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In this Article, we present an extension to the observability analysis algorithm known as Direct Method
(DM), which is an essential piece of a Decision Support System (DSS), whose purpose is to help engineers
in the instrumentation design of industrial process plants. The main goal of this new version of DM algorithm
is to improve the global performance of the DSS. The new variant, known as Extended Direct Method (EDM),
incorporates a novel module that quantifies the degree of nonlinearity associated with the variables and equations
of the mathematical model for the process plant. This new quantification procedure conforms a heuristic
search, which guides the traditional DM toward a decomposition of the mathematical model in subsystems
with the smallest possible degree of nonlinearity. The obtained results show that the EDM is able to reduce
the nonlinearity of the subsystems obtained through the observability analysis procedure. At the same time,
it can successfully increase the generated quantity of minimum size subsystems, thus also contributing to

improve the DSS’s global performance.

1. Introduction

Chemical process plants are usually constituted by a great
amount of industrial units, which are interconnected by material
streams that enter and leave the equipment. To control these
processes, it is necessary to have a well-chosen group of
measurement sensors, which are located in diverse sectors of
the plant. The quantity and location of the sensors employed to
monitor a certain process have direct influence on the safety
policies and the degree of knowledge that anybody can have,
thus becoming fundamental to obtain an optimal sensor distribu-
tion. It is then desirable to reach a high degree of knowledge
of the plant, which is necessary to monitor its correct operation
in an efficient way, which redounds to economic benefits and
leads to the improvement of the plant’s safety conditions.' >

To carry out this task, it is necessary to count on mathematical
models for each item of equipment that integrates the chemical
plant.* They relate all of the variables that take part in the
process using the algebraic equations coming from mass and
energy balances, equilibrium relationships, and thermodynam-
ic equations that represent the plant’s steady-state operation.>®
The process variables are basically divided into two types: the
measurable ones and the unmeasurable ones. Measurable
variables are those whose value can be obtained from the
installation of a measurement sensor in the appropriate place.
Unmeasurable variables are those whose value is directly
unknown because there is no sensor capable to measure them.
Therefore, if their value is indispensable to be learnt, it should
be calculated from the mathematical model together with the
process data available. The main goal of the analysis then is to
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determine the optimal group of sensors (i.e., variables to be
measured) that allows the maximization of the degree of
knowledge for plant operation, quantified by the amount of
model variables whose value will be known starting from a
proposed instrumentation layout. The objective also contem-
plates an attempt to minimize the cost of acquisition and
installation of the sensors.

Because of the great amount of chemical units that compose
a process plant, the resulting mathematical models are large,
making the use of computational tools fundamental to carry out
the instrumentation design task.”® In this context, the develop-
ment of a Decision Support System (DSS) was proposed,'’
which approaches this task by means of two central procedures:
the observability analysis (OA) and the redundancy analysis
(RA)."" The objective of the OA is to individualize those
variables whose values can be calculated from a set of sensors
combined on the basis of the mathematical model of the plant.'>
The classification of the variables into observable (calculable)
ones and unobservable ones then is carried out. The RA,
however, offers information about the sensors that may be
removed from the plant without reducing the degree of plant
knowledge that one has achieved.

In general, the techniques proposed to give aid in the OA try
to determine an instrumentation design that maximizes the
amount of calculable variables of a plant. This can be achieved
with a procedure that partitions the mathematical model of the
process in a sequence of subsystems of equations. These
subsystems allow individualizing those variables that can be
calculated with the data obtained from a group of sensors. A
feature that distinguishes chemical processes is their strong
nonlinear character. In the subsystems obtained by OA, the
degree of nonlinearity has a strong impact on the acting of the
techniques employed to carry out the RA. These techniques
significantly reduce their times and computational efforts when
the amount of linear subsystems that should be processed with
respect to the number of nonlinear systems becomes greater.
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Another characteristic is that the incidence matrices associated
with the equation systems conforming the models of the
industrial processes are generally rank-deficient. This is due to
the presence of redundant equations, whose purpose is to allow
the data reconciliation to detect measurement errors in the
sensors located in the plant.'?

As a result, there is more than one way to decompose the
equation subsystems. Therefore, various partitions can lead to
subsystems with different nonlinearity degrees, which are based
on the equations and variables that conform each particular
subsystem. In this context, it would turn out desirable to find
the best decomposition, that is, the one that tends to reduce the
nonlinearity of its subsystems, moving the nonlinear relation-
ships to the redundant or unassigned equation subsets following
the equations categories defined in Ponzoni et al.;' see section
2.1. Nowadays, none of the search algorithms used in OA keeps
this factor in mind.

The purpose of this work was to carry out a feasibility analysis
of the extension of some of the existing techniques to incorporate
this aspect to the decomposition process. In particular, we
present a modified version of the OA algorithm known as Direct
Method (DM).'?> This new version, which we called the
Extended Direct Method (EDM), favors the reduction of the
nonlinearity degree in the resulting decomposition, without
affecting the degree of knowledge provided by the DM.

This Article is organized as follows: in section 2, a detailed
explanation of how the instrumentation is designed with the
help of our DSS, as well as a description of the methodology
adopted by the DM for the OA; in section 3, the EDM is
proposed, together with the way nonlinearity degrees are
determined and incorporated as a search heuristic; in section 4,
results of a comparative performance analysis between DM and
EDM for three real study cases are discussed; and finally, in
section 5, conclusions and future work are analyzed.

2. Decision Support System

The Decision Support System proposed by Vazquez et al.'®
is a friendly software package that helps the process engineer
in the instrumentation design of chemical plants. This DSS
allows the rigorous and precise modeling of real problems no
matter how big the models under analysis are. Thus, it becomes
an efficient and robust tool for complex problems treatment.
Another characteristic, which is similarly important, is the
flexibility the package has for the addition of new algorithms,
allowing that, as it will be seen in this Article, any improvement
or new algorithm to be implemented can be incorporated to the
software in a simple way.

