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Abstract

The prostate gland is a strictly androgen-dependent organ which is also the main target of infectious and inflammatory
diseases in the male reproductive tract. Host defenses and immunity of the gland have unique features to maintain a constant
balance between response and tolerance to diverse antigens. In this context, the effects of reproductive hormones on the male
tract are thus complex and have just started to be defined. From the classical description of “the prostatic antibacterial factor,”
many host defense proteins with potent microbicidal and anti-tumoral activities have been described in the organ. Indeed, it
has been proposed a central role for resident cells, that is, epithelial and smooth muscle cells, in the prostatic response against
injuries. However, these cells also represent the target of the inflammatory damage, leading to the development of a
Proliferative Inflammatory Atrophy-like process in the epithelium and a myofibroblastic-like reactive stroma. Available data
on androgen regulation of inflammation led to a model of the complex control, in which the final effect will depend on the
tissue microenvironment, the cause of inflammation, and the levels of androgens among other factors. In this paper, we review
the current scientific literature about the inflammatory process in the gland, the modulation of host defense proteins, and the
influence of testosterone on the resolution of prostatitis.
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Introduction

Prostatic inflammation represents a significant health issue
worldwide. Moreover, a strong relationship between
inflammation of the gland and other conditions with a
high impact on human health such as male infertility
(Motrich et al., 2009), benign prostatic hyperplasia (Kramer
et al., 2007) or prostate cancer (De Marzo et al., 2007a) has
been reported. However, research on basic aspects of the
gland, including the molecular mechanisms controlling
prostatic inflammation or the tissue response against
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inflammation, is still scarce. The prostate is a strictly
androgen-dependent organ which is the main target of
infectious and inflammatory diseases in the male reproduc-
tive tract. In this paper, we review the current scientific
literature about the inflammatory process in the gland, the
modulation of host defense proteins, and the influence of
testosterone on the resolution of prostatitis.

Host defense comprises a group of body protective
systems, such as physical barriers and the innate immune
response (including pathogen receptors, cytokines, chemo-
kines, and antimicrobial peptides), which normally guards

Abbreviations: CFA, Freund’s Complete Adjuvant; DAMPs, Danger-associated molecular patterns; ErbB1, Avian Erythroblastic Leukemia
Viral Oncogene Homolog 1; ErbB2, Avian Erythroblastic Leukemia Viral Oncogene Homolog 2; hBD-1, Human beta defensin-1; LPS,
lipopolysaccharide; MD-2, Myeloid Differentiation Protein-2; MyD88, Myeloid Differentiation Factor 88; NALP1, Nod-like receptor family,
pryin domain containing-1; NALP3, Nod-like receptor family, pryin domain containing-3; TLRs, Toll-like receptors; NF-kB, Nuclear factor
kappa-light-chain-enhancer of activated B cells; PAMPs, Pathogen-associated molecular patterns; PBP, Prostatic Binding Protein; PIA,
Proliferative Inflammatory Atrophy; SP-D, Surfactant Protein D
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against injuries (Hall et al, 2002). Once inflammation
cascades are initiated, a set of mechanisms modulates the
resolution of the inflammation leading to the re-establishing
of tissue homeostasis. Hence, anti-inflammatory and
immunoregulatory molecules secreted by local cells also
play a critical role in protecting the body against the damage
of uncontrolled and/or unnecessary inflammation.

Host defense mechanisms have extensively been studied
in macrophages and dendritic cells owing to their
professional function in activating the immune response
(Kaisho and Akira, 2003; Takeda et al., 2003). Epithelial roles
in innate immunity have been known since Fleming’s (1922)
finding on lysozyme and other mucosal substances
preventing bacterial growth in 1922. However, only in the
last decades have the molecular mechanisms of host defense
at epithelial surfaces begun to be elucidated, especially in
epithelial cells from the airways and the digestive system
(Diamond et al., 2000; Hall et al., 2002; Bartlett et al., 2008).
In the urogenital tract, several contributions have revealed
the importance of host defense proteins during inflamma-
tory conditions (Hall et al., 2002; Rao et al, 2003;
Samuelsson et al., 2004; Sun et al., 2004; Jalkanen et al.,
2005; Wira et al, 2005), with male tract research being
mainly focused on the epididymis (Rao et al., 2003; Jalkanen
et al., 2005) and testis (Grandjean et al., 1997; Dettin et al.,
2003). As an example, the epididymis secretes antimicrobial
peptides including lysozyme, lactoferrin, and members of
the defensin family (Hall et al., 2002; von Horsten et al., 2002;
Com et al., 2003; Palladino et al., 2003; Jalkanen et al., 2005).
In the testis, the presence of immunomodulatory proteins
such as galectin-1 plays a critical role in protecting the male
gametes (Dettin et al., 2003).

