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Abstract⎯Dynamo effect is considered in the context of an Unified field theoretical model based in affine
geometries. We show that there exists an analog “α-term” in the equations that has a purely geometric origin,
in sharp contrast with the turbulent one. Some high energy and astrophysical implicancies (primordial mag-
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1. INTRODUCTION
Dynamo effect is considered in the context of an

Unified field theoretical model based in affine geom-
etries. Due that the common standard approaches
based only in General Relativity (GR) are not based
completely in symmetry principles: if this were the case,
an harmonious interplay “matter-energy  space-
time” must be automatically fulfilled [10, 11]. However
in the non-Riemannian case [12–16], the correspond-
ing affine geometrical structure induces naturally the
Lagrangian function. This Lagrangian function or geo-
metrical action is a measure or the square root of the
determinant of a particular combination of the funda-
mental tensors of the geometry: 
with the (0,2) tensors  the symmetric
metric, the antisymmetric (that acts as potential of the
torsion field) and the generalized Ricci tensor (proper
of the non Riemmanian geometry). The three tensors
are related with a Clifford structure of the tangent
space (for detaills see [17]) and the explicit simplest
choice for  is given by :

(1)

(2)

with  and λ an arbi-

trary parameter). We pointed out that this particular1 The article is published in the original.
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choice for the Larangian function is only for simplic-
ity. Due the basic structure of the theory, the induced
energy momentum tensor and fundamental constants
(as the Newton  now are functions in reality) emerge
naturally from the same geometry. Dynamo effect is
considered in this letter in the context of an Unified
field theoretical model based in affine geometries. We
show that there exists an analog ” -term” in the equa-
tions that has a purely geometric origin, in sharp con-
trast with the turbulent one. Some high energy and
astrophysical implicancies (primordial magnetic field,
compact objects dynamics [30, 31], chiral magnetic
effects, etc) coming from this type of alternative model
of gravitation are briefly discussed and some conclud-
ing remarks in Section XII.

2. FIELD EQUATIONS

The variational process is a crucial point both: from
the mathematical and from the physical viewpoint. As
we have been analyzed before [21, 22], there exist sev-
eral difficulties concerning the starting physical
assumptions involving the variational procedure. The
geometry of the spacetime Manifold is to be deter-
mined by the Noether symmetries

(3)

where the functional (Hamiltonian) derivatives in the
sense of Palatini (in this case with respect to the poten-
tials), are understood. The choice “measure-like”
form for the geometrical Lagrangian  (reminiscent
of a nonlinear sigma model), as is evident, satisfy the
following principles:

(i) the principle of the natural extension of the
Lagrangian density as square root of the fundamental
line element containing also 

(ii) the symmetry principle between gμν and Fμν (e.g.
 and  should enter into  symmetrically)
(iii) the principle that the spinorial symmetry, namely

 (4), (5)
with

 (6), (7)

should be derivable from (3).
The last principle is key because it states that the

spinorial invariance of the fundamental spacetime
structure (kinematic symmetry of the world picture)
should be derivable from the dinamical simmetries
given by (3). The fact that the  satisfies the 3 princi-
ples will be demonstrated below showing also that it
has the simpler form.

Notice that the action density proposed by Einstein
in [27] in his nonsymmetric field theory satisfies (i)
and (ii) but not (iii).

Remark 1. Due the totally antisymmetric character
of the torsion field it is completely determined by the
fundamental (structural 2-form) antisymmetric ten-
sor, and consequently the variations must adquire the
form given by expression (3): metric and torsion have
each one their respective potentials that are in coinci-
dence with the fundamental structure of the geometry.