Several modules with specific tasks constitute the DSS. These
blocks are integrated through a graphical interface so as to allow
the engineer to make the complete instrumentation design. The
modules that constitute the DSS are: a data entry module (DEM),
a model generator module (MGM),'* a robust module for OA
(OAM), and an RA module (RAM)."" In Figure 1, a complete
scheme together with the DSS interaction is shown.

In the first place, the engineer should define the plant
topology, entering the items of process equipment and the
streams (pipes) that interconnect them. Once the whole flowsheet
is informed, an initial sensor configuration should be proposed.
This activity can be carried out manually by the user or through
a genetic algorithm specially implemented for this task.'>~'®
The following step is the generation of the complete mathemati-
cal model, making use of the MGM. The generated model
should be entered in the OAM, which determines the identity
of the variables that are observable by means of a classification

| Model Generator (MGM)
‘ | Automated Tool |

| Observability Analysis (OAM) |

NO END

Figure 1. Interaction scheme between the user and the DSS showing how
the chemical plant instrumentation design is carried out. Rectangles represent
tasks automatically made by the DSS, and ellipses represent tasks the user
takes part in.

routine. The user, who decides if it is satisfactory, should analyze
this first result. If any of the important process variables is left
unobservable, it is necessary to revert to DEM. The DEM is
processed again after having added sensors for those variables.
The OAM is then run once more to obtain a more suitable
classification.

If the user approves the result yielded by the OAM, the
following step is to enter this classification in the RAM. As it
was previously explained, this module indicates which variables
associated with the sensors are also calculable with the
mathematical model. In fact, for the sake of data reconciliation
or security issues, it is sometimes desirable to have some of
the observable variables measured. If this is not the case, the
engineer will have to revert to the DEM, remove some of the
redundant sensors, and run the OAM and RAM all over again.
Once this iterative process is finished, a satisfactory instrumen-
tation design for the process plant is established.

In particular, the OAM implementation uses the Direct
Method (DM).'? The DM constitutes a very robust and efficient
matrix-partitioning approach. The technique is robust because
it can be applied to any type of matrices, whatever its structural
pattern, and efficient because it allows one to incorporate
constraints in the block conformation to guide the ordering
according to previously specified guidelines. The method is
extremely flexible because it is possible to generate different
reorderings for the same problem until finding the most
satisfactory one. Because of the previously mentioned reasons,
it is possible to state that this technique constitutes a solid base
for the development of a methodology for the resolution of
sparse nonlinear equations systems. This reordering simplifies
the resolution of the original system. Moreover, it is even
applicable to numerically singular systems.

2.1. Observability Analysis Using the Direct Method.
These algorithms yield four kinds of variables according to
feasibility of calculation: (1) Redundant variables are measured
variables that can also be calculated from the model equations
and the rest of the measured variables. (2) Non-redundant
variables are measured variables that cannot be computed from
the equations and the rest of the measured variables. (3)
Observable variables are unmeasured variables that can be
evaluated from the available measurements using the equations.
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Figure 2. Direct Method architecture.
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Figure 3. Mathematical model’s occurrence matrix.

(4) Unobservable variables are unmeasured variables that cannot
be evaluated from the available measurements using the
equations.

In turn, the model equations are classified into three catego-
ries: (1) Assigned equations are those that will be employed to
find the value of the observable variables. (2) Redundant
equations are those that have not been assigned and whose
variables are either measured or observable. (3) Unassigned
equations are those that have not been assigned and contain at
least one unobservable variable.

The OA objective is to determine which of the nonmeasured
variables can be calculated from either the measured variables
or the mathematical model equations. More specifically, its task
is to detect the nonmeasured variables included in the group of
observable variables and to individualize those in the other
group. In particular, the DM observability algorithm consists
of seven stages that were outlined in Figure 2. In Ponzoni et
al.,'® there is a detailed explanation of each of the steps through
the various algorithms that are applied in each stage. In this
Article, we present a complete application example of the DM,
to show clearly the task each stage involves.

In the first place, an initialization phase is carried out (step
0), where the Bigraph G(N) associated with the occurrence
matrix N (Figure 3), which corresponds to the mathematical
model of the plant, is built (Figure 4). This bigraph contains
two sets of nodes, called R and C, which represent N rows and
columns, respectively.

In the following step (step 1), a G(N) maximum matching,
P, is obtained (Figure 4). A matching is constituted by a disjoint-
edge set (without common end points) that connects R nodes
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Figure 4. Maximum matching for G(N) bigraph.
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Figure 5. Rearranged matrix after the coarse-grain decomposition.

with C nodes.'"” The number of edges in P is called the
cardinality of the matching P. In particular, a matching is called
maximum if there is no other matching with higher cardinality.
On this matching base, a R and C node classification is
employed to carry out a reordering of the matrix N, to the shape
shown in Figure 5. This node classification partitions C into
SC1, SC2, and HC, and R into SR1, SR2, HR, and VR. The
SC1 and SC2 nodes are associated with the observable variables,
while the HC nodes correspond to the unobservable variables.
In turn, the nodes in SR1 and SR2 represent the assigned
equations, the ones in VR indicate the redundant equations, and
those in HR correspond to equations that contain unobservable
variables.

The next step (step 2) is the fine-grain decomposition. The
coarse-grain decomposition yields two structurally nonsingular
square blocks determined by the sets (SR1,SC1) and (SR2,SC2).
The fine-grain decomposition stage partitions these blocks into
irreducible square subsystems by means of the classical Tarjan
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Figure 7. Matrix resulting from the first reassignment.

algorithm® for the detection of the strong components of a
digraph. First, the digraph G(N;) is decomposed, where N; =
(SR1, SC1), and, second, the Tarjan algorithm is applied to
G(N,), where N, = (SR2, SC2). Figure 6 shows the fine-grain
decomposition of block N, for the example given in Figure 5.
In the first place, the digraph G(V,) is built (Figure 6a,b). Each
node in G(V,) is associated with two nodes from the bigraph,
which come from SR2 and SC2, respectively. Next, the digraph
is partitioned into its strong components (Figure 6¢). Finally,
N, is rearranged according to the strong components found
through the Tarjan algorithm (Figure 6d).

