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Abstract Monitoring carnitine and acetylcarnitine levels in
biological fluids is a powerful tool for diagnostic studies.
Research has recently shown that the analysis of carnitine
and related compounds in clinical samples can be accom-
plished by different analytical approaches. Because of the
polar and ionic nature of the analytes and matrix complexity,
accurate quantitation is a highly challenging task. Thus, sam-
ple processing factors, preparation/cleanup procedures, and
chromatographic/ionization/detection parameters were evalu-
ated. On the basis of the results obtained, a rapid, selective,
sensitive method based on hydrophilic interaction liquid chro-
matography–tandem mass spectrometry for the analysis of
carnitine and acetylcarnitine in serum and urine samples is
proposed. The matrix effect was assessed. The proposed ap-
proach was validated, the limits of detection were in the
nanomolar range, and carnitine and acetylcarnitine levels were
found within the micromolar range in both types of sample.
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Introduction

Carnitine is an endogenous metabolite found in most mam-
mals. It is synthesized in tissues such as brain, liver, and
kidney from the amino acids lysine and methionine [1, 2].
Carnitine is involved in decreasing the formation of free
radicals in various tissues, the maintenance of the cellular
concentration of free coenzyme A [3], the elimination of
potentially toxic compounds, and transport of long-chain
fatty acids [3–8]. During the transfer of long-chain fatty acids
from the cytosol to the mitochondrial or peroxisomal matrix
for β-oxidation of fatty acids, various acylcarnitines of dif-
ferent length are generated, with acetylcarnitine being the
most abundant among these acyl derivatives. Skeletal muscle
is the major reservoir of carnitine (approximately 95 %) [9].
However, only a quarter of this reserve comes from endog-
enous synthesis, and the rest comes from the diet [9]. Carni-
tine metabolism is closely linked to a variety of metabolic
problems, which lead to a redistribution of carnitine and the
different acylcarnitines [10–12]. Any increase or decrease in
the carnitine and acylcarnitine contents could be mirrored by
a simultaneous increase or decrease in their serum and urine
levels. Thus, determination of carnitine and acetylcarnitine
in biological fluids is a powerful means for the diagnosis and
management of these disorders [13–19].

However, slight, but metabolically important, variations
can only be detected by cutting-edge technology instruments
and analytical methods. Mass spectrometry (MS) is a pow-
erful tool for the analysis of carnitine and acetylcarnitine
with electrospray ionization (ESI) as the ionization source,
since carnitine and acylcarnitines contain a stably charged
quaternary ammonium group and thus exhibit high ioniza-
tion efficiency [20]. In addition, tandem MS (MS/MS) is
often used as a detection technique to improve the detec-
tion selectivity and sensitivity of these analytes in complex
samples.
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The pattern of urinary acylcarnitines has already been
determined by nonchromatographic approaches coupled
with MS [16, 18]; however, in these methods not enough
analytical tools have been used to confirm the identity of the
compounds under study. In this sense, for robust identifica-
tion of analytes at low concentrations in complex matrices,
some requirements have been established: retention times
and accurate masses or, retention times and at least two
specific transitions should be used [21]. Nevertheless, in
both works, a single-quadrupole instrument without applica-
tion of any chromatographic preseparation was used. In
addition, although a matrix effect was observed, no signifi-
cant details about the study of the matrix effect were given.

To deal with the complexity of biological samples, the
coupling of MS and chromatographic separations is required
in most cases to obtain identification accuracy, high separa-
tion capabilities, high sensitivity, and high selectivity [22,
23].