2.1. 
The starting point for the metrical variational pro-

cedure is in the same way as in the standard Born-
Infeld theory: from the following factorization of the
geometrical Lagrangian:

, (8)

where

(9), (10), (11)

and  an arbitrary constant we perform the variational
metric procedure with the following result (details see
Appendix I)

 (12), (13)
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Remark 2. Notice that:
(1) The Eq. (13) is trace-free type [1–5], consequently

the trace of the third term of the above equation ( that is
the cosmological one ) is equal to zero. This happens triv-

ially if  or . In

terms of the Maxwell lagrangian we have

 that

allow us to simplify the Eq. (13) once more as follows

(2)  takes the place of limiting parameter (maxi-
mum value) for the electromagnetic field strenght.

(3)  is not a constant in general, in sharp contrast
with the Born-Infeld or string theory cases.

(4) Because  is the ratio  involving

both curvature scalars from the contractions of the
generalized Ricci tensor: it is preponderant when the
symmetrical contraction of  is greater than the
skew one.

(5) The fact pointed out in (ii), namely that the
curvature scalar plays the role as some limiting param-
eter of the field strenght, was conjectured by Mansouri
in [19] in the context of gravity theory over group man-
ifold (generally with symmetry breaking). In such a
case, this limit was stablished after the explicit integra-
tion of the internal group-valuated variables that is not
our case here.

(6) In similar form that the Eddington conjecture:
, we have a condition over the ratios as follows:

(14)

that seems to be universal.
(7) The equations are the simplest ones when

 taking the exact the following form

(15)

notice that the pseudoscalar part dissapear. This par-
ticular case (e.g. projective invariant) will be used
through this work.

2.2. 
Let us to take as starting point the geometrical

lagrangian (1)

(16)

(17)

then, having into account that:  and

 we obtain

(18)

where: 

 and

. Notice that the quantity b
also was taking into account in the expression (18).

Contracting (18) with , a condition over the
curvature and the electromagnetic field invariants is
obtained as

.

This condition is satisfield for  is the
exact projective invariant case (that correspond with

, and for 

3. GEOMETRY INDUCES PHYSICS
3.1. Emergent Trace Free Gravitational Equations: 

the Meaning of 
Starting from the trace free equation (13)
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(19)

(20)

(21)

(Quantities and operators with a circle above are those
corresponding to general relativity.)

Then, as  conse-
quently:

(22)

come back to the original trace free expressions we
have the expected formula

(23)

Remark 3. Tracing the first expression in (22) we

have  linking the value of the cur-
vature and the norm of the torsion vector field. Con-
sequently, if the dual of the torsion field have the role
of the energy-matter carrier, the meaning of lambda as
the vacuum energy is immediately stablished.

3.2. The Constancy of G

At this level, no assertion can state with respect to
 or even with respect to . The link with the general

relativistic case is given by the identification of electro-
magnetic energy-momentum tensor with the term
analogous  in our metric variational equations:

Consequently we have:

(24)

the above expression only said that the ratio must
remains constant due the Noether symmetries and
conservation laws of the field equations. Notice that
(as in the case of ) there exist a limit for all the phys-
ical fields coming from the geometrical invariants
quantities.

3.3. Spacetime 3 + 1 Splitting and Electrodynamics
the starting point will be the line element in  split-

ting [6, 7] (Appendix III): the 4-dimensional spacetime is
split into 3-dimensional space and 1-dimensional time to
form a foliation of 3-dimensional spacelike hypersurfaces.
The metric of the spacetime is consequently, given by

 where 
is the metric of the 3-dimensional hypersurface, is
the lapse function, and  is the shift function (see
Appendix for details) . For any nonlinear Lagrangian, in
sharp contrast with the Einstein–Maxwell case, the field
equations  and the Bianchi-geometrical con-
dition  (where we have defined the Hodge dual 

and ) are expressed by the vector fields
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that live into the slice. Notice the important fact that

due  the dynamical equations are highly non-
linear as in the Born-Infeld case. In our case given by
the geometrical Lagrangian  (  here not be con-
fused with the Lie derivative
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where hμ is the dual torsion vector and external cur-
rents were introduced. Notice that, as we will
see later, “external” currents  have a geometrical
character and they are geometrically implemented due
the torsion vector 