It might happen that some of the blocks previously found in
the fine-grain decomposition do correspond to a numerically
singular equations subsystem. In this case, a restriction that
prohibits this subsystem generation is imposed (step 3). Let us
assume that there is a constraint 77 composed of the row nodes
{4, 5, 8, 2} and the column nodes {11, 1, 4, 7} because the
associated equations and variables correspond to a singular
subsystem from the mathematical model of the plant. The
allowability test then rejects the block, and the algorithm
proceeds with the reassignment stage. At this point, we shall
assume that the row nodes 2 (from SR1) and 10 (from VR) are
chosen and exchanged. Afterward, block N, is composed of the
row nodes {4, 5, 8, 10}, as shown in Figure 7, while node 2
corresponds to a redundant equation.

If the fine-grain decomposition is executed again, a single
strong component that comprises the complete block N, is found

Figure 8. Matrix resulting from the second reassignment.

again. Next, we will assume that the new block, composed of
row nodes {4, 5, 8, 10} and column nodes {11, 1, 4, 7}, is
checked and rejected as a result of a constraint made up of row
nodes {4, 5, 10} and column nodes {11, 1, 4}. This triggers a
new reassignment, where, for example, row nodes 4 and 12 are
exchanged, yielding a block N; with row nodes {5, 8, 10, 12}
and column nodes {7, 11, 1, 4}. Next, the fine-grain decomposi-
tion is repeated, resulting in the following two strong compo-
nents: Ny = {{10, 12}, {7, 11}} and Ny, = {{5, 8}, {1, 4}}.
Both of them pass the allowability test, which ends in this way
for N;. The resulting matrix is shown in Figure 8.

There are different techniques to carry out matrix permuta-
tions to block triangular forms. Some of them were not
applicable to rectangular, structurally singular matrices, while
others led to useless block distributions. Pothen and Fan®'
introduced a partitioning technique for general matrices. This
technique consists of two different stages. In the first place, a
coarse-grain decomposition is yielded by applying the
Dulmage—Mendelsohn decomposition.?> The Dulmage—Men-
delsohn decomposition is one of the most widespread noncom-
binatorial techniques to permute a general matrix to block
triangular forms (BTF). Once this technique is applied, Pothen’s
method is used to perform the fine-grain decomposition.

The main difference between the Dulmage—Mendelsohn
decomposition and the Direct Method lies in the fact that DM’s
technique places in the same set all of the nodes in N1 that
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Figure 9. Classification of nodes and coarse-grain decomposition for both techniques.

Table 1. Term Pondering by Means of Weights, Which Are in Accordance with the Term’s Degree of Nonlinearity

nonlinear
term linear bilinear 1 variable 2 variable 3 variable 4 variable 5 or more variables
punctuation w 0 1 2.2 24 2.6 2.8 3.0

belong either to VR or to SR1, while the classification for the
instrumentation design, that is, the Direct Method, requires a
distinction to be made between them. Figure 9 shows the
contrasts between both classifications. Figure 9a shows the DM
classification, whereas in Figure 9b it can be noticed how the
nodes should be rearranged to get the desired BTF. Apart from
being square, an important characteristic of blocks (SC1, SR1)
and (SC2, SR2) is that they have a full transversal because the
nodes in SCI1, SR1, SC2, and SR2 belong to the maximum
matching.

Another important difference between both proposals is the
fact that Pothen and Fan’s decomposition was presented for
solving linear systems only, while the Direct Method is designed
for linear and nonlinear systems. It is well-known that most of
the mathematical models resulting from a chemical plant are
strongly nonlinear equation systems. This constitutes an essential
reason why it became necessary to propose a new decomposition
technique to be able to carry out a computer-aided instrumenta-
tion design. A more detailed comparison between both decom-
positions is in Ponzoni et al.'?

3. Extended Direct Method

The extension of the Direct Method, which is proposed in
this Article, arises from the incorporation of the nonlinearity
degree (NLD) analysis to the original DM, allowing in this way
the improvement on its performance and applicability range.
The main objective why the NLD analysis has been introduced
is to reduce the amount of nonlinear subsystems obtained by
the DM decomposition. In this way, the first step to reach this
goal consists of defining how to quantify the NLD considering
that each equation and variable of the system contributes to the
mathematical model. This information is basic to guide the
model decomposition process, to favor the conformation of
the linear subsystems in contrast to the nonlinear ones.

3.1. NLD Definition and Quantification. a. Nonlinearity
Degree — Equation Analysis. The NLD of a given equation
is computed by considering the linearity type of each term in
the equation. A term can be linear, bilinear, or nonlinear,
depending on the algebraic operations that it involves. For
example, in the equation a + b* + c+d = 0, the first term is
linear, the second one is nonlinear, and the last one is bilinear.

b. Nonlinearity Degree — Analysis of Variables. The
variable NLD is constituted by the contribution of all of the
bilinear and nonlinear terms where that variable takes part
throughout all of the equations of the system.

To calculate the NLD, we assign a specific weight to each
term according to its linearity type. The criterion presented here,

which was empirically defined, tends to favor the linear terms
in contrast to the bilinear and nonlinear ones, because it assigns
a smaller weight to the terms with a lower degree of nonlinearity.
Table 1 is completely general, and it specifies the weights to
be employed for the determination of the nonlinearity degree
for each equation and variable in the system. The most important
feature is to choose weights (any number) that increase in their
value as the nonlinearity level becomes larger.

As we will show in section 4.1.2, it is essential to respect
the weighing criterion to achieve the minimum nonlinear degree
in the resulting decomposition. In turn, it can be noticed that,
for the same weighing criterion, the scalar used as weight has
no influence on the yielded number of nonlinear blocks, but
does influence the amount of minimum-size blocks resulting in
the partition. It is important to notice that it is unfeasible to
define a universal set of weights for any kind of process plants
because the structure of the algebraic equations involved in
different types of processes can be significantly different. It is
advisable that, for a given specific process, the user performs a
preliminary experimentation to adjust these weights empirically.
An example of this kind of experimental analysis is reported in
section 4.1.2 for the study of a distillation column.

