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Non-Riemannian generalization of the standard Born-Infeld (BI) Lagrangian is introduced and analyzed
from a theory of gravitation with dynamical torsion field. The field equations derived from the proposed
action lead to a trace free gravitational equation (non-Riemannian analog to the trace free equation
(TFE) from Finkelstein et al., 2001; Ellis et al., 2011; Ellis, 2014) and the field equations for the torsion
respectively. In this theoretical context, the fundamental constants arise all from the same geometry
through geometrical invariant quantities (as from the curvature R). New results involving generation of
primordial magnetic fields and the link with leptogenesis and baryogenesis are presented and possible
explanations given. The physically admissible matter fields can be introduced in the model via the torsion
vector hy,. Such fields include some dark matter candidates such as axion, right neutrinos and Majorana
and moreover, physical observables as vorticity can be included in the same way. From a new wormhole
solution in a cosmological spacetime with torsion we also show that the primordial cosmic magnetic
fields can originate from h, with the axion field (that is contained in h;) the responsible to control the
dynamics and stability of the cosmic magnetic field but not the magnetogenesis itself. As we pointed out
before (Cirilo-Lombardo, 2017), the analysis of Grand Unified Theories (GUT) in the context of this model
indicates that the group manifold candidates are based in SO (10), SU(5) or some exceptional groups as

E(6), E (7), etc.
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1. Introduction

The idea to construct a complete geometrization of the physics
is very old. The drawback of the Einstein GR (General Relativ-
ity) equations is the RHS: Ryp — g‘"TﬁR = kTyp with the sym-
metric tensor (non-geometrical) x Top that introduces heuristically
the energy-momentum distribution. Similar drawbacks are con-
tained by the unimodular gravity. It is well known that the uni-
modular gravity is obtained from Einstein-Hilbert action in which
the unimodular condition: ,/—detg,, =1 is also imposed from
the very beginning (Finkelstein et al., 2001; Ellis et al, 2011;
Ellis, 2014). The resulting field equations correspond to the trace-
less Einstein equations and can be shown that they are equivalent
to the full Einstein equations with the cosmological constant term
A, where A enters as an integration constant and the equivalence
between unimodular gravity and general relativity is given by the
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arbitrary value of lamda. On the other hand the idea that the cos-
mological term arises as an integration constant is one of the mo-
tivations for the study of the unimodular gravity, for recent study,
see Barrau and Linsefors, Barcelo et al., Carballo-Rubio, Firouzjaee
and Ellis (2014, 2014, 2015, 2015) and Ellis and Mavromatos
(2013) in the context of supergravity. The fact that the determi-
nant of the metric is fixed has clearly profound consequences on
the structure of given theory. First of all, it reduces the full group
of diffeomorphisms to invariance under the group of unimodular
general coordinate transformations which are transformations that
leave the determinant of the metric unchanged.

Similar thing happens in the non-Riemannian case, as pointed
out in Cirilo-Lombardo (2010, 2011a, 2011b, 2007, 2013), where
the corresponding affine geometrical structure induces naturally
the following constraint: £ = constant. This natural constraint im-
pose a condition (ratio) between both basic tensors through their
determinants: the metric determinant g and the fundamental one
K (in the sense of a nonsymmetric theory that contains the an-
tisymmetric structures), independently of the precise functional
form of K or g. In this work our starting point will be precisely
the last one, where a metric affine structure in the space-time man-
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ifold (as described in Section 2) will be considered. We will also
show that trace free gravitational equations can be naturally ob-
tained when the Lagrangian function (geometrical action) is taken
as a measure involving a particular combination of the fundamen-
tal tensors of the geometry:

J1det £ (2. fuv. Ruv)|

with the (0,2) tensors gy, fuv, Ryy: the symmetric metric, the
antisymmetric one (that acts as potential of the torsion field) and
the generalized Ricci tensor (proper of the non-Riemannian geom-
etry). The three tensors are related with a Clifford structure of
the tangent space (for details see Cirilo-Lombardo, 2015) where
the explicit choice for f(guv. fuv, Ruv) is given in Section 3. This
type of Lagrangians, because are non-Riemannian generalizations
of the well known Nambu-Goto and Born-Infeld (BI) ones, can
be physically and geometrically analyzed. Due the pure geomet-
rical structure of the theory, induced energy momentum tensors
and fundamental constants (actually functions) emerge naturally.
Consequently, this fact allows the physical realization of the Mach
principle that is briefly treated in Section 8 after the (trace free)
dynamic equations in Section 4 are obtained.

In Section 5 the trace free gravitational equations and the
meaning of the cosmological term as integration constant are dis-
cussed from the physical point of view, meanwhile in Section 6
the constancy of G (Newton constant) is similarly discussed. The
important role played by the dual of the torsion field as geomet-
rical energy-momentum tensor is given in Section 7. Some phys-
ical consequences of the model, as the geometrical origin of the
a2-dynamo, is presented in Section 9 that it is very important
because establish the link between the mathematical structure of
the model of the first part of the article and the physics of the
early universe and the particle physics of the second half of this
work. In Section 10 the direct relation between the torsion with
axion electrodynamics and Chern-Simons (CS) theory is discussed
considering the geometrical structure of the dual vector of the tor-
sion field. In Section 11 an explanation about the magnetogenesis
in FRW scenario, the structure of the GUT where the SM is derived
and the role of the axion in the dynamics of the cosmic magnetic
field is presented. Finally some concluding remarks are given in
Section 11.

2. Basis of the metrical-affine geometry

The starting point is a hypercomplex construction of the (metric
compatible) spacetime manifold (Cirilo-Lombardo, 2015; Mclnnes,
1984)

M, guv=ey-ey (1)

where for each point p € M there exists a local affine space A.
The connection over A, T, define a generalized affine connection
I" on M, specified by (V, K), where K is an invertible (1, 1) tensor
over M. We will demand for the connection to be compatible and
rectilinear, that is

VK =KT, Vg=0 (2)

where T is the torsion, and g the space-time metric (used to
raise and lower the indices and determining the geodesics), that
is preserved under parallel transport. This generalized compati-
bility condition ensures that the generalized affine connection I
maps autoparallels of I' on M into straight lines over the affine
space A (locally). The first equation above is equal to the con-
dition determining the connection in terms of the fundamental
field in the UFT non-symmetric. Hence, K can be identified with
the fundamental tensor in the non-symmetric fundamental theory.

This fact gives us the possibility to restrict the connection to a
(anti-)Hermitian theory.

The covariant derivative of a vector with respect to the gener-
alized affine connection is given by

Aﬂ;v = A ) +F'uavAa (3)
T, Ax (4)

The generalized compatibility condition (2) determines the 64
components of the connection by the 64 equations

K =KpT o where T%,, Ezrpm] (5)

Apv=Ap v

Notice that by contracting indices v and « in the first equation
above, an additional condition over this hypothetical fundamental
(nonsymmetric) tensor K is obtained

Kua:*=0

that, geometrically speaking, reads

d*K =0.

This is a current-free condition over the tensor K. Notice that the
metric is used here to down the indices (metric compatible space-
time) and consequently we can work also with Ky = gagK 5 .

The metric is uniquely determined by the metricity condition,
which puts 40 restrictions on the derivatives of the metric

&uv.p =2 (uyp (6)
The space-time curvature tensor, that is defined in the usual way,
has two possible contractions: the Ricci tensor Ril)»u = Ry, and
the second contraction Riw =2r* which is identically zero
due to the metricity condition (2).

In order to find a symmetry of the torsion tensor, let us de-
note the inverse of K by K. Therefore, K is uniquely specified by
condition K% Koo = K“l"ﬁm =5,

As it was pointed out in Cirilo-Lombardo (2010, 2011a, 2011b,
2007, 2013), inserting explicitly the torsion tensor as the antisym-
metric part of the connection in (5), and multiplying by %k"“’.
results, after straightforward computations, in

(Lnv/=K) e —Tly) =0 (7)
where K = det (K W,). Notice that from expression (7) we arrive at

the relation between the determinants K and g:

K
— = constant
g

Ay, p]?