At the frontline of defense, the innate immune system has
evolved several molecules such as Toll-like receptors (TLRs)
to sense infections and other injuries (Takeda et al., 2003;
Kawai and Akira, 2007, 2010). These receptors recognize and
are activated by Pathogen-associated molecular patterns
(PAMPs) and Danger-associated molecular patterns
(DAMPs), which trigger multiple signaling pathways that
finally lead to nuclear translocation of NF-kB and the
subsequent activation of antimicrobial and proinflammatory
genes (Takeda et al., 2003; Kawai and Akira, 2007).
Typically, the innate immune response to Gram-negative
bacteria implies the recognition of the lipopolysaccharide
(LPS) by TLR4, while CD14 and MD-2 serve as the ligand-
binding part of the LPS receptor complex (Kawai and Akira,
2010). Triggering of TLR4 results in the activation of the
common intracellular TLR adaptor MyD88 or in an
alternative pathway that relies on the Toll/IL-1R domain-
containing adaptor-inducing IFNB (TRIF) (Takeda et al.,
2003; Kawai and Akira, 2007, 2010). With the male
urogenital tract representing an entry point for micro-
organisms from the environment, it is not surprising that
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TLRs, as well as CD14 and MyD88 and other essential
host defense molecules, have been found to be expressed in
the testis, epididymis, vas deferens, and accessory sex glands
of different species (Hall et al., 2002; Girling and Hedger,
2007; Palladino et al., 2007; Pudney and Anderson, 2010). In
addition, LPS-binding protein has been described through-
out the male tract (Malm et al., 2005; Palladino et al., 2007)
and, characteristically, the testis expresses defensins
(Grandjean et al., 1997; Sang et al., 2005) among others.

Host defense molecules in the prostate gland

TLR4, which was termed hToll at the time, was the first
human homologue of TLR, cloned and studied by Ruslan
Medzhitov and Charles Janeway in 1997 (Medzhitov et al.,
1997), instigating a new era in innate immunity research that
culminated in the 2011 Nobel Prize. TLR4 recognizes and is
activated by the lipopolysaccharide (LPS) present in Gram-
negative bacteria and DAMPs; upon activation, TLR4
triggers the inflammatory response by inducing nuclear
translocation of NF-kB (Takeda et al., 2003). TLR4 is widely
expressed in epithelia in permanent contact with external
injuries like those in cornea (Song et al., 2001), oral cavity
(Uehara et al., 2002), respiratory tract (MacRedmond et al.,
2005), intestine (Hornef et al., 2003), and urinary tract
(Samuelsson et al., 2004), as well as in immune cells (Takeda
et al., 2003; Akira and Takeda, 2004). Our research group
and others have described TLR4 in the prostate gland of
rodents and humans, with the expression being localized in
both epithelial and stromal cells (Gatti et al., 2006, 2009;
Quintar et al., 2006). Strikingly, in steady state conditions,
TLR4 localizes mainly at the intracellular compartment of
the prostatic cells in vivo (Quintar et al., 2006) as well as in
vitro (Mackern-Oberti et al.,, 2006), contrasting with the
classical membrane expression in macrophage and other
immune cells (Akashi et al., 2000). This localization seems to
be related to cellular function: while immune cells must be
ready to quickly respond to pathogens, epithelial cells
exposed to normal microbiota must have their pathogen
sensors strictly regulated. Inasmuch as the occurrence of
normal microflora in the prostate has been suggested
(Willen et al., 1996), how it is controlled and how it interacts
with the epithelial cells become emerging concerns. In
addition, some DAMPs are normally present in the seminal
plasma (Laudat et al., 1997; Park et al., 1997; Fung et al,,
2004) and could incite unwanted inflammatory reactions
since semen is often in contact with the surface of the
prostate epithelium (Nelson et al., 1988). Consequently, the
intracellular distribution of TLR4 could serve to prevent a
permanent triggering of TLR4 cascades in prostatic
epithelial cells. Different TLRs have also been reported to
be expressed by prostate epithelial cell lines in vitro (Gatti

Cell Biol Int 9999 (2017) 1-11 © 2017 International Federation for Cell Biology



A. A. Quintar and C. A. Maldonado

et al., 2006; Mackern-Oberti et al., 2006). Furthermore, other
receptors for PAMPs such as inflammasome components
NALP1 and NALP3 are present in prostatic cells (Chen et al.,
2013).