4. DYNAMO EFFECT 
AND GEOMETRICAL ORIGIN OF  TERM

In the case of weak field approximation and in 3 + 1
representation  the electro-
magnetic dymnamical equations take the form

, (30)

, (31)

, (32)

(where the upper bar represents a spacial vector) and

, (33)

, (34)

. (35)

Putting all toghether, the set of equations takes a
familiar form

, (36)

(37)

, (38)

. (39)

where we have introduced again external charge den-
sity and current. However as we pointed out before, all
external currents can be geometrically introduced, via
a geometrically induced Lorentz-like force. Following
the standard procedure we take the rotational to the
second equation above obtaining straigforwardly the
modified dynamo equation

, (40)

where the standard identities of the vector calculus
plus the first, the third and the fourth equations above
have been introduced. Notice that in the case of the
standard approximation and (in the spirit of this
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research) without any external or additional ingredi-
ents, we have

(41)

Here we can see that there exist and -term with a
pure geometrical origin, and not only a turbulent one
that is given by  (the zero component of the dual of
the torsion tensor).

4.1. Comparison with the Mean Field Formalism
Now we compare the above linerized equations

with respect to the mean field formalism [25]. Starting
from expresions (30)–(35) as before, we have:

(42)

 takes the place of electromotive force due the
torsion field with full analogy as  is the
mean electromotive force due to f luctuations. Also as
in the mean field case that there are the splitting
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geometric counterpart. In the past years, attention has
shifted from kinematic calculations, akin to those
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small scale magnetic fields (including their back-reac-
tion on the dynamics) and for the constraints imposed
by the topological conservation laws, such as that for
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(as we can see from above set of equations) the concept
of helicity. The consequence of this role of the dual
torsion field is that the traditionally invoked mean-
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problem is seen in our model as one of generalized
helicity transport, and so may be tackled like other
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problems in turbulent transport. A key element in this
approach is to understand the evolution of the torsion
vector field besides of the turbulence energy and the
generalized helicity profiles in space-time. This forces
us to confront the problem of spreading of strong
MHD turbulence, and a spatial variant or analogue of
the selective decay problem with the dynamics of the
torsion field.

4.2. The Generalized Lorentz Force
An important point in any theory beyond relativity

is the concept of force. As is known, general relativity
has deficiencies at this point. Now we are going to
show that it is possible to derive from our proposal the
Lorentz force as follows. From expression (32) the
geometrical induced current is recognized

, (44)

(45)

(46)

we assume  proportional to the velocity and other
contributions. Consequently reordering terms from
above, a geometrically induced Lorentz-like force
arises

(47)
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being the responsible of the induced force, the torsion
vector itself. Notice from the above equation the fol-
lowing issues:

(1) It is not necessary to introduce the external cur-
rent because it can be absorbed in .

(2) We can eliminate the electric field as follows

, (49)

being the above expression very important in order to
replace the electric field into the dynamo equations,
being the natural and correct form to introduce the
external current in the unified theory.

4.3. The Vector  
and the Energy-Matter Interpretation

One of the characteristics that more attract the
attention in unified field theoretical models is the pos-
sibility to introduce the energy and matter through its

0
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geometrical structure. In our case the torsion field
takes the role of RHS of the standard GR gravity equa-
tion by mean its dual, namely .

Consequently, in order to explain the physical role
of  we know (due the Hodge-de Rham decomposi-
tion [Appendix II]) that it can be decomposed as:

(50)

where  and  can be phenomenologically related to

physical constants (e.g:  is a phys-
ical constant related to the Blackett formula [20]). The
arguments in favour of this type of theories and from
the decomposition (50) can be resumed as follows:

(i) the existence of an angular momentum Helm-
holtz theorem [23, 24]: the theorem in analysis is exa-
cly as in  but, in the four dimensional case  there
exists an additional axial vector;

(iii) the concept of  is achieved in the
model by the existency of polar and axial vectors in
expression (50).