(strictly a constant scalar function of the coordinates). Now we can
write

]:)w,ﬂ - Fvﬂv,a = Fvvﬁ,oc - Fvuoz,ﬂ ’ (8)
as the first term of (7) is the derivative of a scalar. Then, the tor-
sion tensor has the symmetry
Toipar = Thjap) =0 )
This implies that the trace of the torsion tensor, defined as TV,
is the gradient of a scalar field

To = Ve (10)

In Mclnnes (1984) an interesting geometrical analysis is pre-
sented of non-symmetric field structures. There, expressions pre-
cisely as (1) and (2) ensure that the basic non-symmetric field
structures (i.e. K) take on a definite geometrical meaning when
interpreted in terms of affine geometry. Notice that the tensor
K carries the 2-form (bivector) that will be associated with the
fundamental antisymmetric form in the next sections. Such an-
tisymmetric form is introduced from the tangent space via the
generalization of the Ambrose-Singer theorem by exponentiation.
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3. Geometrical Lagrangians: the generalized Born-Infeld action

Let us start with the geometrical Lagrangian introduced in
Cirilo-Lombardo (2010, 2011a, 2011b, 2007, 2013)

[:g:\/det[)»(gaﬂ+Fﬁlﬁ)+R“ﬁ] ()

it can be rewritten as

with the following redefinitions

Gup =M28ap +Rwpy and Fug=AFyp+ Riag) (13)

where a totally antisymmetric torsion tensor T)‘fﬂ = (9)"/‘/35h‘S is as-

sumed (h® its dual vector field). Notice that the antisymmetric ten-
sor Fug, that takes the role of the electromagnetic field, is propor-
tional to the dual of the potential for the (totally antisymmetric)
torsion field (Cirilo-Lombardo, 2010, 2011a, 2011b, 2007, 2013).
A brief review on the origin of this type of Lagrangians in the con-
text of unified theories in reductive geometries is in Appendix A.
Consequently the generalized Ricci tensor splits into a symmetric
and antisymmetric part, namely:

Ruv) Rijvy
—_— ——
o o
Ruv =Ry =T, T + VaT,

o
where Ry, is the general relativistic Ricci tensor constructed with
the Christoffel connection. The expansion of the determinant leads
to the Born-Infeld generalization in the usual form:

1 1 ~ 2
Lg= ¢|G|\/1 + 5P P — oo (FpuvFHv) (14)
1 1 ~
=A2¢Ig|\/1+5A%FwFW— W(A%FWFW) (15)
where
R@B)
A=A+ g‘)‘ﬁT (16)
2 FuRI®1 1 Ry, RI#V]
2_,2 v [v]
A FunF A2 FuF
3= (1 2Em R 1 Ry R (18)
2 A FuyFAv A2 F FRv

Although the action is exact and have the correct limit, the analy-
sis can be simplest and substantially improved using the following
action

R Ra
Lgs = \/det |:)\ga/3 (1 + ﬁ) + AFap (1 + T)} (19)

Ra = f*’ Riap) (20)

. aIn(det Fj,
(Wlth fob = n(a%a,gﬂ)
essary information and is more suitable to manage. If the induced
structure from the tangent space T, (M) (via Ambrose-Singer
theorem) is intrinsically related to a (super)manifold structure,
we have seen that there exists a transformation (Weyl, 1952;
Cirilo-Lombardo, 2015) UB (P) = 58 + Rﬁwdx“ Adx’ — 88 +
* (T)B (with A, B.... generally a multi-index) having the same
form as the blocks inside of the square root proposed Lagrangian

(19): e.g. Agup (1 + f—;) ~ where the Poisson structure is evident

Rs=g"PRiap);

,detFy, = ZFMUF“” that contains all nec-

(as the dual of the Lie algebra of the group manifold) in our case
leading the identification between the group structure of the tan-
gent space with the space-time curvature as Rfmudx“ Adx¥ =

ok (T}
4. Field equations

The geometry of the space-time manifold is to be determined
by the Noether symmetries
s o o o
Sghv Sfrv
where the functional (Hamiltonian) derivatives in the sense of
Palatini (in this case with respect to the potentials), are under-
stood. The choice “measure-like” form for the geometrical La-
grangian L (reminiscent of a nonlinear sigma model), as is evi-
dent, satisfy the following principles:

i) the principle of the natural extension of the Lagrangian den-
sity as square root of the fundamental line element containing
also Fpy;

ii) the symmetry principle between g,,, and F, (e.g. g, and
Fyv should enter into Lg symmetrically);

iii) the principle that the spinor symmetry, namely

V& =0, (22)
Vo3 =0 (23)
with

& =Vr" Vv, (24)
O =V AV~ *Fyy (25)

should be derivable from Lg (21).

The last principle is key because it states that the spinor invari-
ance of the fundamental space-time structure should be derivable
from the dynamic symmetries given by (21). The fact that the L¢
satisfies the 3 principles shows also that it has the simpler form
(Xin, 1996).

Notice that the action density proposed by Einstein (2014) in
his nonsymmetric field theory satisfies i) and ii) but not iii).

Remark 1. Due the totally antisymmetric character of the tor-
sion field it is completely determined by the fundamental (struc-
tural 2-form) antisymmetric tensor, and consequently the varia-
tions must acquire the form given by expression (21): metric and
torsion have each one their respective potentials that are in coin-
cidence with the fundamental structure of the geometry.

4.1. 8gL¢
The starting point for the metrical variational procedure is in

the same way as in the standard Born-Infeld theory: from the fol-
lowing factorization of the geometrical Lagrangian:

£ =,/|g|y/det (ak)\/l + LFWFW _ (FWFMU)Z

2b2 16b%
= /|glv/det (@n)R (26)
where
p % _ 1+ (Rs/4)»)’ 27)
B 1+ (Ra/4))
Rs =g Rag, (28)
Ra= [ Ryp, (29)
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and A an arbitrary constant we perform the variational metric pro-
cedure with the following result (details see Appendix B)

5gL=0= (30)
8
R(aﬁ)_%ﬁRs (31)
R;

Rwp
— FHV
T 2R2¢2 |:Fa)\ Fﬁ Fiw Rs

Rs ~ { FypFP ~
j7aY; np A
+ IR |:F,WF ( o 8ap — FurFf

F,,F" R
+ np (ap) +
2 R

1 A
R2a 2(F“'\Fﬂ

FuvFr (FyoF7P E
+T 3 gap —FaAF,g .

Remark 2. Notice that:

1) The eq. (31) is trace-free type, consequently the trace of
the third term of the above equation (that is the cosmological
one) is equal to zero. This happens trivially if 2 =0 or 4R%a? =

+2x |:gaﬂ +

~ o2

FoyF @ — %). In terms of the Maxwell Lagrangian we
Fuv)2

have (]R(;()2 = (LMﬂxwell + % =W (s, Ip, b) that allow us

to simplify the eq. (31) once more as follows
8a
Rap) — 4’3 Rs
Rs Rwp)
_ _ uv 2a@p)
=5 [Fa,xFﬁ FuvF R, +

Rs Fyp FP ~,
4Wb2 F/wF 3 gaﬁ_FaAFﬁ

FupF™ Riap) }

2 Rs

1
+ 2\ |:g(1ﬁ + W (FOl)\FﬁA

FuF (EyFe
+ TV 3 8ap — FaAFﬁ s

2) b takes the place of limiting parameter (maximum value) for
the electromagnetic field strength.

3) b is not a constant in general, in sharp contrast with the
Born-Infeld or string theory cases.

4) Because b is the ratio 5= }iggim involving both curvature
scalars from the contractions of the generalized Ricci tensor: it is
preponderant when the symmetrical contraction of Ryg is greater
than the skew one.

5) The fact pointed out in ii), namely that the curvature scalar
plays the role as some limiting parameter of the field strength, was
conjectured by Mansouri (1976) in the context of gravity theory
over group manifold (generally with symmetry breaking). In such
a case, this limit was established after the explicit integration of
the internal group-valuated variables that is not our case here.

6) In similar form that the Eddington conjecture: Rg) o gug,
we have a condition over the ratios as follows:

R

Rap)  Bap (32)
Rg D

that seems to be universal.

7) The equations are the simplest ones when b=2 =0 (8 =0),
taking the exact “quasilinear” form

8ap R wv Map) R(Olﬁ)
Rap) = 4 Rs =27 [Fa,\Fﬁ — Fuo P =t
Maxwell-like
+2)\|:gtxﬂ+ WFakFﬁi| (33)
Lefy

this particular case (e.g. projective invariant) will be used through
this work. Notice that when b=2 =0 (8 =0) all terms into the
gravitational equation (31) involving the pseudoscalar invariant,
namely F,,F*" or Fa,\Fﬂ*, vanishes. Consequently we arrive to
the simplest expression (33) that will be used in Section 11 for
example.