The prostate gland is an important site for secretion of
antimicrobial substances accompanying the sperm. Since the
classical description of “the prostatic antibacterial factor,”
then identified as a zinc salt (Fair et al., 1976), many peptides
and proteins with a potent microbicidal activity have been
demonstrated in the gland. Such molecules include
semenogelins (Edstrom et al., 2008), defensins (Quintar
et al,, 2012), and collectins (Oberley et al., 2007). Surfactant
Protein D (SP-D) is a collectin normally expressed in the
prostate epithelium of rats and mice as well as in different
organs of the male tract as the epididymis, deferent ducts,
seminal vesicles, and testis (Oberley et al., 2007). When
comparing all those sites, the highest expression of SP-D
occurs in the prostate (Oberley et al., 2007), supporting the
idea that the gland is a main source of host defenses in the
male genital tract.

Our studies have found that not only the epithelial but
also stromal cells of the prostate express TLR4 both in vivo
(Quintar et al., 2006; Gatti et al., 2009) and in vitro
(Leimgruber et al., 2011, 2013). Additional works have
documented that all TLRs are expressed in prostatic stromal
cells (Penna et al., 2009). However, the implications of those
findings have just started to be defined. For instance, studies
in human samples have proposed a role for TLR4 in prostate
cancer progression (Gatti et al., 2009), with stromal cells
being also able to actively contribute to the TLR-mediated
inflammatory process by acting as antigen-presenting cells
in the gland (Penna et al., 2009).

Prostatic inflammation and its impact on prostatic
tissues

The renewed interest in the pathogenesis, diagnosis, and
treatment of the prostatitis syndromes have brought new
basic research activity in animal models (Vykhovanets et al.,
2007; Zeng et al, 2014) and immunological analysis
(Motrich et al., 2007; Rivero et al., 2007). Although these
investigations have mainly focused on the nature and extent
of inflammatory cell infiltrates, a possible role for both
resident stromal and epithelial cells in the prostatic reaction
to infection or injuries has emerged. In this sense, prostatic
cells and their secretory products have been shown to locally
modulate the early response to bacteria (Ceri et al., 1999;
Oberley et al., 2005). Takeyama et al. (2006) and Gatti et al.
(2006) have demonstrated that prostatic cell lines secrete
proinflammatory cytokines in response to M. hominis and
LPS, acting through TLR2 and TLR4, indicating that
epithelial cells could function as a first line in prostatic
host defenses. Our research group has demonstrated that in
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vivo TLR4 expression increases in both epithelial and
stromal cells after acute bacterial infection of the prostate
(Quintar et al., 2006); besides, bacterial infection induces
NF-kB translocation to the nucleus in the prostatic
epithelium (Quintar et al.,, 2012). Ultrastructural analysis
revealed a translocation of TLR4 from the cytoplasm to the
apical plasma membrane of epithelial cells after acute
inflammation (Quintar et al., 2006). However, in vitro LPS
stimulation failed to translocate TLR4 from the cytoplasm
to the plasma membrane in the murine Mat-Lu cell line,
suggesting that LPS recognition and TLR4 activation would
be performed intracellularly in prostatic tumoral epithelial
cells (Mackern-Oberti et al., 2006). In contrast, human PC3
cells express TLR4 at the plasma membrane and TLR4 levels
increase after LPS treatment (Pei et al., 2008). In any case,
prostate cells are able to react to bacterial compounds
regardless the localization of TLR4.

Prostatic cells also upregulate the expression of SP-D and
defensins after prostatic inflammation (Oberley et al., 2007;
Kim et al., 2011). SP-D has been reported in human prostate
mainly associated to inflammatory foci, where it inhibits C.
trachomatis invasion into prostatic cells (Oberley et al,
2005). Interestingly, some of these elements of the innate
immune system, as the case of Human Beta Defensin-1
(hBD-1), have also shown anti-tumor activity in the prostate
(Donald et al., 2003; Bullard et al., 2008). Therefore,
epithelial- and stromal-derived host defense proteins play
a fundamental role in protecting the gland not only against
foreign agents but also defending it from malignant
transformation.