Next, we have explained and illustrated how the NLD
computation is carried out for the equations and variables of
the mathematic model. First, we explain (a) quantification with
equations: for each equation, the weights corresponding to its
terms are added. To normalize the value, the total weight for a
given equation is divided by the number of terms. Second, we
have (b) quantification with variables: for each variable, the
weights corresponding to each term where that variable takes
part are added. The terms are evaluated for all of the system
equations. To normalize the value, the total amount is divided
by the total number of terms.

Example 1. Given the equation E}, a + b +cd=0, ponder
the terms.

The calculation should be made in two stages.
(a) NLD value of the equation:

The equation has # = 3 terms. The weight w; given in Table
1 is applied using the following formula:

M -
=

1

NLD(E) =

(D

Applying the formula to the equation, we obtain:
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0+22+1 _

NLD(E,) = :

1.07 2)
(b) NLD value of all of the variables involved:

Let us consider ¢, as the number of terms where the variable
v takes part across the whole system. For each variable, the
following formula then should be applied:

t,

Wi
NLD(v) = ~— 3)
v
In this case, we find the following.
Variable a:
0
NLD(a) = 1 =0 4)
Variable b:
NLD(b) = 22 _ 2.2 5)
Variable c:
1.1
NLD(c) = T =1.1 (6)
Variable d:
1
NLD(d) = 1 =1 (7

Example 2. Given the following 3 x 3 system (Figure 10)
with a, b, and c as variables and according to the weighting
criterion defined above, calculate the NLD value of the equations
and variables.

(a) NLD value of the equations:

Equation 1:
NLD(E)) = 222& = 1.07 (8)
Equation 2:
NLD(E,) = 2'42+ 1= 1.7 )
Equation 3:
NLD(E;) = %ﬂ =0 (10)

Therefore, eq 3 is the “less nonlinear” equation because it
presents the smaller NLD, and eq 2 is the “most nonlinear”
because its NLD is the greater one.

(b) NLD value of the variables:

Variable a:
a’+b+b.c=0
2
3 ibe=0
a
a+3b+5c=0

Figure 10. System of equations that represent an industrial process.

NLD(a) = w =1.53 (11)
Variable b:

NLD(b) = W =0.5 (12)
Variable c:

NLD(c) = 1+24+1+0_ 1.1 (13)

4

In a similar way, the variable b is the “least nonlinear” (NLD
= 0.5), and the variable a is the “most nonlinear” (NLD = 1.53).

3.2. Implementation of the NLD Computation Using a
Syntax Analyzer. Once the rules to compute nonlinearity are
fixed, it is mandatory to specify a calculation algorithm. A
syntax analyzer (parser) was implemented to compute the NLD.
A parser is an algorithm that looks for and recognizes text strings
with a certain pattern within a text file.

The system of equations that represents an industrial process
is placed in a text file with RTF (Rich Text Format) format,
which also contains a series of control headings and labels (tags).
To carry out the NLD computation, the parser operates in the
following stages:

In the first stage, it removes control tags and it applies a new
format to the equations terms. In this way, a new text file is
generated.

In the second stage, it scans each equation of the new file
and calculates the NLD.

Programming a parser is a complex but systematic task. For
this reason, a program called Flex 2.5%* was used for this
purpose. Flex is a fast parser generator, an automatic tool for
parser codification. Its behavior is governed by an input similar
to a program written in some compilable language. Some
patterns or regular expressions that must be recognized, and
their associated actions codified in C language, are written in a
source file. When processing the source, Flex generates the C
code associated with the parser that identifies these expressions.

3.3. Integration of the NLD to the DM. Once the NLD
weighing coefficients are all calculated, these values are
incorporated to the coarse-grain decomposition of the DM, so
that the nodes selected for the bigraph maximum turn out to be
those with the smallest NLD. In this way, an EDM that favors
the conformation of decomposition blocks with a low degree
of nonlinearity is obtained.

In Figure 11, the pseudocode for the modified algorithm
(MMB), which is employed to compute the maximum matching
considering the NLD, is reported. Additional structures were
incorporated to represent the vectors that keep NLD coefficients
for the equations (NDE) and variables (NDV). The heuristic
we introduced in the MDM search process basically consists
of giving priority to the exploration of the adjacent nodes with
low NLD over those with greater NLD.

In short, the basic sequence for the calculation of the EDM
coarse-grain decomposition is given by the execution of the
following procedures.

(1) The first is NLD_BuildFiles: it carries out the parsing of
the file that contains the system of equations. It then scans the
whole system computing the NLD coefficients that correspond
to each equation and variable, saving them in files.

(2) The second is LoadBigraph: it uses the bigraph file and
the files created in the previous step and adds the nodes to the
bigraph structure. At the same time, it orders the adjacent nodes
according to their associated NLD. For this task, it uses the



Input: R, C, N, NDE, NDV
Output: Py
Py = &. Ce = .

// Reordering of the Bigraph
nodes according to its NLD
coefficients

Reorder the row and column nodes,
from the lower element to the
greater

one according to its NLD
coefficients (NDE and NDV).

// Building an initial matching
For each node ¢ € C, following
the numbering established in the
previous step, do:

Match ¢ with an unmatched
node r, so that r € R. If there
are different possibilities, take
the one with the lowest number.

If node r does not exist,
then C = C U {c}
end-do

// Looking for augmented paths
Cow = O
Repeat
Search for augmented path Au
from ¢, only visiting those
nodes in R that have not been
visited before during that
step.
Label all nodes that are
reached as “visited”.
If an augmented path A has
been found
then Augment Py with

Au.
else Include c in Cyy
End if
C = CUN- CUN = @.
Until no augmented paths are

found in the loop.
End of Algorithm

Figure 11. Modified version of the maximum matching in a bigraph
algorithm (MMB).

gsort precompiled routine, provided by the C language. This
function makes a quick-sort ordering on an element array, on
the basis of a key field.