42. 8;L¢

Let us to take as starting point the geometrical Lagrangian (19)

Ry Ra
Lgs = \/det [/\gaﬂ (1 + ) + AFup (1 + E)] (34)

1 1 ~
=glx?a? <\/1 + 5 Fun P = 22 (]—',w]-'l”)z) (35)

dIn(det Fyy)

9Fap =
f*# (due that b that contains R4 must be also included in the
variation) we obtain

SLe 0o («/@)\ﬂ

then, having into account that: R4 = f*'R;, and

- 2Rb

F
— FO’(D __R HVow :0 36
5Fow )[ P g } o)

where:

1 ~
F= [FWF‘W L (F,WFW)Z] :

1 s
oo__| poa _ " p—2 uv\ poa
Fe=[F b7 (FuF) F |

and
X;waw = fuwfav _ f;uf fa)u.

Notice that the quantity b = /8 (concretely 8) was also varied in
the above expression given the second term in (36).

Contracting (36) with Fyg, a condition over the curvature and
the electromagnetic field invariants is obtained as

JV1glx R
2148\ pRal_g
Rb 2
This condition is satisfied for R4 = —4A is the exact projective in-
variant case (that correspond with 8 =0), and for R4 = 2.

Remark 3. The variational equation (36) is a dynamic equation for
the torsion field in complete analogy with the eqgs. (31) for the
curvature.

5. Emergent trace free gravitational equations: the meaning of A

Starting from the trace free equation (31) that is not assumed
but arises from the model, the task (Ellis, 2014) is to rewrite it
as
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o

=Cap —Tgﬁ
(37)
where
1 FuEW [ F,,FiP
(38)
R R
F _ Bs A wv Nap)
Taﬁ:m{(FMFﬁ — FuF R—s>+ (39)
1 ~ v [ FnpF"
+F |:FMVFMV< A gaﬁ_FOI)»F,B)
~ N2
L (FnoF™)" Reap)
2 R;
o

the LHS of (37) is the Einstein tensor. The “GR” divergence V
of Gyp is zero because is a geometrical identity and in an ana-

o
log manner V (Tgﬂ—i—TmS) = 0 because both tensors have
the same symmetry that the corresponding GR energy momen-
tum tensors of a vector field and electromagnetic field respec-
tively:

o o« F

V Gap=V (Ths+T54)=0

consequently the remaining part must be a covariantly constant
tensor that we assume proportional to gyg:

ve (g‘"Tf‘Rs +2100) =0
:(g;—ﬂRs-l-Zk,oaﬂ):Agaﬂ—)Rs:ZA (40)

Coming back to the original trace free expressions we have the
expected formula

Rap — S8R =6 (~hahy + EL0 17 ) + g+ Mgy (41)

=Cap =Th,

Remark 4. Tracing the first expression in (40) we have Ry =2A =

R + 6h, h** linking the value of the curvature and the norm of the
torsion vector field. Consequently, if the dual of the torsion field
have the role of the energy-matter carrier, the meaning of lambda
as the vacuum energy is immediately established.

Remark 5. Notice that the LHS in expression (40) instead to be pro-
portional to the metric tensor it can be proportional to the square
of a Killing-Yano tensor.

6. On the constancy of G

At this level, no assertion can state with respect to G or even
with respect to c. The link with the general relativistic case is given
by the identification of electromagnetic energy-momentum tensor
with the term analogous Tgﬂ in our metric variational equations:

8nG g
o (FenF = R P 5
Rs Rp)
FapF g — F FRv 2220
- W ( art g nv R,

Consequently we have:

87 G Rs
K=Ta T e M
8up _ Rw@p)

4 Rs

The above expression indicates that the ratio must remains con-
stant due the Noether symmetries and conservation laws of the
field equations. Notice that (as in the case of b) there exists a limit
for all the physical fields coming from the geometrical invariants
quantities.

7. The vector h, and the energy-matter interpretation

One of the characteristics that more attract the attention in
unified field theoretical models is the possibility to introduce the
energy and matter through its geometrical structure. In our case
the torsion field takes the role of RHS of the standard GR gravity
equation by mean its dual, namely h,,.

Consequently, in order to explain the physical role of h,, we
know (due the Hodge-de Rham decomposition [Appendix C]) that
it can be decomposed as:

axial vector
—~—

VgAys +V1€a" Mpys+Vy2 Py (42)

polar vector

he = Vo + &7

where y; and ), can be phenomenologically related to physical
constants (e.g.: y1 = £+/G is a physical constant related to the
Blackett formula, Blackett, 1947). The arguments in favor of this
type of theories and from the decomposition (42) can be resumed
as follows:

i) the existence of an angular momentum Helmholtz theorem
(Helmholtz, 1858, 1867): the theorem in analysis is exactly as in
E3 but, in the four dimensional case My4 there exists an additional
axial vector;

ii) the concept of chirality is achieved in the model by the ex-
istence of polar and axial vectors in expression (42).

iii) if €, A, s are the wave tensors and ngMﬁy(s, Py the par-
ticle vectors (vector and axial part respectively), the concept of an
inertial-wave vector is introduced in the equation (42).

Consequently, from the (36) with g =0 for the torsion namely:
Vo T¥PY = —1FPY and coming back to (42) we obtain the follow-
ing important equation

DAys =¥ [ VaM?s+ (Vy Ps = VsPy) | = =AFys (43)

Let us consider, in particular, the case when AF,5 — 0:

E‘Aygz]/ I:VaMay8+(VVP5 _VSPV)] (44)

We can immediately see that, if M“y s is identified with the in-
trinsic spin angular momentum of the ponderable matter, Ps is
its lineal momentum vector and Ay is the gravitational radiation
tensor, then eq. (44) states that the sum of the intrinsic spin angu-
lar momentum and the orbital angular momentum of ponderable
matter is conserved if the gravitational radiation is absent., if M”‘y 5
is identified with the intrinsic spin angular momentum of the pon-
derable matter, Ps is its lineal momentum vector and Ay is the
gravitational radiation tensor, then eq. (44) states that the sum
of the intrinsic spin angular momentum and the orbital angular
momentum of ponderable matter is conserved if the gravitational
radiation is absent.
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7.1. Killing-Yano systems and the vector h,

Without enter in many details (these will be treated some-
where) the antisymmetric tensor A, s in the hg composition is re-
lated with the Killing (Carter, 1968) and Killing-Yano (Yano, 1952)
systems. Consequently we can introduce two types of couplings
into the A, s divergence: it correspond with the generalized cur-
rent interpretation that also has hy,.

i) Defining
Ays = A[y;s] (45)
such that
° ar .
VoAiys1 = =5 Uiy 8s1p) (46)

then, in this case we can identify A,s =2F,s because FJ‘S/;(S =4jy,
and Apys; p) = Fiys;0) = 0.

In this case the contribution of A, s to hg is null.

ii) Let us consider now a fully antisymmetric coupling as

4
?][y Fs10 (47)

having into account the vorticity vector also

Aly:slp =

wp =u"E50p VUl (48)
and considering a plasma with electrons, protons etc.

¥ ~ AY + gsnsul (49)
where A, is the vector potential and g; is the particle charge, ng
is the number density (in the rest frame) and the four-velocity of
species s is u?. In this case hy takes the form

s s
he =VoQ+ L °VgA,s + yi6l Mpys + y2Po — (50)
4w
3
§ 47
he = Vo2 + &) P?[AJrqsnsus][y Fs1p (52)

§ .
ha = VaQ+ 65" — jiy Fsjp — 1" €1a0p V' U” + y2Po  (51)

- Vlu)hg)»avpvvup + V2Pqy

Consequently in 3+ 1 decomposition we have (overbar correspond
to spacial 3-dim. vectors)

AT - _ _
hozvosz—i—?nj-B—i—ylE(VxH)-i—szo (53)
47 . . _ _
hg = VoQ + ?77 [A-(V x A) + qsnsils - B] (54)
+)/1E-(VXE)+)/2P0
and
4 — L=
hi =ViQ+ EY [— (] X E)i +]03i] (55)

+71 [uo(Vxﬁ)+(ﬁxvuo)+(ﬂxﬁ)]&m’i

1

4 _ - _
hi = Vi + = [~ ((A+qsniils)  E); + (@ +qsnsuion) B (56)

+ 1 [uo(ﬁxa)Jr(ﬁx%o)Jr(ﬁxu*)]fszi

1

Notice that in hy we can recognize the magnetic and vortical he-
licities

4 — =
ho = Vo2 + 3 [hm + gsnstls - B] + yihy + y2Po (57)

The above expression will be very important in the next sections,
in particular to discuss magnetogenesis and particle generation.

Notice the important fact that the symmetry of the vorticity can
be associated to a 2-form bivector in the context of the notoph
field (Ogievetsky and Polubarinov, 1965; Ogievetsky and Polubari-
nov, 1967; Kalb and Ramond, 1974) theory.