Liquid chromatography (LC) remains the method of choice
for the quantitative determination of several compounds in
different matrices, including carnitine and acylcarnitines [23,
24]. Ultra-high-pressure LC using smaller particles (less than
2.0 μm) and higher linear velocities is able to achieve high-
efficiency separations in faster analysis times compared with
conventional high-pressure LC separations [25, 26]. In addi-
tion, polar stationary phases such as in hydrophilic interaction
LC (HILIC) are better suited to retain diverse polar analytes
and offer improved sensitivity over reversed-phase (RP) chro-
matography [27, 28]. In HILIC, analyte retention is believed
to be caused by partitioning of the analyte between a water-
enriched layer of stagnant eluent on a hydrophilic stationary
phase and an eluent with more hydrophobic properties, with
the main components usually being 5–40 % water in acetoni-
trile. This high acetonitrile content gives HILIC two additional
advantages: high sensitivity when coupled with ESI-MS [28]
and faster separations compared with standard RP eluents.
The elution order in HILIC is more or less the opposite of
that seen in RP separations [28, 29]. Thus, HILIC can be used
to optimize the retention of very polar compounds with poor
retention in RP chromatography [30, 31]. In fact, when carni-
tine and/or several of its acyl derivatives were studied by RP
chromatography, the most polar analytes were eluted almost
with the solvent front, showing in general very poor resolution
performance [32, 33].

When different chromatographic separation strategies are
applied, a sample preparation procedure is often mandatory
owing to the complexity and, sometimes, the low analyte
concentrations in biological matrices. For this reason, auto-
mated off-line procedures are generally preferred because they
do not depend on the chromatographic separation, and a great
number of samples can be treated rapidly. In the particular
case of blood samples, protein precipitation approaches have
been mainly used for sample treatment prior to analysis [25].

To the best of our knowledge, a few methods combining
polar chromatographic strategies and MS have been reported
for the analysis of carnitine and acylcarnitines in different
samples [24, 27, 34, 35]. In 1998, Tallarico et al. [34] were
pioneers in the use of a polar functionalized column for the
separation of carnitine, acetylcarnitine, propionylcarnitine,
and their deuterated analogues. The method applied was
suitable for the analysis of the compounds mentioned in
plasma samples, but no information regarding optimization
of the chromatographic approach was given. Later, Hirche
et al. [35] proposed a normal-phase separation–MS method
for monitoring carnitine, its short acyl esters, and some other
metabolic precursors in plasma and pig tissues. Both of these
works made significant contributions to the topic under
study; however, important analytical aspects related to chro-
matographic retention/MS performance have been greatly
improved, especially in the work presented here. Recently,
Miller et al. [27] developed a method based on HILIC and
MS/MS to identify fatty acid oxidation, amino acid metabo-
lism, and organic acid disorders. Despite the satisfactory
analytical features obtained, only whole blood was analyzed
in this study. On the other hand, Sowell et al. [24] applied
HILIC and MS to the analysis of only carnitine in plasma
samples.

The present study is based on the separation/determination
of carnitine and acetylcarnitine in biological fluids such as
serum and urine by HILIC coupled with MS/MS. The method
incorporated a deproteinization step for serum and a careful
assessment of the matrix effects for both types of samples.
Both analytes were identified in a single run with optimized
ESI and multiple reaction monitoring (MRM) conditions.

Experimental

Chemicals and reagents

L-Carnitine inner salt (98 %) and O-acetyl-L-carnitine hydro-
chloride were purchased from Sigma-Aldrich (St. Louis,
USA). Water, methanol, and acetonitrile of Optima® LC–
MS grade were purchased from Fisher Scientific (Fair Lawn,
NJ, USA). Formic acid (98 %) was obtained from Fisher
Scientific (Loughborough, UK). Acetic acid (glacial, trace
metal grade), high-pressure LC grade ammonium acetate,
and certified ammonium formate were obtained from Fisher
Chemical (Fisher Scientific, Pittsburgh, PA, USA). Ultrapure
water (18 MW cm) was obtained with an EASYpure RF
purification system (Barnstead International, Dubuque, IA,
USA).

Methanolic standard solutions of carnitine and acetylcar-
nitine were prepared daily by appropriate dilutions of a
1 mg L-1 aqueous stock solution. Quantification was achieved
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by preparing spiked serum and urine samples with proper
amounts of the analytes. The solutions were maintained at 4 °C.

Mobile phase preparation

Themobile phase for HILICwas prepared by first dissolving a
known amount of ammonium acetate or ammonium formate
in water (stock solution), and then mixing the salt solution
with the desired volume of acetonitrile. The salt concentration
in the text refers to the final concentration in the mobile phase.
Mobile phases A and B were also prepared by adding 0.1 %
(v/v) formic acid to both water and acetonitrile.