(3) The third is Maximum Matching: it computes a Maximum
Matching of the bigraph loaded in the second step. In compari-
son with the original version, this procedure code did not suffer
any change. From this step on, the method has the same behavior
as the original one.

4. Extended Direct Method Performance Analysis

Because the Extended Direct Method represents an evolution
of the Direct Method, we compared the performance of both
methods for three study cases, which represent industrial
processes with different levels of complexity. The study cases
represent realistic and intricate models of different dimensions.
In this way, we aim at testing the Extended Method so as to
assess the magnitude of the improvements with respect to the
original Direct Method for any scale and composition systems.
The comparison is reported by means of the following formula:

EDM, — DM
A= 0 0

DM, 100 (14)
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Figure 12. Distillation column scheme.

where A is a percentage that quantifies the difference between
both methods. DM, and EDM, represent output variables of
interest, to be made precise below, obtained with the original
and the Extended Direct Method, respectively.

In particular, for the first study case, we presented a
comparative analysis of the result of employing different sets
of weights to compute the NLD of the mathematical terms, to
substantiate the choice of the values we chose in this Article
(Table 1). In turn, in this case we analyzed the impact that the
NLD reduction has on the redundancy analysis process. In this
way, we were able to quantify the improvements in the DSS
global performance due to the incorporation of the Extended
Direct Method.

4.1. Case I: Distillation Column. 4.1.1. Description of
the Industrial Process. The first example corresponds to the
section of an ammonia synthesis plant where ammonia is
purified by distillation. A distillation column with two trays is
used to separate a stream composed by ammonia and water,
which enters at the first tray. A total condenser is used to recover
the ammonia product from the top of the column (99.5% of
purity), and the bottom product is over 99% water. A column
scheme is shown in Figure 12.

The steady-state mathematical model of this section is made
up of 104 nonlinear algebraic equations with an initial sensor
configuration set with 25 measurements and 85 unmeasured
variables.

4.1.2. Experimental Assessment of the Nonlinearity
Weights. Various tests were done to define which heuristics
should be employed with the Extended Direct Method. These
tests can be grouped under three different cases. Because of
the complexity and long time required to run and analyze each
of the industrial processes, the complete study was carried out
just for this column distillation process. Each of the cases
presented in Table 2 follows a different general weighting
criterion, to be able to analyze the behavior of the decomposition
algorithm for diverse scenarios. In turn, for each of the three
cases, we changed the scalars used to carry out the computation
of the nonlinearity degree, always maintaining the global
criterion individually corresponding to the case. In this way,
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Table 2. Results Obtained for the Distillation Column Model with
EDM for Different Sets of Weights

Table 3. DM and EDM Observability Results Obtained for the
Distillation Column Model

parameters

nonlinear

nonlinear 1 x 1
linear bilinear 1V 2V 3V 4V 5+ V blocks blocks

DM 0 0 0 0 0 0 0 4 48
case A 4 0 2 22 24 26 28 4 48
4 3 2 22 24 26 28 4 48
6 3 1.8 16 14 12 0 4 50
case B 2 3 1.8 16 14 12 0 3 55
3 5 1.8 16 14 12 0 3 55
6 7 1.8 16 14 12 0 3 56
case C 0 1 7 72 74 7.6 1.8 2 56
0 1 2 3 32 34 36 2 58
0 1 22 24 26 28 3 2 58

we were also able to analyze the influence of adopting different
scalar values, but following the same general weighting criterion.

In the first case (case A), we completely inverted the
originally planned logic, then giving the biggest penalization
(weight) to the linear terms, followed by the bilinear terms, and,
finally, assigning the lowest weight to nonlinear terms. This
penalization assignment, as we expected, led us to the decom-
position with the biggest number of nonlinear blocks and, in
turn, the lowest number of 1 x 1 blocks. As expected, this
outcome reasonably constitutes the worst result that we have
obtained. This is a logical result because deep inside the
algorithm (DM) we are minimizing a function composed by
the various weights, with the purpose of representing the degree
of nonlinearity. If we assign the highest value to the linear terms,
it is obvious that we would not get the expected result. If in
turn, we were maximizing the function, then assigning the
highest value to linear blocks should be the case.

Second, we assigned the highest penalization to the bilinear
subsystems over the linear ones (case B). We kept, as in case
A, the lowest weights for nonlinear terms, continuing with the
preference for these over the rest. The fact of assigning a lower
penalization to the linear terms with respect to the bilinear ones
led to an improvement in the quantity of nonlinear blocks we
obtained, as well as in the minimum-size subsystems. It is clear
that by a continual favoring of the nonlinear terms above the
rest, we are unable to obtain the best possible partition.

Finally, we made the tests by assigning the weights with the
criterion we proposed in this Article (case C), that is, giving
the highest weight to the nonlinear terms, followed by bilinear
ones, and finally assigning the lowest penalization to the linear
ones. In this case, taking into account the number of nonlinear
blocks we obtained, the resulting partition was the best obtained.
In turn, a variation in the scalars yielded different decomposi-
tions, which only differed in the number of 1 x 1 subsystems,
maintaining the same amount of nonlinear blocks. From this
analysis, it emerges as a conclusion that it is imperative to keep
the precedence order among the different kinds of terms (linear,
bilinear, and nonlinear) established in case C, no matter which
specific values have been chosen for the weight definition.

Next, we have incorporated a table that summarizes the results
we obtained for each of the cases. In the first row of the table,
the original Direct Method decomposition is included. It then
can be noticed how, as we descend to lower rows in the table
(i.e., analyzing from case A to C), the number of nonlinear
blocks decreases, whereas the number of 1 x 1 blocks increases.