As mentioned before, the inflammatory response is a
complex mechanism addressed to protect the body against
cellular damage induced by external or internal injuries.
However, uncontrolled reactions could lead to chronic
conditions with multiple tissue alterations and loss of
cellular functions (Balkwill and Mantovani, 2001; Coussens
and Werb, 2002; De Marzo et al., 2003, 2007a). Conse-
quently, the mechanisms controlling or modulating inflam-
mation are pivotal elements in organ and cellular
homeostasis, with immunomodulatory actions being initi-
ated simultaneously with pro-inflammatory pathways
(Serhan and Savill, 2005). A wide range of immunomodula-
tory/anti-inflammatory proteins has been described to be
induced in prostatic resident cells under inflammatory
conditions. For instance, members of the secretoglobins
superfamily of proteins are present in both rat (Aumuller
et al, 1982; Quintar et al., 2010) and human prostate
(Manyak et al., 1988), where they appear also to hold anti-
tumoral properties (Patierno et al., 2002). These proteins
have potent anti-inflammatory functions (Maccioni et al.,
2001) and are widely expressed in respiratory (Roth et al.,
2007) and reproductive tracts (Quintar et al., 2008). During
acute infection of the rat prostate, Prostatic Binding Protein
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(PBP, a secretoglobin member produced only by the
prostatic epithelium) increases very early with the infection,
but decreases after 72 h post-infection when the epithelium
is completely atrophic (Quintar et al., 2010).

The fact that prostatic resident cells can be activated in
response to bacterial infection might represent a beneficial
mechanism for eliminating microorganisms at first glance.
However, the consequence of chronic inflammatory signals
on epithelial cells could also constitute a pivotal component
in the pathophysiology of many human diseases. In fact,
prostatic inflammation has recently been considered a key
factor in the development and maintenance of hyperplasia
(Kramer et al., 2007) and prostate cancer (De Marzo et al.,
2007b), with an inflammatory environment possibly
modifying the balance between cellular growth and
turnover, thus leading to an uncontrolled proliferation.
Accordingly, Elkahwaji et al. (2007) have reported that
chronic bacterial inflammation induces reactive hyperplasia
associated with oxidative stress injury. Furthermore, the
administration of M. tuberculosis-containing Freund’s
Complete Adjuvant (CFA) for 30 days promoted prostatic
epithelial hyperplasia (Kessler et al., 1998), thereby
supporting the proposed link among inflammation, oxida-
tive DNA damage, and prostate carcinogenesis. Results
from our group and others revealed that cellular activation
in the prostate is initiated very early after bacterial infection
(Fulmer and Turner, 1999; Quintar et al., 2010), including
the induction of the oncogenes ErbBl and ErbB2 and
nuclear translocation of NF-kB. NF-«kB regulates the
expression of many genes involved in immunity and cell
growth and differentiation, acting as a master switch of
intracellular signally pathways (Ghosh et al., 1998; Ghosh
and Hayden, 2008) and a possible player in inflammation
promoting cancer (Haverkamp et al., 2008). In this context,
what occurs in prostatic tissues after bacterial prostatitis,
that is, hyperproliferation along with cell atrophy (Elkahwaji
et al., 2007; Quintar et al., 2010) would be clearly related to
the term “Proliferative Inflammatory Atrophy (PIA),”
assumed to be a preneoplastic lesion for prostate cancer
by De Marzo et al. (2007b).