Sample collection and preparation

After written informed consent had been obtained, blood
(serum) and urine samples were collected from healthy fe-
male and male adults, ranging from 40 to 60 years old. The
whole procedure was made anonymous, and the study was
approved by the Local Ethics Committee. All participants
were informed about the purposes and scope of the study,
and signed appropriate consent forms. Data assessment was
complete for all participants.

Serum samples

Venous blood samples (5 mL) were obtained from the people
studied after a 12-h overnight fast. Sterile disposable plastic
syringes were used. Serum from blood left to clot was
separated by centrifugation and immediately stored at
−20 °C. Serum samples free of hemolysis were used. For
protein precipitation, a 3:1 solvent mixture of acetonitrile
and methanol was prepared. Firstly, the serum was thawed
and a 25-μL aliquot was pipetted into 500 μL of the aceto-
nitrile–methanol solvent mixture. Subsequently, the mixture
was frozen for 18 h. The mixture was then thawed again and
centrifuged for 15 min at 12,000 rpm. The supernatant was
retaken and the pellets were discarded; there were two more
successive centrifugations. Finally, the resulting supernatant
was evaporated with a stream of gaseous nitrogen. Samples
were reconstituted with 300 μL of methanol and analyzed
immediately.

Urine samples

Urine samples were collected in sterile specimen collection
bottles. The urine samples were centrifuged for 10 min at
12,000 rpm. A 50-μL aliquot of the supernatant was diluted
with ultrapure water up to 1-mL final volume, filtered
through a 0.22-μm syringe filter (Osmonics®), and stored
in an amber vial suitable for LC–MS/MS analysis.

Ultra-high-pressure LC instrumentation and conditions

An ACQUITY® ultra-high-performance LC system (Waters,
Milford, MA, USA) equipped with autosampler injection
and pump systems (Waters, Milford, MA, USA) was used.
The autosampler vial tray was maintained at 15 °C. The
needle was washed with proper mixtures of acetonitrile and
water. The separation was performed by injecting a 10-μL
sample onto an ACQUITY UPLC® BEH HILIC analytical
column (Waters, Milford, MA, USA) of 2.1-mm internal
diameter, 50-mm length, and 1.7-μm particle size. The bina-
ry mobile phases consisted of water with 7.5 mM ammonium
formate (solvent A) and acetonitrile with 7.5 mM ammoni-
um formate (solvent B) delivered at 0.25 mL min−1. The
HILIC gradient was started at an initial composition of 10 %
solvent A and 90 % solvent B, followed by a 3-min linear
gradient to 30 % solvent A, held for 0.2 min. Return to the
initial conditions was accomplished by a 0.2-min gradient to
90 % solvent A, held for 1.8 min. Thus, the total chromato-
graphic run time was 5.0 min. The column was maintained at
30 °C. Under these conditions, no sample contamination or
sample-to-sample carryover was observed.

MS instrumentation and MS/MS conditions

MS analyses were performed with a Micromass Technolo-
gies Quattro Premier™ XE triple-quadrupole mass spec-
trometer with a ZSpray™ ESI source (Waters, Milford,
MA, USA). The source was operated in the positive ESI
mode at 345 °C with nitrogen as the nebulizer, and the source
temperature was kept at 150 °C. The capillary voltage was
maintained at 3.75 kV and the extractor voltage was set at
5.0 V. Ultrapure nitrogen was used as the desolvation gas at a
flow rate of 800 L h−1. Argon was used as the collision gas at
a flow rate of 0.18 mL min−1, achieving an analyzer pressure
of approximately 3×10-5 Torr. After optimization, detection
was performed in MRM mode of selected ions at the first
quadrupole (Q1) and third quadrupole (Q3). To choose the
fragmentation patterns of m/z (Q1)→m/z (Q3) for the analyte
in MRMmode, direct infusions (via a syringe pump) into the
MS system of carnitine and acetylcarnitine standard solu-
tions in methanol were performed, and the product ion scan
mass spectra were recorded. Quantification of carnitine and
acetylcarnitine was done by measuring the area under the
specific peak using MassLynx (Waters, Milford, MA, USA).