8. Physical consequences

In this section we will make contact with the physical con-
sequences of the model. Firstly we introduce the 3 4+ 1 splitting
for axisymmetric spacetimes that is useful from the physical view-
point for the analysis of the electrodynamic equations with high
degree of nonlinearity, as in our case. Secondly we take the 3 + 1
field equations in the in the linear limit where the induction equa-
tions (dynamo) are obtained, showing explicitly the important role
of the torsion field as the generator of a purely geometric «-term.
Thirdly, we derive the geometrical analog of the Lorentz force and
the elimination of the electric field from the induction equations.
Also, the origin of the seed magnetic field via the geometrical
o-term generated by the torsion vector is worked out.

8.1. Electrodynamic structure in 3 + 1

The starting point will be the line element in 3 + 1 splitting
(Thorne and Macdonald, 1982; Macdonald and Thorne, 1982) (Ap-
pendix D): the 4-dimensional space-time is split into 3-dimensional
space and 1-dimensional time to form a foliation of 3-dimensional
spacelike hypersurfaces. The metric of the space-time is con-
sequently, given by ds? = —a2dt? + y;j (dx' + Bidt) (dx/ + pidt)
where y;; is the metric of the 3-dimensional hypersurface, o is
the lapse function, and g is the shift function (see Appendix D
for details). For any nonlinear Lagrangian, in sharp contrast with
the Einstein-Maxwell case, the field equations d * F = xJ and the
Bianchi-geometrical condition dF = 0 (where we have defined the
Hodge dual * and FF :%—f) are expressed by the vector fields

L oL
E,BE=-—— B=—t (58)
IE 3B

that live into the slice. In our case given by the geometrical La-
grangian L (not be confused with the Lie derivative Lg!)

V.-E=—h -B+4mpe (59)
V-B=0 (60)
V x (@E) = —(3 — Lp)B
=—%B+(B-V)B-(B-V)B  (61)
V x (@B) +hoB—h x E = —(3 — Lp)E + 4 e j

(62)

where h* is the torsion vector. Notice that, here and the subse-
quent sections, the overbar indicates 3-dimensional space vectors.

8.2. Dynamo effect and geometrical origin of a2 term
In the case of weak field approximation and (F°! — E,

F/* — B) the electromagnetic Maxwell-type equations in 3 + 1
take the form

VyF'H = THPF, , = eMPshF,,  (d*F =* ]) (63)
V-E=-h-B (64)
WE—-VxB=h"B—hxE (65)
and
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V5 F** =0 (dF=0) (66)
V-B=0 (67)
%B=-VxE (68)
Putting all together, the set of equations is
V-E+h-B=pex (69)
HE—V x B=h"B—hxE — Oex [E+7V x B] (70)
V-B=0 (71)
%B=—-V xE (72)

where we have introduced external charge density and current.
Following the standard procedure we take the rotational to the
second equation above obtaining straightforwardly the modified
dynamo equation

Vx 4E+V'B=V x (hB) + (R -B - pexc) b+ (V) E

— Oext [00B+ (V- V) B] (73)
where the standard identities of the vector calculus plus the first,
the third and the fourth equations above have been introduced.
Notice that in the case of the standard approximation and (in the

spirit of this research) without any external or additional ingredi-
ents, we have

VE=h"(VxB)+(h-B)i+(V-h)E (74)

Here we can see that there exist and «-term with a pure geomet-
rical origin (and not only a turbulent one) that is given by h° (the
zero component of the dual of the torsion tensor).

8.3. The generalized Lorentz force

An important point in any theory beyond relativity is the con-
cept of force. As is known, general relativity has deficiencies at this
point. Now we are going to show that it is possible to derive from
our proposal the Lorentz force as follows. From expression (32) the
geometrical induced current is recognized

WE—VxB=h"B—hxE=] (75)
Txgz(hog—ﬁxf—ﬂxt)xﬁ (76)

:—[(H-E)E—(E-EH]—jextxﬁ 77)
we assume jex proportional to the velocity and other contribu-

tions. Consequently, reordering terms from above, a geometrically
induced Lorentz-like force arises

(T+7ex) xB=—| (R-B)E-(E-B)R | > (78)
o
(E : E>E + (7 + jext> x B = (E - B) h — Lorentz induced force
(79)

being the responsible of the induced force, the torsion vector itself.
Notice, from the above equation, the following issues:

1) The external currents are identified with |

2) We can eliminate the electric field in standard form

(E-B)h— jgen x B

@

E:

being the above expression very important in order to replace the
electric field into the dynamo equation, introducing naturally the
external current in the model.

8.4. Generalized current and o-term

In previous paragraph we have derived a geometrical induced
Lorentz force where the link between the physical world and the
proposed geometrical model is through a generalized current jgen.
An important fact of that expression is that it is possible to elimi-
nate the electric field (and insert it into the equation of induction)
as follows.

From the formula of the induction, namely

V2 B4V x (—hOE +hx E) -0 (81)

gceom
and using the eq. (49) to eliminate the electric field as function of
the torsion, the generalized current and the magnetic field respec-
tively:
i x (Ggen xB)  (A-B) Fgen— (R Tgen) B
_ gen gen gen
hxE= =— (82)

(n-B) (n-B)
— (E : jgen) — coso
gen + WS = (—n;gen + wng) (83)

being « the angle between the vector torsion_H and the general-
ized current jg, and B the angle between h and the magnetic

hxE=—

[Fen

field B. Above, ng and n; are unitary vectors in the direction of
gen

B and jgen respectively. Notice the important fact that the RHS of
(68) is independent of the torsion and the magnetic field. Conse-
quently we obtain

(h : jgen) _ hO —

(H . E) B|=0 (84)

EGeom

727 — -
V B+ X | —jgen +

We introduce the explicitly the physical scenario via the general-
ized current jg,

—Jgen ~ Oext [E+7 x B] + (gi—f) (85)
then
VB4V x [am [E+7xB]+ (g?) + (% —ho) E} —0
Eceom
(86)
v’B

+0ext [(—atg) +V x (VXE)]-{-VX (E@) 4V x ((E~jgen) _h0>§

e ne (h-B)

EGeom

(87)

finally the expected geometrically induced expression is obtained:
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_ o _ _ ch _ _
athi’]V B+VX(VXB)+7’]VX En_ +aB =8tB

e

(88)
—— _ . ¢cVpxVn
— 1 VB +V x (v x B) + 1V x (aB) + -~ (39
.\/'A/ — — e e
diffusive advective a-term [N —
Biermann battery
=—&B
where n = ﬁ as usual and the geometric a:
(E : jgen)
a=|-—==-n° (90)
()
_ [ cosa ‘fgen m
cos B |B]

8.5. Seed magnetic field
Notice from the last expression that aB is explicitly

coso Uge"

B = ng —h°B (91)

cos B

or (via elimination of the unitary vector)

cosa )}gen

o|B|= —h°|[B| (92)

cos B
we see clearly the first term in RHS independent of the intensity of
the magnetic field. Considering only the terms of interest without
the diffusive and advective term in the induction equation (only
time-dependence for the magnetic field is preserved) namely

nV x (¢B) = —0;B (93)
D
o-term
_ [ cosa ‘7gen —
V| ————|=-a|B| (94)
cos B

we see that the currents given by the fields (related to the geom-
etry via hy ) originate the magnetic field.

If we consider all the currents of the fields of theory (fermions,
bosons, etc.) the seed would be precisely these field currents. The
other missing point is to derive the fluid (hydrodynamic) equations
(which as is known does not have a definite Lagrangian formu-
lation) from the same unified formulation. Notice that there are,
under special conditions, analogous formulas for vorticity @ than
for the magnetic field B. This would mean that the 2-form of
vorticity must also be included in the fundamental antisymmet-
ric tensor, together with the electromagnetic field.

8.6. Comparison with the mean field formalism

Now we compare the obtained equations with respect to
the mean field formalism (Rddler and Rheinhardt, 2007; Cirilo-
Lombardo, 2017). Starting from expressions (69)-(72) as before,
we have:

VB +V x (VxB) - aB+nV x (~h°B+h xE) =0 (95)

EGeom

Eceom takes the place of electromotive force due the torsion
field with full analogy as £ =(u x b) is the mean electromotive
force due to fluctuations. Also as in the mean field case that there
are the splitting

£=¢0 4 B (96)

with £ independent of (B) and £(B) linear and homogeneous in
B, we have in the torsion case the following correspondence

—h°B «— £B)
hxE <« &9
geometrical <— turbulent

Consequently, the problems of mean-field dynamo theory that are
concerned with the generation of a mean EMF by turbulence, have
in this model a pure geometric counterpart. In the past years,
attention has shifted from kinematic calculations, akin to those
familiar from quasilinear theory for plasmas, to self-consistent the-
ories which account for the effects of small scale magnetic fields
(including their back-reaction on the dynamics) and for the con-
straints imposed by the topological conservation laws, such as that
for magnetic helicity. Here the torsion vector generalize (as we can
see from above set of equations) the concept of helicity. The conse-
quence of this role of the dual torsion field is that the traditionally
invoked mean-field dynamo mechanism (i.e. the so-called alpha
effect) may be severely quenched or increased at modest fields
and magnetic Reynolds numbers, and that spatial transport of this
generalized magnetic helicity is crucial to mitigating this quench.
Thus, the dynamo problem is seen in our model as one of general-
ized helicity transport, and so may be tackled like other problems
in turbulent transport. A key element in this approach is to un-
derstand the evolution of the torsion vector field besides of the
turbulence energy and the generalized helicity profiles in space-
time. This forces us to confront the problem of spreading of strong
MHD turbulence, and a spatial variant or analogue of the selective
decay problem with the dynamics of the torsion field.