It has been reported that the stromal compartment
critically influences the initiation and/or maintenance of
proliferative pathologies in the prostate gland (Tuxhorn
et al.,, 2002; Antonioli et al., 2004; Penna et al., 2009). Indeed,
we described a rapid stromal response to bacterial infection,
characterized mainly by hypertrophy and the acquisition of
a secretory phenotype in smooth muscle cells (Quintar et al.,
2006) which was then reproduced in vitro (Leimgruber et al.,
2011, 2013, 2016). Related to this, much evidence suggests
that smooth muscle cells are metabolically dynamic cells
with the potential to express and secrete numerous highly
active signaling proteins (Singer et al., 2004). In addition (or
as a consequence), these cells can originate myofibroblasts
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with a potent secretory activity, which are considered to be
an important component of the reactive stroma supporting
prostate cancer (Tuxhorn et al., 2002). Penna et al. (2009)
reported that prostatic stromal cells from patients secrete
IL-8, CXCL10, and IL-6 in a TLR-mediated manner. These
authors propose that stromal cells represent nonprofessional
antigen-presenting cells, being able to induce and sustain
inflammatory processes within the prostate (Penna et al.,
2009). Accordingly, we demonstrated that smooth muscle
cells respond to bacterial compounds by switching their
phenotype from a contractile to a myofibroblast-like
secretory profile in vivo (Quintar et al., 2006) as well as in
vitro (Leimgruber et al., 2011, 2013, 2016) indicating that
prostatic smooth muscle cells may play a role in host
defenses. However, the phenotypic switch could alter the
tissue microenvironment leading to chronic proliferative
conditions. In this scenario, TGFB1 is strongly implicated by
activating metalloproteinases and promoting a reactive
stroma response in the prostate gland (Tuxhorn et al., 2002;
Danielpour, 2005). TGFB1 increases in a time-dependent
manner after acute bacterial prostatitis, with its levels
probably being responsible for the hypertrophy of smooth
muscle observed at 24 h postinfection (Quintar et al., 2010).
Afterwards, the presence of potent proinflammatory signals,
along with TGFB1, may have acted as dedifferentiator
factors on the prostatic smooth muscle cells. In agreement
with this hypothesis, it has been previously shown that the
cytokine IL-8 induces phenotypical changes on prostatic
stromal cells in vitro, leading to the development of
myofibroblastic cells (Schauer et al., 2008).

Taken together, these data suggest a central role for
resident cells, that is, epithelial and smooth muscle cells,
in the prostatic response against injuries. However, these
cells also represent the target of the inflammatory
damage, leading to the development of a PIA-like process
in the epithelium and a myofibroblastic-like reactive
stroma.

Androgen modulation of host defense molecules

Unlike many organs in the body, the prostate is under the
strict control by testicular male hormones. Orchiectomy
causes a rapid involution of the prostate due to epithelial
apoptosis leading to a complete cessation of the secretory
functions. Strikingly, smooth muscle cells and fibroblasts of
the prostatic stromal compartment change their phenotypes
after androgen deprivation, augmenting their cellular
activity (Antonioli et al., 2004). In this context, it is not
surprising that testosterone may influence the expression of
host defenses as well as the outcome of infectious and
inflammatory diseases of the prostate (Quintar et al., 2012).
Moreover, the hormonal regulation of innate immunity
gains special importance in the male reproductive tract as a
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putative preventer of sperm damage as well as of venereal
diseases.

Little is known about the specific effects of androgens on
host defenses. What we know derives mainly from
straightforward approaches by adding testosterone to
culture media of monocytes/macrophages and other
professional immune cells. Testosterone regulates negatively
the TLR4 expression and macrophage sensitivity to a TLR4-
specific ligand (Rettew et al., 2008). Additionally, androgens
exert anti-inflammatory effects by inhibiting IL-6, TNFa,
iNOS, and NO synthesis and inducing IL10 production by
LPS-stimulated macrophages (Ahmed and Talal, 1990;
Kanda et al., 1996; D’Agostino et al., 1999; Friedl et al.,
2000). In vivo removal of endogenous testosterone results
in a more susceptible phenotype to endotoxic shock, with
macrophages isolated from these animals having signifi-
cantly higher TLR4 cell surface expression than those
derived from sham gonadectomized mice (Rettew et al.,
2008).

Several authors have reported that prostatic PBP levels
notably decrease in the epithelium of castrated animals
(Heyns et al., 1978; Aumuller et al., 1982; Janulis et al., 2000).
Unpublished observations indicate that galectin-1, another
potent inmmunosuppresive factor, is positively regulated by
androgens in the prostate gland. It is interesting to note that
galectin-1 is also expressed in female genital tract, where it
could play an important strongly progesterone-regulated
role in embryo implantation and immune tolerance (Choe
et al., 1997; Gray et al., 2004; Blois et al., 2007; Than et al.,
2008). In this way, testosterone maintains high levels of
immunomodulatory factors in the prostate in accordance
with its immunosuppressive and anti-inflammatory effects
on immune responses (Olsen and Kovacs, 1996).