It is essential to stress the influence that the selected scalars
have on the obtained decomposition, for the same weighting
criterion. By analyzing Table 2, we can see that, for the same
weighing criterion, the scalar used as weight has no influence

amount of DM EDM A
observable variables 63 63 0
unobservable variables 22 22 0
1 x 1 subsystems 48 58 +21%
linear subsystems 47 57 +21%
nonlinear subsystems 4 2 —50%

on the yielded number of nonlinear blocks, but does influence
the amount of minimum-size blocks resulting in the partition.
If we analyze each case of the table individually, it can be
noticed how the number of nonlinear blocks is kept constant,
whereas the quantity of minimum-size subsystems changes,
depending on the set of values chosen to carry out the
computation of the nonlinearity degree.

It is important to notice that in all cases, and for any set of
values, we obtained the highest possible observability degree,
the set of observable variables being the same as the one we
had found by applying the original Direct Method. Besides, the
running times required by the EDM and DM are very similar.

4.1.3. Observability Analysis Using DM and EDM. Next,
we included a table with the observability results (Table 3)
obtained by the application of both the DM and the EDM, for
the mathematical model of the distillation column.

Both methods are able to determine the same number of
observable variables, but a remarkable improvement can be
appreciated in the EDM application, because an increase of 21%
both in the production of low dimension subsystems (1 x 1)
and in the generation of linear subsystems is achieved. The most
relevant result is the 50% reduction in the quantity of nonlinear
subsystems.

4.1.4. Redundancy Analysis Using DM and EDM. The
EDM generates a rearrangement of the system that simplifies
the task of the algorithm for redundancy analysis (RA) and
improves the quality of its output. To show this, we need to
explain briefly the main ideas behind the RA algorithm. To
analyze if a certain measured variable m is redundant, the RA
algorithm takes each redundant equation and computes symboli-
cally the derivative of its left-hand side with respect to m. This
derivative must also take into account the indirect influence of
m in the expression through observable variables, whose values
might depend on that measurement. The algorithm uses the chain
rule to compute this indirect influence, and this involves solving
a sequence of linear systems whose coefficient matrices are the
matrices of symbolic derivatives or Jacobian of the subsystems
produced by the observability algorithm. Also, the subsequent
steps in the RA algorithm require computing additional symbolic
derivatives using the chain rule.

The crucial fact is that nonlinear subsystems generally have
a Jacobian whose inverse has a complicated expression. Having
such a subsystem at the top of the decomposition has an adverse
effect on the efficiency of the redundancy analysis from that
point onward. The EDM favors linear blocks, so the nonlinear
subsystems tend to appear at the bottom and their impact is
minimized. This can greatly improve the performance of the
redundancy analysis. Also, if the symbolic expressions are so
complex that the RA cannot decide if the measurement m is
redundant (Red) or nonredundant (N-Red) after a certain time
of analysis or number of trials, then m is labeled uncategorized
(Uncat). So, obtaining simpler expressions generally reduces
the number of uncategorized measurements, increasing the level
of knowledge of the plant provided by the RA.

In addition, preferring equations with a low nonlinearity
degree for building subsystems, as in the EDM, tends to produce



Table 4. For the Decompositions Obtained by the DM and the
EDM, Results of the Redundancy Analysis for the Measured
Variables®

categorization

variable DM EDM

F(20) Uncat Red
X(22,20) Uncat Red

P(21) Red Red

T(20) Uncat Uncat

P(23) Red Red

F(22) Uncat Red

T(22) N-Red N-Red
P(HX) N-Red N-Red
P(21A) N-Red N-Red
T(21A) N-Red N-Red
T(21C) Uncat Red

F(14) Uncat Uncat

P(13) N-Red N-Red

T(13) N-Red N-Red
X(22,13) N-Red N-Red
P(14) N-Red N-Red

T(14) N-Red N-Red

T(15) Uncat Uncat

P(15) N-Red N-Red
7(19C) N-Red N-Red

P(18) N-Red N-Red

F(16) Uncat Red
X(20,16) Red Red
X(22,16) Red Red
P(REB) Uncat Red

total uncat. var. 9 (36%) 3 (12%)
total cat. var. 16 (64%) 22 (88%)
total time 7001 S 135 S

“ Variables P(A), T(A), and F(A) represent the pressure, temperature,
and molar flow of stream A, respectively. The variable X(B,A)
represents the composition of component B in stream A.

a partition where there are more linear and bilinear assigned
equations and more nonlinear redundant equations. This is also
beneficial for the RA, because having a nonlinear equation as
redundant is less harmful than having it as part of a subsystem.

Table 4 summarizes the results for the redundancy analysis.
It was carried out for the block decompositions obtained by
the application of both the original Direct Method and the
Extended Direct Method.

In the first column of the table, a list of the measured variables
for the study case of the distillation column is included. In the
second column, the categorization that the redundancy software
assigned to each variable is shown. As explained above, this
categorization is divided into three kinds of variables: redundant
(Red), non-redundant (N-Red), and uncategorized (Uncat). In
turn, the second column is also split, where it can be seen how
the obtained categorization varies depending on the algorithm
chosen for the observability analysis. Finally, in the last three
rows of the table, global statistics that indicate the total level
of knowledge are shown. Also included is the execution time
required for the decompositions obtained by applying each
algorithm.

Exhibited results show that the application of the EDM leads
to a marked improvement in the reached level of knowledge
for the measured variables. This can be noticed in the number
of measured variables that were uncategorized by applying both
observability algorithms. In that sense, for the DM decomposi-
tion only a 64% of knowledge level can be reached, against
the 88% obtained by applying the EDM.

Another significant factor that must be considered is the
execution time required by the redundancy algorithm to perform
the analysis of both decompositions. As shown in the table, the
required time to complete the analysis from the DM partition
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(7001 s) was significantly greater than the amount of time
required for the treatment of the decomposition found by the
EDM (135 s). This significant difference between both execu-
tions is directly related to the resulting number of uncategorized
variables for each case. Given a measured variable, if the
redundancy algorithm reaches a maximum limit of iterations
without achieving a classification, it assigns to that variable the
Uncat label. It then continues the analysis with a new variable.
Therefore, the time used for the frustrated analysis of the Uncat
variable significantly impacts on the total time required for the
algorithmic execution. Consequently, by tripling the number of
Uncat variables from one case to another, the algorithm
consumes much more time.