9. Torsion, axion electrodynamics vs. Chern Simons theory

Let us review briefly the electromagnetic sector of the theory
QCD based in a gauge symmetry SU (3) x U (1)
Locp/qEp = +Z$f [)/M (3u —igftY A, — iquM) - mf] Y
(97)
_ G/%UG“W _ FuyFHY _ gZQszaauv _ gngqu“U
4 4 3272 3272

As is well know, electromagnetic fields will couple to the elec-
tromagnetic currents, namely: [, =) qsv FYu¥s consequently,

there appear term will induce through the quark loop the coupling
of FyyF*V (the anomaly) to the QCD topological charge. The ef-
fective Lagrangian can be written as

FuyFHY
4
where a pseudo-scalar field 6 = 6(x,t) (playing the role of the

2

axion field) is introduced and c = Zf % This is the Chern-
Simons Lagrangian where, if 6 is constant, the last term is a total
divergence: F,wf/“’ = 8M]g5' The question appear if 6 is not a
constant 6 F,, F1V =09, J&'s = 3, (6 J15) — JE8u0.

Now we can see from the previous section that if, from the
general decomposition of the four dimensional dual of the torsion
field via the Hodge de Rham theorem we retain b, as gradient of

c ~
Lycs = — —AM]“—ZQFM,,F’“) (98)
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a pseudoscalar (e.g.: axion) these equations coincide in form with
the respective equation for MCS theory. Precisely because under
this condition hy = V40, in flat space (curvature = 0 but torsion
# 0) the equations become the same as in Kharzeev (2010) namely

V-E—CP-B= pex (99)
&E —V x B=—COB + P x E — 0oxc [E+7V x B] (100)
V-B=0 (101)
%B=—-V xE (102)

provided:
h = —co (103)
h— —cP (104)

. . 2
where from QCD the constant c is determined as ¢ = 2e_n and the

0,0 = <0F in the Kharzeev (2010) notation. The main differ-
ence is that while in the case of photons in axion ED was given
by Wilzcek (1987) the Lagrangian where that above equations are

derived is

Fyv FY

Lyces = — 1

=MV Ay Fpy
(105)

in our case is the dual of the torsion field (that we take as the
gradient of a pseudoscalar) responsible of the particular structure
of the set of equations.

¢ W
_AM]M+ZPM]CS’ Jes

10. Magnetic helicity generation and cosmic torsion field

Here we consider the projective invariant case: 8 =0 (Rg =
—4).) where the gravitational and field equations are considerably
simplified because R =1 and b~! = 0. Scalar curvature R and the
torsion 2-form field T¢ 6 with a SU (2)-Yang-Mills structure are

j7AY
defined in terms of the affine connection I'* ~ and the SU(2) val-

“y

uated (structural torsion potential) faﬂ

R:g’“’RW Ruv—Rmv (106)
;Lkv - 8” - ap ;,LU

T = 8Mf‘i — 0 fG +ep L fS

G and A are the geometrically induced Newton gravitational con-
stant (as we have been discussed before) and the integration cos-
mological constant, respectively. From the last equation for the
totally antisymmetric Torsion 2-form, the potential f “u define the

affine connection Ffw. Similarly to the case of Einstein-Yang-Mills
systems, for our new UFT model it can be interpreted as a pro-
totype of gauge theories interacting with gravity (e.g. QCD, GUTs,
etc.). We stress here the important fact that all the fundamen-
tal constants are really geometrically induced as required by the
Mach principle. After varying the action, we obtain the gravita-
tional equation (41), namely

Rap — g;ﬁR 6 (—hahs + g"‘ﬁh o) (107)
g
+ngom I:Fa}LF,B - FMUFMU%[} ] +Agaﬂ
with the “gravitational constant” geometrically induced as
R 8 G
Kg=— = — (108)
2w c today

and the field equation for the torsion 2-form in differential form

A T+ 56 (fy A" Te =Ty A fo) = —2* f°

Notice that (108) kg and A are not independent, but related by
Rs =2A. In this case 8 =0 we have the simplest expression:

(109)

Rs A

2 2
2(1+ %) (1+%)
in consequence, generalizing the conjecture of Markov (1984), if A
is proportional to the energy, k goes as A if |[A| <1, and as A~!
in other case.
We are going to seek for a classical solution of (107) and (109)
with the following ansatz for the metric and gauge connection

Kg

ds’ =dt?> +a®* (1)o' ®@o' =dr? +e' @e'. (110)

Here 7 is the Euclidean time and the dreibein is defined by el =
a(t)o'. The gauge connection is

fi=fpaxt = fol, (111)
fora,b,c=1,2, 3, and for a, b, c =0 we have
= fRdxt =so”. (112)

This choice for the potential torsion is accordingly to the symme-
tries involved in the problem.

The o' 1-form satisfies the SU (2) Maurer-Cartan structure
equation
do? 4+ &% 0P AoC=0 (113)
Notice that in the ansatz the frame and SU (2) (isospin-like) in-
dices are identified (as for the case with the non-abelian-Born-
Infeld (NBI) Lagrangian of Cirilo-Lombardo, 2005) The torsion

2-form

1
TV = S Tdx Adx (114)
becomes
1
T¢ =df* + —s”bcfb A f€ (115)
( f+= f > ¢’ not
d*Ta—i—%SabC(fb AF T, _ % Tb/\fc) — _2A*fa (116)
(=2f + fH(A = frdt AeP e = —2adT Aeb Aef
*7da 2 ea
T'=h(-2f+ f )d‘L’Aa—2 (117)
. dr neb aec
fi= —fT (118)

Note that to be complete in our description of the possible physi-
cal scenarios, we include f9 as an U (1) component of the torsion
potential (although does not belong to the space SU(2)/U(1)).
Having all the above issues into account, the expression for the
torsion is analogous to the non-abelian 2-form strength field of
Cirilo-Lombardo (2005).

Inserting T? from (115) into the dynamic equation (109) we
obtain
(=2f + (1 = f)dt AeP ne€ =—rdt AeP A€, (119)

and from expression (119) we have an algebraic cubic equation
for f

(=2f+fHA-FHH+r=0 (120)
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Fig. 1. Wormbhole solution {a vs. t) for f=2.35and K =7 < 1.

We can see that, in contrast with our previous work with a
dualistic theory (Cirilo-Lombardo, 2005) where the NBI energy-
momentum tensor of Born-Infeld was considered, there exist three
non-trivial solutions for f, depending on the cosmological constant
A. In this preliminary analysis of the problem, only the values of f

that make the quantity (— f+ % f 2) € R. Consequently for A =2
we find f =2.35 then

2 &l
gc=§%; TS =0 (121)
That is, only spatial torsion field is non-vanishing while cosmic
time torsion field vanishes (an analogous feature with magnetic
and electric Yang—Mills can be seen in the solution of Giddings and
Strominger and in Cirilo-Lombardo, 2005). Substituting the expres-
sion for the torsion 2-form (121)" into the symmetric part of the
variational equation we reduce the gravitational equations to an

ordinary differential equation for the scale factor a,

1\’ 1 3 3

a K

31 (=) - = —A:—g(2 52) 2 f2(f—2)% (122
() = a2 F248°)+ 5512 =2)% (122)

that in the case for the computed value for f ~ 2.35 with s =10
and A <1 the scale factor is described in Fig. 1 and the scale
factor goes as:

a(r) =A"1/2

2 1/2
X \/<1 - ulngA> sinh(\/A/a (t — ro)> —1+kg(f2+52)/4

(123)

where we define the geometrically induced fine structure function
a=kg(f?+5%) /4

10.1. Primordial symmetries of standard model and torsion field

In Alvarez-Castillo et al. (2017) the cross section for neu-
trino helicity spin flip obtained from this type of f(R; T) model
of gravitation with dynamic torsion field introduced by us in
Cirilo-Lombardo (2013), was phenomenologically analyzed using
the relation with the axion decay constant f; (Peccei-Quinn pa-
rameter) due the energy dependence of the cross section. Conse-
quently, the link with the phenomenological energy/mass window
was found from the astrophysical and high energy viewpoints. The
important point is that, in relation with the torsion vector interac-
tion Lagrangian, the f, parameter gives an estimate of the torsion

a?