The hypothesis of androgens dampening host defenses in
the prostate is also supported by our own results which
clearly indicated that testosterone negatively modulates the
TLR4 pathway, including the expressions of TLR4, CD14,
and MyD88 in prostatic cells (Quintar et al., 2012). In line
with this, androgens can inhibit the expression of TLR4
mRNA in human endothelial cells (Norata et al., 2006) and
can reduce TLR4 expression in the cell surface of isolated
macrophages in mice (Rettew et al., 2008). Furthermore,
these results could explain, in part, the ability of testosterone
to increase susceptibility to bacterial infection in both males
and females (Rettew et al., 2010), with castration being
efficient to eliminate pathogens and to dampen infection-
related inflammation within the prostate gland.

This immunosuppressive function of androgens in the
prostate is understandable as a means of avoiding uncon-
trolled immune responses against the haploid male gamete
in the reproductive tract. In fact, the seminal plasma possess
strong anti-inflammatory and immunosuppressive proper-
ties (Dostal et al., 1995; Kelly and Critchley, 1997) that would
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be controlled by androgens. Moreover, the immunity of the
gland has unique features (the presence of a hemato-
prostatic barrier among others) which allowed to consider
the prostate as a site of immune privilege where responses
are rather suppressed (Whitmore and Gittes, 1977; Fulmer
and Turner, 2000).

Effects of androgens on prostatic inflammation

Sexual hormones influence strongly the immune response,
resulting in a clear dimorphism in immune dysregulation-
driven diseases. Female produce a vigorous humoral and
cellular immunity, being more resistant to bacterial infection
than males (Blazkovec et al., 1973; Ahmed and Talal, 1990;
Druckmann, 2001). Moreover, women have higher inci-
dence than men of autoimmune diseases such as rheumatoid
arthritis, systemic lupus erythematosus, Hashimoto thy-
roiditis, and multiple sclerosis (Cutolo et al., 2004; Bouman
et al.,, 2005). In general, androgens exert a suppressive effect
on the adaptive immune response through diverse mecha-
nism including apoptosis of T and B cells and the induction
of T regulatory cells and CD8+ suppressive cells. As
described in the previous section testosterone would also
play an immunosuppressive role on innate immunity.

In the prostate gland, most of studies have used castration
models to analyze the effects of male hormones on the
inflammatory environment. For instance, androgen depri-
vation has been successfully employed as a therapeutic
modality in rat (Kaplan et al., 1983; Seo et al., 2003) and
canine (Cowan et al., 1991) models of chronic bacterial
prostatitis. In the same line of evidence, the administration
of testosterone can induce severe prostatitis in young adult
Wistar rats treated neonatally with beta-estradiol (Naslund
et al, 1988). We have demonstrated that androgen
withdrawal results in an increase of the proinflammatory
TLR4 system and upregulation of prostate antimicrobial
host defenses, correlating finally with an improved inhibi-
tion of bacterial growth in vivo as well as in vitro (Quintar
et al., 2012). The same work revealed that acute bacterial
prostatitis developed in testosterone-treated rats is associ-
ated to a higher infiltration of neutrophils compared to
castrated animals. In this sense, androgens have been also
shown to modulate neutrophil activation (Razmara et al.,
2005; Deitch et al., 2006), resulting in a worst prognosis
for men in endotoxin shock. Exaggerated recruitment and
activation of neutrophils by testosterone during acute
prostatitis could explain the high occurrence of these cells
(Figure 1), but at the same time, this animals exhibited a
higher amount of E. coli suggesting a malfunction of
neutrophils related to testosterone administration (Quintar
etal,, 2012). Nevertheless, the improvement in antimicrobial
capacity of the prostatic cells after androgen deprivation
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Figure 1 Schematic representation of prostatic morphofunctional alterations during acute bacterial prostatitis (BP) under different
androgen status. Orchiectomized rats (BP + OX) have a better resolution of the inflammation after 3-5 days of E. coliinoculation compared to rats with
normal (BP) or supraphysiological levels of testosterone (BP + TT). Based on (Quintar et al., 2006, 2010, 2012)and on unpublished observations. The
amount of arrows indicates the grade of expression change. TLR4, Toll-like Receptor 4; SP-D, Surfactant Protein-D; bDEF-1, bDefensin-1; PBP, Prostatic

Binding Protein.