Evaluation of the matrix effect

One downside of ESI-MS/MS ionization/detection is that the
ionization process is susceptible to matrix signal suppression
or enhancement [36–38]. The LC–MS response obtained
from a standard can differ significantly from that obtained
from matrix samples. In the work presented here, after
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selecting the proper chromatographic approach for each
sample, we assessed the effect of serum and urine matrices
by comparing the signals of carnitine and acetylcarnitine in
pure solvent (methanol) with the signals in the sample ma-
trices. The calibration curves obtained for carnitine and
acylcarnitine in spiked biological fluids and in the pure
solvent were created. The percentage of the quotient of the
slopes (b) in the spiked and solvent samples was used as an
indicator of the extent of the matrix effect, which was calcu-
lated as 100−(bspiked/bsolvent×100).

Assay validation

Linearity

The calibration plots were constructed under optimal exper-
imental conditions for each type of sample (reconstituted
serum and diluted urine samples). Six points of the calibra-
tion curve were determined (ten technical replicates at each
concentration). The calibration equations were calculated by
the least-squares linear regression method. Thus, linearity
was evaluated from values close to the limits of detection up
to approximately 1,000 μg L-1 for carnitine and 500 μg L-1

for acetylcarnitine.
To estimate the trueness, intraday repeatability, and

interday reproducibility, spiked serum and urine samples were
analyzed. For serum samples, five blank samples were mea-
sured and ten replicate measurements at carnitine concentra-
tions of 0, 10, 25, 50, 75, and 100 μg L-1 and acetylcarnitine
concentrations of 0, 5, 10, 30, 50, and 75 μg L-1 were
performed.

Statistical method

Analysis of variance was used to determine significant dif-
ferences among data. Each statistical analysis was done
using the software program Statgraphics Centurion XV (ver-
sion 15.2.06), and normality of the data was tested before
applying the analysis of variance approach.

Results and discussion

Sample preparation optimization

Although the technology related to chromatographic separa-
tions andMS techniques is advancing, sample cleanup is still
one of the most important bottlenecks of the analytical pro-
cess. Effective sample preparation is essential for achieving
good analytical results because matrix-related compounds
may be co-extracted and interfere in the analysis.

The selection of the sample cleanup conditions in the
analysis of carnitine and acetylcarnitine in biological material

is a difficult task because of the nature of both analytes. For
this reason, optimization of the protein precipitation step
paying special attention to the recovery of the analytes was
conducted as detailed in “Serum samples.” The accuracy of
the proposed method was evaluated by recovery experiments
involving spiking diluted sample solutions. Recoveries higher
than 95 % reveal sufficient accuracy. As already mentioned,
urine samples were diluted and centrifuged only prior to their
analysis. The recovery studies demonstrated recoveries above
95 %.

Chromatographic procedure

For polar analytes, HILIC separation has proven to provide
excellent efficiency and peak shape [27, 31]. In HILIC, a
mobile phase containing a high concentration of organic
(less polar) solvent and a low concentration of aqueous
(polar) solvent is used. The aqueous portion constitutes a
strong solvent and hence the elution of compounds occurs in
the order of increasing hydrophilicity [39]. In this assay, a
HILIC column was selected for the method development
because it was suitable for the separation of polar and ionic
compounds such as carnitine and acetylcarnitine, which con-
tain quaternary amine functional groups.

As illustrated by Ruta et al. [40], when compounds are
analyzed byHILIC, the buffer is an essential component in the
mobile phase since peak shapes are affected if only weak acids
are used as mobile phase additives. It is therefore important to
use a buffer compatible with the acetonitrile-rich mobile
phase. Three different types of mobile phase buffers were
compared: formic acid and different concentrations of ammo-
nium acetate and ammonium formate. The addition of formic
acid failed to produce satisfactory separation of carnitine and
acetylcarnitine. The addition of ammonium acetate allowed
the separation of both analytes, but the performance was
inferior compared with the use of ammonium formate. The
latter succeeded in the separation of the analytes at all con-
centrations tested (2.5 mM, 5.0 mM, 7.5 mM, and 10.0 mM),
but 7.5 mM was selected because the addition of this concen-
tration to the mobile phase resulted in more reproducible
retention times with repeated injections. The HILIC column
used for this assay showed good peak shape and retention time
stability throughout the analysis.