° .o A\ 2
1 In the tetrad: R00=73§,Rab=7|:§+2<§> 7li|.

field strength that can variate with time within cosmological sce-
narios as the described above, potentially capable of modifying the
overall leptogenesis picture, the magnetogenesis, the baryogenesis
and also to obtain some indication about the primordial (super)
symmetry of the early universe.

In FRW scenario given here we saw that the torsion through its
dual vector, namely:

250C
h°=g ‘;;dt A el (124)

goes as ~ a2 with C; a covariantly constant vector field (e.g.:

%CT = 0) that we take of the form C; ~ (é—i—q, (due the

Hodge-de Rham decomposition of h;, expression (42)) where 6
is a pseudoscalar field playing the obvious role of axion and q::
vector field linking h® with the magnetic field via the equation of
motion for the torsion. Consequently, the torsion dual vector h has
the maximum value when the radius of the universe is apjn, €.g.
(min = a (Tp) increases to the maximum value the spin-flip neu-
trino cross section and, for instance, the quantity of right neutrinos
compensating consequently the actual (e.g. drodqy = a (7)) asym-
metry of the electroweak sector of the SM (see the behavior of
a in Fig. 1). This fact indicates that the original symmetry group
contains naturally SUg (2) x SU[ (2) x U (1) typically inside GUT’s
structurally based generally in SO (10), SU(5) or some exceptional
groups as E(6), E (7), etc.

Also it is interesting to note that from the FRW line element
written in terms of the cosmic time the Hubble flow electro-
magnetic fields E, = (0, E;) = a=2(0,3;A;) and By, = (0, B;) =
a2 (O, g,»jka,-Ak)

_ o — _ _
v-5+<7ve+n).(a23)=0 (125)

(127)
(128)

where T, = f, (upu, ¥°by, eA.....) is a vector function of phys-
ical entities as potential vector, vorticity, angular velocity, axial
vector etc. as described by expression (42). In principle we can
suppose that it is zero (low back reaction, Kolb and Turner, 1994)
then

0 o

— o—

h=-Vo, h" = —0.60 (129)
f Fr

being |82 — vi_ %B,QVX] (a®B) =0 the second order equation

for the magnetic field that shows the chiral character of the plasma
particles.

10.2. Magnetogenesis and cosmic helicity

Now we pass to see which role plays the torsion field in the
magnetic field generation in a FRW cosmology. Taking as the start-
ing point the (hyper) electrodynamic equations (Joyce and Sha-
poshnikov, 1997) and introducing a Fourier mode decomposition
B(%) = / kB () e~*¥ with B (k) =h € where i=1,2, €2 =
1, _e)i . _k) = _e)l . _e)z = 0 the torsion-modified dynamical equa-
tions for the expanding FRW become
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- k2 ah® k|7 _

Z+|2a+— )+ z=0 (130)
o o

: .k ah® |k|

z+|(2a+=) - z=0 (131)
o o

where the magnetic field is written in terms of complex variable
z(2) as

z=hy +ihy (132)

Z=hy —ihy (133)

from equation (117) we see that the solution for z namely:
(2042 ah®jk)

z=2zp€ <2a+ 4 T>+f 7 (134)

contains the instable mode in the sense of Joyce and Shaposhnikov
(1997) gr <[ ”(’;—Odr. Consequently a defined polarization of the

magnetic field appear and from the dynamical equation for the
torsion field: V[, h,)=—AF,, that in this case we have
Viihe = Vi (a*zqr) — —AB (135)
that implies a relation between the vector part of the h® (namely
g:) with the vector potential A¥ of the magnetic field as follows:

Vigr ~ —rgij v AF (136)

Consequently, the primordial magnetic field (or seed) would be
connected in a self-consistent way with the torsion field by
means of the dual vector hg. It (h;) in turn, would be connected
phenomenologically with the physical fields (matter) of theory
through Hodge-de Rham decomposition expression (42). We note
from expression (120) that the pseudo-scalar (axion) controls the
stability, growth and dynamo effect but not the generation of the
magnetic field (primordial or seed) as is clear from expression
(122) where the (pseudo-)vector part of hg contributes directly to
the generation of the magnetic field as clearly given by eq. (121).

10.3. Magnetogenesis and cosmic helicity Il

In the case to include the complete alpha term given by equa-
tions (92) and in the same analytical conditions (e.g.: Fourier de-
composition) from the previous paragraph, the torsion-modified
dynamic equations for the expanding FRW become

; - k2N alkl o Cosa‘fgen _

74 | (2a+ = )+ = (o — "2 1) 1720 (137)
o o cos B |7

. . k2 alk| 0 Cosa‘]gen

24 (2a+ =) == o — ") 1220 (138)
o o cos B |z|

where in this case the magnetic field is written (by convenience)
in terms of complex variable z(z) as

z=|z]e! - 7= <|é|+i,'o |z|>e"P (139)
z=[ze > 7= <|2| _ip |z}> oo (140)

From equation (124) we see that the solution for z namely:

12 alk] ,, 0@ Uge”
z=zpexp| —(2a+ —7 +/— h——
o o cos B |zo|

(141)

with zg = |zo|€”  (|zo| = const)

contains the instable mode in the sense of Joyce and Shaposhnikov
cos o 7gm
cos Blz|

(1997) for example (117) k7 < [ & (ho — dr. But now

there are not a definite polarization for the magnetic field, but now all
depends on the difference:

/E ho_cosotljgen
o cos B |zo|
Replacing explicitly h, from the decomposition (42) we can see

in a clear form, the interplay between the physical entities, as the
vortical and magnetic helicities for example:

cosa ‘7gen

VQ+4n[h +qsnsls - B] + yihy + 2P
0 3 M T (sTisUs yiny — y2Fo cos B |zo]

Now considering in ‘jgen

the fermionic current qu%y,upf, Q
f

cos B
coso

as the axion a, |z9| =
ing expression:

and putting ¥, =0 we have an interest-

4 = 7 v
Voa + 3 [hm +gsnsills - B] + y1hy = quwfy“wf
f

The above expression it is very important because establishes
the desired connection between helicities, magnetic field and
fermionic fields and axion. We can order it as

_ 4 o —
Voa — ZQfllff)/mﬁf =—[? (hm-i-LIsnsUs'B)-i-V]hv}
f

We now clearly see the link between the axion and the fermionic
fields (the dynamics of the interacting fields and the involved cur-
rents) in the LHS and the macroscopic physical observables in the
RHS giving an indication of the origin of leptogenesis and baryoge-
nesis in the context of this non-Riemannian gravitational model.

10.4. Dark matter, energy condition and UFT model

As is well know, in a wormhole solution energy conditions are
always violated in the standard general relativity. In the context
of general relativity, this fact is closely related to the necessity
to introduce exotic matter through the energy momentum tensor.
Physically speaking, the observations of Type la Supernova (SNIa),
together with the cosmic microwave background radiation (CMB)|
and the larger scale structure, suggest that the present universe is
in accelerating expansion, which needs something as dark energy
with a negative equation of state (e.g. phantom field, non-canonical
dynamical terms, etc.). The simplest standard model introduces
the cosmological constant term A, which has a constant effective
equation of state w = —1, and drive the acceleration of the uni-
verse assuming the effective energy of the A term occupies ~ 73%
of the total energy (assuming also ~ 23% dark matter, ~ 4% baryon
matter and ~10-5% radiation) constituting the ACDM model. This
simple model satisfies more or less all the cosmological observa-
tions but is still a phenomenological one. Also the model suffers 2
important drawbacks: the ‘fine-tunning’ (Jain et al., 2015) and the
‘coincidence’ (Velten et al., 2014) problems. In consequence other
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candidates as the dark energy (especially the dynamical models)
are required. Beyond the general relativity, there are proposals in
the literature where wormoholes of different kinds (Bronnikov and
Galiakhmetov, 2015) and other solutions with torsion were per-
formed. For example, the Einstein-Cartan model ECM is the sim-
plest version of the Poincare gauge theory of gravity (PGTG), in
which the torsion is not dynamic because the gravitational ac-
tion is proportional to the curvature scalar of Riemann-Cartan
space-time (the ECT is a degenerate gauge theory in this particu-
lar aspect): wormholes were treated for example in Bronnikov and
Galiakhmetov (2015).