seems to be mainly independent of professional immune
cells since the increase in host defense observed in vivo is
reproduced, at least in part, in isolated prostatic cells in
absence of testosterone (Quintar et al.,, 2012). This is a
striking point because several effects of castration on
prostatic cells do not represent direct effects of testosterone
withdrawal but could be mediated by multiple cells
infiltrating the gland after castration (Mercader et al,
2001; Halin et al., 2007). Interestingly, the effects of
androgens on immunity could involve non-classical mem-
brane androgen receptors which elicit rapid responses
(Benten et al.,, 2002, 2004). Consequently, studies to gain
insight into the basis of the molecular mechanisms of

testosterone affecting immunity and inflammation are
necessary.

There are several reports indicating that androgen
ablation enhances prostate anti-tumor immunity (Roden
et al., 2004; Drake et al., 2005; Koh et al., 2009), even in
castration-resistant tumors (Akins et al., 2010). In addition,
medical castration results in prominent T cell infiltration of
the human prostate (Mercader et al., 2001) and removes
tolerance to prostate cancer antigens in a transgenic mouse
model (Drake et al., 2005). Such T cell-mediated inflamma-
tion after androgen deprivation could have significant
implications for the development of immunotherapeutic
strategies to treat prostate cancer.

Cell Biol Int 9999 (2017) 1-11 © 2017 International Federation for Cell Biology



A. A. Quintar and C. A. Maldonado

On the other hand, this immunomodulatory effect of
androgens could be beneficially used to treat prostate
inflammation in cases of autoimmune prostatitis (Diserio
and Nowotny, 2003; Meng et al., 2011) and other non-
bacterial prostatitis where high levels of testosterone are
associated to a decreased aggressiveness of the inflamma-
tion and the number of inflamed acini in the prostate
(Bernoulli et al., 2008; Yatkin et al., 2009). One interesting
local mechanism by which testosterone would control
inflammation relies on the ability to regulate positively the
tight junction proteins Claudin 4 and Claudin 8, with
testosterone supplementation in castrated mice signifi-
cantly reducing prostate inflammatory cell numbers
(Meng et al., 2011). Testosterone also protects rabbit
prostate from metabolic syndrome-induced prostatic
hypoxia, fibrosis, and inflammation (Vignozzi et al,
2012). Moreover, androgen supplementation reduces the
expression of inflammatory markers in estrogen-induced
prostatitis (Jia et al., 2015). In vitro studies demonstrated
that testosterone applied before or after pro-inflammatory
stimuli to prostatic smooth muscle cells acts as an anti-
inflammatory agent by reducing the expression of TLR4
and pro-inflammatory signaling pathways (Leimgruber
et al,, 2013, 2016).

The exact role of androgens along with their immuno-
regulatory mechanisms on prostatic inflammation are far
to be clarified. Considering available published data, it is
reasonable to propose a model for the complex regulation
of prostate immunity where the final effect will depend on
the tissular microenvironment, the cause of inflammation,
and the androgenic level among other factors. However, it
is clear that androgens would have a dual and contradic-
tory effect, favoring non-bacterial (metabolic, hormonal
imbalance, or autoimmune) prostatitis, whereas playing a
pathogenic role in bacterial inflammation of the prostate
gland.

Conclusion and perspectives

The male genital tract is an important entry point for
microbial agents threatening the integrity of the tract itself
and the whole body, with HIV being just one example. On
the other hand, the main task of the tract is to deliver a
full-functioning haploid gamete, which represents a foreign
antigen for the immune system. The cellular effects of
reproductive hormones on the male tract are thus complex
and require a constant balance between response and
tolerance to diverse antigens. Moreover, the extremely high
incidence of both benign and malignant proliferative
pathologies in the prostate suggests the existence of a
special state (privilege?) for host defenses and the immune
system in the gland. Therefore, it would be too simplistic to
ascribe a specific suppressive or boosting role to androgens
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on prostatic host defenses. It is clear, however, that a better
understanding of the inflammatory response and its
regulation within the prostate gland may open new frontiers
to develop efficient therapies for inflammatory and
immune-related prostatic diseases based on homeostatic
androgen functions. In this context, the promising discovery
of differential actions by membrane androgen receptors
(Benten et al.,, 2004; Levin, 2014) will direct alternative
approaches to dissect the androgen effects on prostate
inflammation and host defenses.
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