The effect of the mobile phase flow rate on the
separation/retention of carnitine and acetylcarnitine was eval-
uated using van Deemter plots. A 10-μL standard sample
injection volume was loaded onto the system at various flow
rates, from 0.1 to 0.5 mL min-1, with isocratic separation. A
flow rate of 0.25 mL min−1 gave the best results in terms of
chromatographic conditions and ESI efficiency. Figure 1 de-
picts the van Deemter plots obtained for both analytes.

In addition, the effect of column temperature on the re-
tention of carnitine and acetylcarnitine was studied. The
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van’t Hoff plot for both analytes on the HILIC column in the
temperature interval from 15 to 70 °C was evaluated. The
elution times of carnitine and acetylcarnitine increased from

seconds to minutes when the column temperature was in-
creased. The optimal retention conditions were obtained
when the temperature was fixed at 30 °C. This temperature
was selected for further experiments.

Under optimal conditions, acetylcarnitine and carnitine
were eluted from the column at 2.74 and 2.98 min; respec-
tively, in a total run cycle of 5.0 min (Fig. 2).

Optimization of the ionization/MS conditions

Owing to the properties of carnitine and its derivatives, ESI
is currently the most used strategy for their ionization. The
ESI method was optimized with respect to dominant condi-
tions such as capillary voltage, source temperature, probe
temperature, drying gas flow rate, and drying gas tempera-
ture (the optimal parameters were mentioned in “MS instru-
mentation and MS/MS conditions”).

Preliminary experiments were conducted with the purpose
of finding the best instrumental conditions that would allow
identification of carnitine and acetylcarnitine in serum and
urine samples at trace levels. Carnitine and acetylcarnitine
standard solutions (1 mg L-1) in methanol were introduced
into the MS system at a flow rate of 30 μL min-1 via a syringe

Fig. 1 Van Deemter curves for carnitine and acetylcarnitine. The
conditions were as follows: hydrophilic interaction liquid chromatog-
raphy (HILIC) column; mobile phase of acetonitrile–water in isocratic
mode containing 7.5 mM ammonium formate; temperature 30 °C;
concentration of carnitine and acetylcarnitine standards 25 μg L-1;
injection volume 10 μL

Fig. 2 Representative total ion chromatograms of the HILIC separation
of carnitine and acetylcarnitine. The ionization and mass spectrometry
(MS) conditions were as follows: electrospray ionization in positive mode
associated with MS detection in multiple reaction monitoring mode
(experimental parameters were as described in “MS instrumentation and

MS/MS conditions”). The chromatographic conditions were as follows:
HILIC column; mobile phase of acetonitrile–water in gradient mode
containing 7.5 mM ammonium formate; mobile phase flow rate 0.25 mL-
min-1; temperature 30 °C; concentration of carnitine and acetylcarnitine
standards 25 μg L-1; sample injection volume 10 μL
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pump. The positive ion, full scans (mass spectra fromm/z 100
to m/z 300 were recorded) of carnitine and acetylcarnitine
indicated the presence of their pseudomolecular ion [M+H]+

as the predominant specie, with m/z values of 162.2 and
204.0, respectively. MRM of the precursor–product ion tran-
sitions was optimized. Specific charged fragments for both
analytes are listed in Table 1. The optimization of the ion
production and fragmentation conditions permitted sensitive
and selective detection of the analyte. As a result, the areas
under the most sensitive transitions, 162.2→103.1 and

204.0→145.2 for carnitine and acetylcarnitine, respectively,
were measured for quantification purposes.