The proposed model presented in this paper is purely geomet-
ric: no energy-momentum tensor (EMT) is introduced. As have
been seen, an effective TEM (e.g.: eqs. (39)-(41)) is obtained when,
from the general gravitational equations, the standard Einstein ten-
sor is isolated. In our case, the effective TEM of the wormhole
solution is diagonal (in the corresponding coordinates) with the
isotropic typical structure ~ R ® SU (2). Consequently, we can
proceed analyzing this effective TEM (geometrical) by mean the
standard energy conditions expressions (Hawking and Ellis, 1973),
namely:

i) WEC (weak energy condition)

Tl cts" 20,

(¢V: any timelike vector) = p =20, p + px 20, (k=1,2,3)

guarantees that the energy density as measured by any local ob-
server is nonnegative.
ii) DEC (dominant energy condition)

Toolefs 2 |Tiklefy

(¢": any timelike vector) = p 20, p + p 20, (i,k=1,2,3)

includes WEC and requires each principal pressure never exceeds
the energy density which guarantees that the speed of sound can-
not exceed the light velocity c.

iii) SEC (strong energy condition)

requires — p + Zpk >0

and defines the sign of the acceleration due to gravity. In our case,
the wormhole solution presented in Fig. 1, the condition iii) is ful-
filled jointly with conditions i) and ii). As we have made mention
above, in Bronnikov and Galiakhmetov (2015) wormhole solutions
with nondynamical torsion were constructed in the context of the
standard Einstein-Cartan model (ECM) fulfilling the energy con-
ditions also. The fundamental differences between the model in
Bronnikov and Galiakhmetov (2015) and here are:

e In the case of Bronnikov and Galiakhmetov (2015) the energy
conditions are fulfilled only for particular values (local conditions
or windows) of the parameters in the introduced equation.

e In our case there are not free parameters but geometrically
induced functions mutually related. Consequently, there are no pa-
rameters that can be freely chosen but geometrically induced and
mutually related functions, so that the freedom to choose them in-
dependently is restricted: e.g. once one of them is fixed, the others
are automatically related to each other by means of expressions of
a dynamic character (like the analogue of field b) or by means of
the constraint given by A, etc. (see Sections 5 and 6). This im-
portant fact, which will be treated in a particular way in another
work (Cirilo-Lombardo, in preparation), would give an indication
that the solutions could have an overall character in our model.

11. Discussion and perspectives

In this paper we have introduced a simple geometric Lagrangian
in the context of a unified theory based on affine geometry. From

the functional action proposed, that is as square root or measure,
the dynamic equations were derived: an equation analogous to
trace free Einstein equations TFE and a dynamic equation for the
torsion (which was taken totally antisymmetric). Although the aim
of this paper was to introduce and to analyze the model from the
viewpoint of previous research, we bring some new results and
possible explanations about the generation of primordial magnetic
fields and the link with the leptogenesis and baryogenesis. The
physically admissible analysis of the torsion vector h,, from the
point of view of the symmetries, has allowed us to see how matter
fields can be introduced in the model. These fields include some
dark matter candidates such as axion, right neutrinos and Majo-
rana. Also the vorticity can be included in the same way and, as
the torsion vector is connected to the magnetic field, both vortic-
ity and magnetic field can be treated with equal footing. The other
point is that from the wormhole solution in a cosmological space-
time with torsion we show that primordial cosmic magnetic fields
can be originated by the dual torsion field h;, being the axion field
contained in h,, the responsible to control the dynamics and sta-
bility of the cosmic magnetic field, but is not responsible of the
magnetogenesis itself. Also the energy conditions in the wormhole
solution are fulfilled. The last important point to highlight is that
the dynamic torsion field h;, acts as mechanism of the reduction
of an original (early, primordial) GUT (Grand Unified Theory) sym-
metry of the universe containing ~SU(3) xSU(2)r xSU(2); xU(1)
to SU(3) xSU(2); xU(1) today. Consequently, the GUT candidates
are SO(10), SU(5) or some exceptional groups as E(6), E (7) for
example.
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Appendix A

We must to remind that the model where the interaction arises
is based on a pure affine geometrical construction where the geo-
metrical Lagrangian of the theory contains dynamically the gener-
alized curvature R :det(R"M), namely

Lg = [detRY, Ray = \/detG

characterizing a higher dimensional group manifold e.g.: SU(2, 2).
Then, after the breaking of the symmetry, typically from the con-
formal to the Lorentz group e.g.: SU(2,2) — SO (1, 3), the gener-
alized curvature becomes to

a __ a a a a _ ,av
R, =2 (4 + 19) +RY (MG =e"My,)
taking the original Lagrangian Lg the following form: Ly —

\/ Det [32 (g + f%, fav ) + 24Ruu) + 2 Riaw) + R%, Ray |, rem-

iniscent of a nonlinear sigma model or M-brane. Notice that ¢,
in a sharp contrast with the tetrad field e“M, carries the symme-
try equ f% = fuv = — fuu.— see (Velten et al,, 2014; Hawking and
Ellis, 1973; Cirilo-Lombardo, 2010, 2011a, 2011b, 2007) for more
mathematical and geometrical details of the theory.

Consequently the generalized Ricci tensor splits into a symmet-
ric and antisymmetric part, namely:
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o
where Ry, is the general relativistic Ricci tensor constructed with
the Christoffel connection, Tupa Ty ” is the quadratic term in the

torsion field and the antisymmetric last part %QT L% is the diver-
gence of the totally antisymmetric torsion field that introduce its
dynamics in the theory. From a theoretical point of view our the-
ory containing a dynamical totally antisymmetric torsion field is
comparable to that of Kalb-Ramond in string or superstring the-
ory (Green et al, 1987) but in our case all: energy, matter and
interactions are geometrically induced.

Notice that *f,, in Ly must be proportional to the physical
electromagnetic field, namely jF,, where the parameter j ho-
mogenizes the units such that the combination g, + jF,, has
the correct sense. We will not go into details but the great advan-
tage of the model is that it is purely geometric without energy-
momentum tensor added by hand.

Appendix B

On the g-variation:
from

£ =/Igly/det (an) \/ b2 Fu I — g (FFrv)?
=/|glV/det (@M)R (B.1)
where
_ % _ 1+ Rs/4) (B2)
B 1+ (Ra/4))
Rs = g*"Rug, (B.3)
Ra= f¥Ryp, (B.4)

and A arbitrary constant. Knowing that, in the metrical case we
have as usual procedure:

L= [a (\/@\/det (ak)) R+ /|gl/det (aA)SR] (B.5)
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Appendix C

Some remarks on the general Hodge-de Rham decomposition
of h = hydx®

Theorem 6. if h = hodx® ¢ F’ (M) is a 1-form on M, then there exist

a zero-form Q, a 2-form o = Ay, dx* A dx” and an harmonic 1-form

q = qedx® on M that

h= dQ+8a+q—>ha_VaQ+8a VﬁAyg;—i—qa (C.1)
Notice that even if is not harmonic, and assuming that gy is

a polar vector, an axial vector can be added such that the above

expression takes the form

Vﬁ Ay5 + 85}/6

8
hey = Vo + Sgy Mgys + qa (C2)

where Mg, s is a completely antisymmetric tensor (of such a man-
ner that sﬂy Mgys = y°bg is an axial vector).

Consequently, we know that in unified theories where we are
not able to deal with energy-momentum tensor, the fields and
they interactions are effectively restricted due the same geometri-
cal framework: the spacetime itself. This fact permits us to rewrite
(14) considering the physical quantities of interest:

hy =V Q+68"°VgA 5+ 1°by + (Py — eAq) .

Appendix D
D.1. Electrodynamical equations in 3 + 1

The starting point will be the line element in 3 4+ 1 split-
ting (Thorne and Macdonald, 1982; Macdonald and Thorne, 1982):
the 4-dimensional spacetime is split into 3-dimensional space and
1-dimensional time to form a foliation of 3-dimensional spacelike
hypersurfaces. The metric of the spacetime is consequently, given
by

ds? = —a2dt® + y;5 (dxf + ﬁfdt) (dxf + ﬁjdt)

where y;; is the metric of the 3-dimensional hypersurface, « is
the lapse function, and B! is the shift function. At every spacetime
point, a fiducial observer (FIDO) is introduced in such a way that
his corresponding world-line is perpendicular to the hypersurface
where he is stationary.