(iv) if  are the wave tensors and 
the particle vectors (vector and axial part), the con-
cept of an inertial-wave vector s introduced in the
equation (50).

Consequently, from the Eq. motion for the torsion
namely:  and back to Eq. (50) we
obtain the following important equation

. (51)

Consider in particular as simplest example, the
case when 

. (52)

We can immediately see that, if  is identified
with the intrinsec spin angular momentum of the pon-
derable matter,  is its lineal momentum vector and

 is the gravitational radiation tensor, then Eq. (52)
states that the sum of the intrinsec spin angular
momentum and the orbital angular momentum of
ponderable matter is conserved if the gravitational
radiation is absent [26–28].

4.4. Killing-Yano Systems and the Vector 
Without enter in many details (these will be treated

somewhere) the antisymmetric tensor  in the 
composition is related with the Killing [33] and Kill-
ing–Yano [34] systems and physically speaking with
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the notoph field [35]. Consequently we can introduce
two types of couplings into the  divergence : it cor-
respond with the generalized current interpretation
that also has .

(i) Defining

, (53)

such that

, (54)

then, in this case we can identify  because

 and 

In this case the contribution of  to  dissapear.
(ii) Let us consider

, (55)

having into account the vorticity vector also

, (56)
and considering a plasma with electrons, protons etc.

, (57)

where  is the vector potential and  is the particle
charge, is the number density (in the rest frame) and
the four-velocity of species s is . In this case takes
the form

(58)

(59)

(60)

Consequently in 3 + 1 decomposition we have

, (61)

(62)

and

(63)

 (64)
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Notice that in h0 we can recognize the magnetic and
vortical helicities

(65)

which will be important in what follows.

5. PROTOGALACTIC ORIGIN 
OF THE MAGNETIC FIELD

5.1. General Issues

As is more or less understood, some authors
demonstrated that strong magnetic fields are pro-
duced from a zero initial magnetic field during the
pregalactic era, when the galaxy is first forming. Here
we will apply the methematical formulation devel-
oped in (21, 22) to the protogalactic escenario. Their
development in such approaches proceeds in three
phases. In the first phase, weak magnetic fields are
created by the Biermann battery mechanism. During
the second phase, results only from a numerical sim-
ulation make it appear likely that homogenous iso-
tropic Kolmogorov turbulence develops that is asso-
ciated with gravitational structure formation of gal-
axies. Assuming that this turbulence is real, then
these weak magnetic fields will be amplified to strong
magnetic fields by this Kolmogorov turbulence.
During this second phase, the magnetic fields reach
saturation with the turbulent power, but they are
coherent only on the scale of the smallest eddy.
During the third phase, which follows this saturation,
it is expected that the magnetic field strength will
increase to equipartition with the turbulent energy
and that the coherence length of the magnetic fields
will increase to the scale of the largest turbulent eddy,
comparable to the scale of the entire galaxy. The
resulting magnetic field represents a galactic mag-
netic field of primordial origin. No further dynamo
action after the galaxy forms is necessary to explain
the origin of magnetic fields. However, the magnetic
field will certainly be altered by dynamo action once
the galaxy and the galactic disk have formed. How-
ever that mechanism brings many doubts, because
many things come into play to justify the generation
and maintenance of the magnetic field. We will now
see the role of torsion in magnetogenesis and the
dynamics of the galactic magnetic field. We also will
see how the magnetic and vortex helicities are
included in the torsion vector, and the necessity to
introduce the vorticity in the fundamental 2-form
together with the magnetic field. From the formula of
the induction, namely

, (66)

γδρ
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and using the Eq. (49) to eliminate the  electric field as
function of the torsion, the generalized current and
the magnetic field:

(67)

(68)

being  the angle between the vector torsion  and the
generalised current  and  the angle between  and

the magnetic field  Above  and  are unitary

vectors in the direction of  and  respectively.
Notice the important fact that the RHS of Eq. (68) is
independent of the torsion and the magnetic field.
Consequently we obtain

. (69)