It is important to stress that the classifications obtained for
both cases are consistent. In other words, whenever a variable
was categorized in both analyses, the category was always the
same (Red or N-Red). This feature reflects the more general
fact that the category of a measured variable is independent of
the observability method applied previous to the redundancy
analysis.'' The only difference in applying different methods
can be noticed in the number of variables that could be
categorized.

4.1.5. Summary of the EDM Impact on Instrumenta-
tion Global Analysis. By analyzing the results, we can see the
importance and direct impact that the changes we implemented
to the observability analysis algorithm have on the global DSS
performance. The main improvements can be summarized by
the following items.

The first is increased knowledge of the process redundancy
degree: At the end of the instrumentation design task, the user
has the possibility of having a higher knowledge level of the
redundancy that a specific set of measurements gives to the
process under study. This is essential for making decisions
related to the removal or incorporation of new sensors. The
sensors removal involves taking away redundant measurements
that could be unnecessary, thus reducing the monitoring costs
of the plant. However, sensors addition involves the measure-
ment of new variables, to achieve critical variables of the process
becoming redundant when they were not before.

Next is the reduction of required time in the global process
of instrumentation design: As explained in section 2, the whole
process of instrumentation design constitutes an iterative task
that is comprised of several steps. This forces the user to execute
the different steps many times, requiring much time for
execution and analysis to achieve a satisfactory sensor config-
uration. The redundancy analysis, due to the time and compu-
tational effort required to be carried out, constitutes one of the
bottlenecks of the instrumentation design. The application of
the observability algorithm we proposed in this Article lets the
user achieve a significant reduction in the time required for the
execution of the redundancy analysis of a process plant.

There is also a reduction in the computational effort required
for the data reconciliation process: Because the instrumentation-
design task does not involve the mathematical resolution of
equation systems, one can refer to it as a purely structural
methodology. However, a numerical task that constitutes an
essential step for the process monitoring is the data reconcili-
ation. This involves comparing data obtained from field
measurements with values that are estimated by the resolution
of the model equations, to detect possible failures in the
measurement instruments. This task requires the resolution of
only the equation subsystems that are obtained by the application
of the observability algorithm, without taking into account the
equations that were not included in the subsystems (redundant
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Figure 13. Haber—Bosh ammonia synthesis plant scheme.

or not assigned equations). For this reason, a reduction in the
nonlinearity degree in the obtained decomposition involves
solving a larger number of linear subsystems. These subsystems
can be computed by applying some direct-resolution method,
thus decreasing the computational requirements to perform the
data-reconciliation task.

Finally, we have simplification of the forbidden-block analysis
process: In Figure 2, we included a scheme that describes the
DM architecture. In that figure, we can see that the third step
of the algorithm consists of an admission test of the blocks that
are generated in the decomposition. As presented in Ponzoni et
al.,'? in this step the algorithm carried out an automatic checking
of the subsystems to ensure that it does not contain any of the
forbidden blocks previously specified by the user. These
subsystems are often constituted by linear-dependent equations,
for example, a block conformed by component mass balances
of a stream and the global mass balance. This kind of analysis
is simplified by the application of the EDM, because the
decomposition has a larger number of linear and 1 x 1 blocks,
which facilitates the detection of singular subsystems.

4.2. Case II: Haber—Bosch Ammonia Synthesis Plant.
4.2.1. Description of the Industrial Process. The second
example corresponds to a complete Haber—Bosch ammonia
synthesis plant. This plant was designed by Bike** to produce
1500 ton/day of ammonia at 240 and 450 kPa. A minimum
purity of 99.5% can be obtained with this process by means of
the Haber—Bosch process. The hydrogen and nitrogen feed-
stocks are provided by a coal gasification facility, and also
contain inert gases, like argon and methane.

The kinetics of the ammonia synthesis reaction over a double-
promoted iron catalyst can be described on the basis of the
following rate equation:

N, + 3H, < 2NH,

The reactor product enters an absorption column to remove
the ammonia with water. The liquid output the column is fed
to a distillation column to obtain pure ammonia as top product.
There is also a recovery section, composed of membranes, where
the hydrogen is recovered and recycled to the feed. A complete
scheme of the plant is shown in Figure 13.

The mathematical model chosen to represent the plant
consisted of 557 equations and 587 variables. The analysis was

WATER
MIX5
ABS AMMONIA
<]
v
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Table 5. DM and EDM Observability Results Obtained for the
Ammonia Synthesis Plant Model

amount of DM EDM A
observable variables 216 216 0
unobservable variables 297 297 0
1 x 1 subsystems 144 164 +14%
linear subsystems 143 164 +15%
nonlinear subsystems 8 4 —50%

started from a basic configuration with 74 measured variables,
with the rest being initially defined as unmeasured.

4.2.2. Observability Analysis with DM and EDM. Next,
we included a table with the observability results (Table 5)
obtained by the application of both the DM and the EDM, for
the mathematical model of the ammonia synthesis plant.

As in case I, both methods assign the same number of
observable variables. The results obtained are similar in quality
to the first example. Here, a 14% increment in the quantity of
1 x 1 subsystems and a 15% increment in the number of linear
subsystems are achieved. Like in the first example, a reduction
of 50% is also obtained in the number of nonlinear subsystems.

4.3. Case III: Ethane Plant. 4.3.1. Description of the
Industrial Process. The last case under study corresponds to
an existing ethane plant. The process can be divided into three
main sections (Figure 14): gas compression and dehydratation,
cryogenic separation, and fractionating. In the first place, the
inlet gas is filtered and compressed in three parallel compressors.
To avoid the formation of ice and hydrates, the gas is air cooled
and dehydrated. Once this process is finished, the feed is divided
into two streams, and each of these streams is sent to a cryogenic
train (Figure 15), which is basically composed of an air cooler,
heat exchangers, Joule—Thompson valves, and a demethanizer
column. The demethanizer is a low-temperature distillation
column where the separation between methane and ethane is
made. The bottom product of the column is sent to a conven-
tional separation process where pure ethane, propane, butanes,
and natural gasoline can be obtained. The residual gas (top
product) is compressed and delivered as sales gas.