His FIDO 4-vector velocity is then given by

Uk — & (1.-6).Up = (-2,0,0,0)

one deals with the physical quantities defined on the 3-dimensional
hypersurface as measured by the FIDO. For example, the electric
field and the magnetic field are defined with the help of the U#
respectively, by
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notice that the zero components are null: E® = B = 0. Also, the
4-current J# can be similarly decomposed as

I = peUt +
where we defined
Pe=—] HU/L

=" Ut

then jO =0. So that j, E and B can be treated as 3-vectors in
spacelike hypersurfaces. In terms of these 3-vectors the Maxwell
eqs. can be written as

V-E=4mp.
V-B=0
V x (@E)=—(0; — Lg)B

—3%B+(B-V)B—(B-V)B
—(3 — Lp)E +4maj
=00E—(B-VYE+(E-V)B+4naj

V x (B)

The derivatives in these equations are covariant derivatives with
respect to the metric of the absolute space y;; being Lg the Lie
derivative operator geometrically defined as: LgV =d (i,g . V) with
V a vector field.

ZAMOs observers

o2 e

in the Boyer-Lindquist coordinates we have er, ey and e, =
; R . .

maw. The plasma 4-velocity (medium) u can be expressed as
u=y (U+V) where V is the plasma 3-velocity with respect to

the ZAMOs.

References

Alvarez-Castillo, D., Cirilo-Lombardo, D.J., Zamora-Saa, J., 2017. Solar neutrinos, he-
licity effects and new affine gravity with torsion Il J. High Energy Astro-
phys. 13-14, 10-16.

Barcelo, C., Carballo-Rubio, R., Garay, LJ., 2014. Phys. Rev. D 89, 124019.

Barrau, A., Linsefors, L., 2014. J. Cosmol. Astropart. Phys. 12, 037.

Blackett, P.M.S., 1947. Nature 159, 658.

Bronnikov, K.A., Galiakhmetov, A.M., 2015. Gravit. Cosmol. 21 (4), 283-288.

Carballo-Rubio, R., 2015. Phys. Rev. D 91, 124071.

Carter, B., 1968. Commun. Math. Phys. 10, 280.

Cirilo-Lombardo, D.J., 2005. Class. Quantum Gravity 22, 4987-5004.

Cirilo-Lombardo, D.J., 2007. J. Math. Phys. 48, 032301; Class. Quantum Gravity 22
(2005) 4987.

Cirilo-Lombardo, D.J., 2010. Int. ]. Theor. Phys. 49, 1288.

Cirilo-Lombardo, D.J., 2011a. Int. J. Theor. Phys. 50, 1699.

Cirilo-Lombardo, D.J., 2011b. Int. ]J. Theor. Phys. 50, 3621.

Cirilo-Lombardo, DJ., 2013. Astropart. Phys. 50-52, 51.

Cirilo-Lombardo, D.J., 2015. Int. ]. Theor. Phys. 54 (10), 3713-3727.

Cirilo-Lombardo, D.J., 2017. Int. J. Geom. Methods Mod. Phys. 14 (07), 1750108.

Cirilo-Lombardo, D.J. Work in preparation.

Einstein, A., 2014. The Meaning of Relativity: Including the Relativistic Theory of the
Non-Symmetric Field. PUP, Princeton Science Library.

Ellis, G., 2014. Gen. Relativ. Gravit. 46, 1619.

Ellis, J., Mavromatos, N.E., 2013. Phys. Rev. D 88 (8), 085029.

Ellis, G.ER, van Elst, H., Murugan, J., Uzan, ].-P, 2011. Class. Quantum Gravity 28,
225007.

Finkelstein, D.R., Galiautdinov, A.A., Baugh, J.E., 2001. ]J. Math. Phys. 42, 340-346.

Firouzjaee, ].T,, Ellis, G.ER., 2015. Phys. Rev. D 91, 103002.

Green, M.B., Schwartz, ].H., Witten, E., 1987. Superstring Theory I and II. Cambridge
Monogr. Math. Phys. Cambridge University Press.

Hawking, S.W., Ellis, G.ER., 1973. The Large Scale Structure of Spacetime. Cambridge
University Press, CUP, England.

Helmholtz, H., 1858. Uber Integrale der Hydrodynamischen Gleichungen, Welche
den Wirbelbewegungen Entsprechen. ]. Reine Angew. Math. 1858 (55), 25-55.

Helmbholtz, H., 1867. On integrals of the hydrodynamical equations, which express
vortex-motion. Philos. Mag. 33 (226), 485-512.

Jain, P, Kashyap, G., Mitra, S., 2015. Int. J. Mod. Phys. A 30, 1550171.

Joyce, M., Shaposhnikov, M., 1997. Phys. Rev. Lett. 79, 1193.

Kalb, M., Ramond, P, 1974. Phys. Rev. D 9, 2273.

Kharzeev, D., 2010. Ann. Phys. 325, 2015.

Kolb, E., Turner, M., 1994. The Early Universe, Frontiers in Physics (Book 69). West-
view Press.

Macdonald, D., Thorne, K., 1982. Mon. Not. R. Astron. Soc. 198, 345.

Mansouri, F., 1976. Phys. Rev. D 13, 3192.

Markov, M.A., 1984. Ann. Phys. 155, 333-357.

Mclnnes, B., 1984. Class. Quantum Gravity 1, 105-113.

Ogievetsky, V.I, Polubarinov, L.V., 1965. Notoph and photon, preprint JINR P-2330
(unpublished).

Ogievetsky, V.I, Polubarinov, L.V., 1967. Sov. ]. Nucl. Phys. 4, 156.

Rddler, K.-H., Rheinhardt, M., 2007. Geophys. Astrophys. Fluid Dyn. 101 (2), 117-154.

Thorne, K., Macdonald, D., 1982. Mon. Not. R. Astron. Soc. 198, 339.

Velten, H.E.S., vom Marttens, R.E, Zimdahl, W., 2014. Eur. Phys. J. C 74 (11), 3160.

Weyl, H., 1952. Space-Time-Matter. Dover.

Wilzcek, F., 1987. Phys. Rev. Lett. 58, 1799.

Xin, Y., 1996. General Relativity on Spinor-Tensor Manifold. In: Bergman, P.G., de
Sabbata, V., Treder, HJ. (Eds.), Quantum Gravity - Int. School on Cosmology &
Gravitation, XIV Course. World Scientific, pp. 382-411.

Yano, K., 1952. Ann. Math. 55, 328.


http://refhub.elsevier.com/S2214-4048(17)30038-1/bib616373s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib616373s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib616373s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib746667656E32s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib746667656Es1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib626C61s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib62726F6Es1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib746667656E33s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6B696Cs1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib72656633s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib646933s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib646933s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6469s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib646931s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib646932s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib646934s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib64696535s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib7232s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib65696Es1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib65696Es1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib7466s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib74667375677261s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib746632s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib746632s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib746631s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib746667656E34s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib677377s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib677377s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib656C6C6973s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib656C6C6973s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib68656Cs1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib68656Cs1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib68656C31s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib68656C31s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6674s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib736861s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6F67706F6C33s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib646Bs1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6B6F6C62s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6B6F6C62s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6B7431s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6D616Es1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6D6172s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6D63s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6F67706F6C32s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib72s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6B74s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib636F696Es1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib7765796Cs1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib77696Cs1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib7975s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib7975s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib7975s1
http://refhub.elsevier.com/S2214-4048(17)30038-1/bib6B696C79616Es1

	Non-Riemannian geometry, Born-Infeld models and trace free gravitational equations
	1 Introduction
	2 Basis of the metrical-afﬁne geometry
	3 Geometrical Lagrangians: the generalized Born-Infeld action
	4 Field equations
	4.1 δgLG
	4.2 δfLG

	5 Emergent trace free gravitational equations: the meaning of Λ
	6 On the constancy of G
	7 The vector hμ and the energy-matter interpretation
	7.1 Killing-Yano systems and the vector hμ

	8 Physical consequences
	8.1 Electrodynamic structure in 3+1
	8.2 Dynamo effect and geometrical origin of αΩ term
	8.3 The generalized Lorentz force
	8.4 Generalized current and α-term
	8.5 Seed magnetic ﬁeld
	8.6 Comparison with the mean ﬁeld formalism

	9 Torsion, axion electrodynamics vs. Chern Simons theory
	10 Magnetic helicity generation and cosmic torsion ﬁeld
	10.1 Primordial symmetries of standard model and torsion ﬁeld
	10.2 Magnetogenesis and cosmic helicity
	10.3 Magnetogenesis and cosmic helicity II
	10.4 Dark matter, energy condition and UFT model

	11 Discussion and perspectives
	Acknowledgments
	References