We introduce the explicitly the physical situation
via the generalised current 

, (70)

then

, (71)

, (72)

finally the expected geometrically induced expression
is obtained:

, (73)

(74)

where  as usual and we also define

. (75)

5.2. Seed Magnetic Field

Notice from the last expression that  is explicitly

, (76)

or (eliminating the unitary vector)

, (77)

we see the term independent of the magnetic field.
Considering only the terms of interest without the dif-
fusive and advective term (only temporary depen-
dence) in the induction equation namely

, (78)

, (79)

we see that the currents given by the fields (related to
the geomtry via  originate the magnetic field. If we
consider as in the next section the currents of the fields
of theory (fermions, etc) the seed would be the cur-
rents itselves. The other missing point is, from the
same unified formulation, to derive the f luid equa-
tions (which as is known does not have a definite
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Lagrangian formulation) that have analogous formu-
las for vorticity than for the magnetic field . This
would mean that the 2-form of vorticity must also be
included in the fundamental antisymmetric tensor
together with the electromagnetic field.

6. TORSION, AXION ELECTRODYNAMICS 
OR CHERN SIMONS THEORY?

Let us review briefly the electromagnetic sector of
the theory QCD based in a gauge symmetry

(80)

As is well know, electromagnetic fields will couple
to the electromagnetic currents, namely:

 consequently, there appear term
will induce through the quark loop the coupling of

 (the anomaly) to the QCD topological charge.
The effective Lagrangian can be written as

, (81)

where a pseudo-scalar field  (playing the
role of the axion field) is introduced and

. This is the Chern–Simons Lagrangian

where, if  is constant, the last term is a total diver-
gence:  The question appear if  is not

a constant .

Now we can see from the previous section that if,
from the general decomposition of the four dimen-
sional dual of the torsion field via the Hodge de Rham
theorem we retain  as gradient of a pseudoscalar
(e.g: axion) these equations coincide in form with the
respective equation for MCS theory. Precisely because
under this condition  , in f lat space (curva-
ture = 0 but torsion  the equations become the
same as in [8] namely

, (82)

(83)

, (84)

. (85)
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. (87)
where from QCD the constant  is determined as

 and the  in the [8] notation.The
main difference is that while in the case o photons in
axion ED was given by [9] the Lagrangian where that
above equations are derived is

, (88)

in our case is the dual of the torsion field(that we take
as the gradient of a pseudoscalar) responsible for the
structure of the set of equations.

7. DISCUSSION AND PERSPECTIVES
From the functional action proposed, that is as

square root or measure (Nambu–Goto/Born–Infeld
type), the dynamic fundamental equations were
derived: an equation analogous to trace free Einstein
equations  and a dynamic equation for the torsion
(which was taken totally antisymmetric). Although the
aim of this paper was not to introduce a full theoretical
basis of the model (that is given in a separated article),
from this starting point we bring some results and pos-
sible explanations about a few problems of the current
research. The most remarkable are

(i) The cosmological term appear as integration
constant of a natural manner and is linked with the
curvature and fundamental fields.

(ii) The fundamental constants (as G) are really
functions of the spacetime coordinates geometrically
induced and linked between them.

(iii) There are a geometrical origin (not turbulent)
of the α-term and the dynamo effect given by the tor-
sion vector field.

(v) we show that primordial protogalagtic magnetic
fields can be originated by the dual torsion field 

(vi) the relation between the effective QCD with
the anomalous sector(Maxwell–Chern–Simmons)
and the unified model proposed here was explicity
given and clarified. The conditions where the torsion
can play the same role that the gradient of θ-factor
were pointed out.