The rigorous mathematical model employed for this analysis
contained 1830 equations with 330 measurements and 1602
unmeasured variables.

4.3.2. Observability Analysis with DM and EDM. Next,
we included a table with the observability results (Table 6)
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Figure 14. Ethane plant simplified scheme.

S2

DEMT

E) HX1

S1

HX2

Figure 15. Cryogenic sector of the ethane plant.

Table 6. DM and EDM Observability Results Obtained for the
Ethane Plant Model

amount of DM EDM A
observable variables 929 929 0
unobservable variables 673 673 0
1 x 1 subsystems 767 777 +1.3%
linear subsystems 758 776 +2.3%
nonlinear subsystems 26 20 —23%

obtained by the application of both the DM and the EDM, for
the mathematical model of the ethane plant.

In this case, an increase of 1.3% in the production of low
dimension subsystems (1 x 1) and 2.3% in the generation of
linear subsystems is reached. Meanwhile, the quantity of
nonlinear subsystems is reduced by 23%.

If an integral analysis of the three cases is made, a 12%
average in the production of both 1 x 1 dimension subsystems

and linear subsystems is obtained. This implies an increase in
the subsequent speed of resolution for these systems, because
the calculation is reduced to a simple arithmetical operation.
On the other hand, and even more important, our hypothesis is
verified because a 43% average reduction in nonlinear sub-
systems generation was achieved.

5. Conclusions

In this work, we have proposed an improvement to the
observability analysis algorithm known as Direct Method (DM).
This new variant, called Extended Direct Method (EDM),
consists of the implementation of a module that quantifies
the nonlinearity inherent in a system of equations. This mod-
ule guides the traditional DM toward a decomposition of the
mathematical model into the possible subsystems with the
smallest degree of nonlinearity.

The new algorithm was tested for different industrial case
studies. The results indicate that in all cases, the EDM was able
to yield an ordering that can reduce the nonlinearity of the
subsystems obtained through the observability analysis proce-
dure. At the same time, it can successfully increase the generated
quantity of minimum size subsystems.

As it was explained above, one of the instrumentation design
steps is the redundancy analysis, which is based on the symbolic
derivation of functions. It was verified in section 4.1.4 that, as
expected, the implemented changes in the observability algo-
rithm produced improvements in the redundancy analysis
process. In the first place, we achieved a higher knowledge level
of the process redundancy than the one obtained by applying
the original DM. This is essential for making decisions related
to the addition or removal of sensors in the plant. Second, we
achieved a reduction in the time required to perform the global
process of instrumentation design, which is carried out by using
the DSS. This reduction is possible because the application of
the EDM allows one to achieve a significant reduction in the
necessary time to perform the redundancy analysis.

There is also another kind of analysis in process plants that
could be favored with the use of the EDM. Such is the case of
the data reconciliation task. This task, which is carried out after
the instrumentation design, involves comparing data obtained
by field measurements with values estimated through the model
equations, to detect possible failures in measurement instru-
mentation. To perform this task, it is necessary to carry out the
resolution of just the equation subsystems that are obtained by
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the application of the observability algorithm, without taking
into account the equations that were not included in the
subsystems (redundant or not assigned equations). In this way,
a reduction in the nonlinearity degree of the obtained decom-
position involves solving a larger number of linear subsystems,
which can be solved by some method of direct resolution, thus
reducing the computational requirements to perform the rec-
onciliation task.

Another study that may be significantly favored with the EDM
partitioning strategy is the simulation of process plants. This
task normally requires the numerical resolution of the math-
ematical model that represents the process. For complex systems,
the resolution involves a great computational effort. In that
sense, the EDM could be employed as a partitioning step of
the mathematical model, previous to the calculations. In this
way, partitioning into subsystems would reduce the computa-
tional cost of its numerical resolution. This is feasible because
the user has the possibility of applying a direct resolution method
for linear subsystems and an iterative one for nonlinear
subsystems, taking advantage in this way of the larger number
of linear subsystems obtained with the EDM.

In this way, we can appreciate that the favorable impact of
incorporating the treatment of the nonlinearity degree to the
DM can result in benefits that go beyond the specific task of
instrumentation design. This fact broadens the application rank
of this system-decomposition methodology.
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Appendix

Nomenclature.

ABS = absorber

AC= air cooler

C = bigraph node set corresponding to columns of the matrix N
COND = condenser

CP = compressor

DCOL = distillation column
DEB = debutanizer

DEE = deethanizer

DEHYD = dehydratation

DEM = data entry module
DEMT = demethanizer

DIV = divider

DM = Direct Method

DRY = dryer

DSS = Decision Support System
EDM = Extended Direct Method
F(A) = molar flow of stream A
FILT = filtering

HC = horizontal-block column set
HR = horizontal-block row set
HX = heat exchanger

MGM = model generator module

MIX = mixer

MMB = maximum matching in a bigraph

N = occurrence matrix

NLD = nonlinearity degree

NDV = nonlinearity degree for variables

OA = observability analysis

P(A) = pressure of stream A

Py = maximum matching

R = bigraph node set corresponding to rows of the matrix N
RA = redundancy analysis

RAM = redundancy analysis module

REAC = reactor

REB = reboiler

SC = square-block column set

SEP = separator

SR = square-block row set

T(A) = temperature of stream A

t = number of terms of an equation

t, = number of terms where variable v takes part
TE = turbo expander

V = valve

v = variable

VC = vertical-block column set

VR = vertical-block row set

w = terms punctuation

NDE = nonlinearity degree for equations
X(B,A) = molar fraction of component B in stream A
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