 2D Navier–Stokes
equation are approximately conserved.

Finally, the effect of helicity in rotating turbulence
was considered in run 3. Helicity decreases the decay
rate of turbulence even further as the direct transfer is
dominated by the direct helicity flux (see e.g. [28, 37]), and
helicity tends to decrease the amplitude of the nonlinear
term in the Navier–Stokes equation. The initial conditions
considered led to the fast saturation of the integral scales,
and as a result the 2D and 3D modes in this run
decayed as constrained turbulence. The 3D modes decayed
as in the non-rotating (constrained) case, whereas the 2D
modes were observed to decay more slowly than what is
predicted for constrained non-helical rotating turbulence and
in agreement with predictions that consider the effect of
helicity.

The three simulations presented here are far from being
an exhaustive exploration of the possible decay laws that
may develop in rotating turbulence, and a detailed study of
the effect of changing the initial large-scale energy spectrum
dependence is left for a future work, as well as studies of

the effect of initial anisotropies in the decay, the effect of
scale separation between the initial integral scale and the box
size (see e.g. [5] for a study of isotropic and homogeneous
turbulence), and parametric studies varying the Reynolds and
the Rossby numbers.
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