Evaluation of the matrix effect

The origin and mechanism of matrix effects are not under-
stood fully. As mentioned in “Experimental,” after selecting
the proper chromatographic approach, we evaluated the ef-
fect of the two matrices under study (serum and urine) by
comparing the signals of carnitine and acetylcarnitine in pure
solvent (methanol) with the signals in the sample matrices.
Thus, calibration curves from spiked matrix and spiked pure
solvent samples were created. The resulting calibration plots
for serum and urine samples are shown in Figs. 3 and 4. In
the case of carnitine, the slopes (b) obtained in pure solvent,
spiked serum, and spiked urine were 2,280.50, 2,190.70, and
833.18; respectively. On the other hand, the slopes obtained
for acetylcarnitine in pure solvent, serum, and urine samples
were 895.97, 875.56, and 498.89. These values were used as
described in “Experimental” as indicators of the extent of the
ion suppression or signal enhancement. From our results, no
signal enhancement was observed, but the serum and urine
matrices diminished the response of the analytes by between
5 and 50 %. As a consequence, carnitine and acetylcarnitine

Table 1 Mass spectrometry conditions for the generation and fragmen-
tation of carnitine and acetylcarnitine

Dwell time (s) Cone voltage
(V)

Collision voltage
(V)

Carnitine transitions (m/z)

162.2→103.1a

162.2→85.1 0.08 15 17

162.2→60.3

Acetylcarnitine transitions (m/z)

204.0→145.2a 14

204.0→85.1 0.08 18 15

204.0→60.3 15

a Transition used for quantification

Fig. 3 Calibration plots from spiked matrix (serum) and spiked pure
solvent (methanol) samples: a carnitine and b acetylcarnitine. The
chromatographic and ionization/MS conditions were as described in
“Ultra-high-pressure LC instrumentation and conditions” and “MS
instrumentation and MS/MS conditions”

Fig. 4 Calibration plots from spiked matrix (urine) and spiked pure
solvent (methanol) samples: a carnitine and b acetylcarnitine. The
chromatographic and ionization/MS conditions were as described in
“Ultra-high-pressure LC instrumentation and conditions” and “MS
instrumentation and MS/MS conditions”
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quantifications were conducted following the standard addi-
tion method.

Analytical performance

Certified reference materials for the matrices studied with an
informed value for carnitine and acetylcarnitine do not exist.
However, it is acceptable to assess the trueness of the mea-
surements through recovery of additions of known amounts
of the analyte to a blank matrix. Thus, spiked serum and
urine samples were analyzed. Peak integration, regression,
and calculation of concentrations were computed using
MassLynx.

For the urine samples, the concentrations of the carnitine
and acetylcarnitine standards at the respective points on the
calibration curves were 0, 25, 50, 100, 200, and 350 μg L-1.

The same experiment was repeated on three other inde-
pendent occasions with at least a 1-week interval. Repeat-
ability as intraday variability was determined by calculating
the relative standard deviation for the replicated measure-
ments. The values obtained were 2.99 % and 3.03 % at a
concentration of 10 μg L−1 for carnitine and acetylcarnitine,
respectively. The overall within-laboratory reproducibility
was 6.09 % for carnitine and 6.66 % for acetylcarnitine at
the concentrations tested. In summary and if we take into
account the matrix complexity, the reported values for the
method assessment parameters can be considered highly
satisfactory.

The limit of detection and limit of quantification were
calculated as the signal equivalent to, respectively, three
times and ten times the background chromatography noise
under working conditions. The analytical efficiency of the
method is shown in Table 2.

Sample analysis

Once the optimal conditions had been established for the
different matrices under study, the methods developed were
applied to the analysis of real samples. The analysis of serum
and urine samples to assess the levels of carnitine and
acetylcarnitine was performed. Carnitine concentrations
ranged between 30 and 50 μM, and acetylcarnitine levels
were between 5 and 10 μM. The values obtained were in

good agreement with those reported by other research groups
[16, 41].

In the case of urine samples, the carnitine concentration
ranged between 81 and 290 μM, whereas the concentration
of acetylcarnitine was lower, on the order of 15–70 μM [16].
These results are in good agreement in terms of concentra-
tion and biological significance with those reported by Reu-
ter and Evans [3].

Conclusions

We have developed and proposed a sensitive and selective
analytical method for the separation and determination of
carnitine and acetylcarnitine in biological samples based on
the use of HILIC coupled with MS/MS. The advantages of
using HILIC for the analysis of these polar compounds in the
complex samples under study were demonstrated. Our stud-
ies showed that matrix effects should be carefully assessed
when biological fluids are involved. Finally, the method
developed could be of great interest for monitoring varia-
tions of carnitine and acetylcarnitine in metabolic studies.
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