8. APPENDIX I
A. Basis of the Metrical-Affine Geometry

The starting point is a hypercomplex construction
of the (metric compatible) spacetime manifold [17, 18]

(A.1)

0h c→ − θ�
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where for each point  there exists a local affine
space . The connection over , , define a general-
ized affine connection  on , specified by ,
where  is an invertible (1,1) tensor over  We will
demand for the connection to be compatible and rec-
tilinear, that is

(A.2)

where  is the torsion, and  the spacetime metric
(used to raise and lower the indices and determining
the geodesics), that is preserved under parallel trans-
port. This generalized compatibility condition ensures
that the generalized affine connection  maps auto-
parallels of  on  into straight lines over the affine
space  (locally). The first equation above is equal to
the condition determining the connection in terms of
the fundamental field in the  non-symmetric.
Hence,  can be identified with the fundamental ten-
sor in the non-symmetric fundamental theory. This
fact gives us the possibility to restrict the connection to
a (anti-) Hermitian theory.

The covariant derivative of a vector with respect to
the generalized affine connection is given by

, (A.3)

. (A.4)

The generalized compatibility condition (A.2)
determines the 64 components of the connection by
the equations

. (A.5)

Notice that by contracting indices  and  in the first
equation above, an additional condition over this
hypothetic fundamental (nonsymmetric) tensor  is
obtained

,

that, geometrically speaking, reads

This is a current-free condition over the tensor 
that can be exemplified in the simplest case with the
prototype of non-symmetric fundamental tensor:

 

,

where usually  plays the role of the spacetime met-
ric and  the role of electromagnetic field.

The metric is uniquely determined by the metricity
condition, which puts 40 restrictions on the derivatives
of the metric

. (A.6)
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The spacetime curvature tensor, that is defined in
the usual way, has two possible contractions: the Ricci
tensor , and the second contraction

, which is identically zero due to the
metricity condition (A.2).

In order to find a symmetry of the torsion tensor, let us
denote the inverse of  by . Therefore,  is uniquely
specified by condition .

As it was pointed out in [12–16], inserting explicitly
the torsion tensor as the antisymmetric part of the

connection in (A.6), and multiplying by  results,
after straight forward computations, in

, (A.7)

where . Notice that from expression (A.6)
we arrive to the relation between the determinants 
and :

,

(strictly a constant scalar function of the coordinates).
Now we can write

(A.8)

as the first term of (A.8) is the derivative of a scalar.
Then, the torsion tensor has the symmetry

. (A.9)

This implies that the trace of the torsion tensor,
defined as , is the gradient of a scalar field

. (A.10)

In reference [18] an interesting geometrical analy-
sis is presented of non-symmetric field structures.
There, expressions precisely as (A.1) and (A.2) ensure
that the basic non-symmetric field structures (i.e. )
take on a definite geometrical meaning when inter-
preted in terms of affine geometry.

9. APPENDIX II

A. Electrodynamical Equations in 3 + 1

The starting point will be the line element in 
splitting [6, 7]: the 4-dimensional spacetime is split
into 3-dimensional space and 1-dimensional time to
form a foliation of 3-dimensional spacelike hypersur-
faces. The metric of the spacetime is consequently,
given by

,
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where  is the metric of the 3-dimensional hypersur-

face,  is the lapse function, and  is the shift func-
tion. At every spacetime point, a fiducial observer
(FIDO) is introduced in such a way that his corre-
sponding world-line is perpendicular to the hypersur-
face where he is stationary.

His FIDO 4-vector velocity is then given by

,

one deals with the physical quantities defined on the
3-dimensional hypersurface as measured by the
FIDO. For example, the electric field and the mag-
netic field are defined with the help of the  respec-
tively, by

notice that the zero components are null:
. Also, the 4-current  can be similarly

decomposed as

,

where we defined

then . So that ,  and  can be treated as 3-vec-
tors in spacelike hypersurfaces. In terms of these 3-vec-
tors the Maxwell Eqs. can be written as

The derivatives in these equations are covariant
derivatives with respect to the metric of the absolute
space  being  the Lie derivative operator geomet-
rically defined as:  with  a vector
field.

ZAMOs observers

,

in the Boyer–Lindquist coordinates we have  and
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be expressed as  where  is the plasma
3—velocity with respect to the ZAMOs.
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