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Non-Riemannian generalization of the standard Born–Infeld (BI) Lagrangian is introduced and analyzed
from a theory of gravitation with dynamical torsion field. The field equations derived from the proposed 
action lead to a trace free gravitational equation (non-Riemannian analog to the trace free equation 
(TFE) from Finkelstein et al., 2001; Ellis et al., 2011; Ellis, 2014) and the field equations for the torsion 
respectively. In this theoretical context, the fundamental constants arise all from the same geometry 
through geometrical invariant quantities (as from the curvature R). New results involving generation of 
primordial magnetic fields and the link with leptogenesis and baryogenesis are presented and possible 
explanations given. The physically admissible matter fields can be introduced in the model via the torsion 
vector hμ. Such fields include some dark matter candidates such as axion, right neutrinos and Majorana 
and moreover, physical observables as vorticity can be included in the same way. From a new wormhole 
solution in a cosmological spacetime with torsion we also show that the primordial cosmic magnetic 
fields can originate from hμ with the axion field (that is contained in hμ) the responsible to control the 
dynamics and stability of the cosmic magnetic field but not the magnetogenesis itself. As we pointed out 
before (Cirilo-Lombardo, 2017), the analysis of Grand Unified Theories (GUT) in the context of this model 
indicates that the group manifold candidates are based in S O (10), SU (5) or some exceptional groups as 
E(6), E (7), etc.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The idea to construct a complete geometrization of the physics 
is very old. The drawback of the Einstein GR (General Relativ-
ity) equations is the RHS: Rαβ − gαβ

2 R = κTαβ with the sym-
metric tensor (non-geometrical) κTαβ that introduces heuristically
the energy–momentum distribution. Similar drawbacks are con-
tained by the unimodular gravity. It is well known that the uni-
modular gravity is obtained from Einstein–Hilbert action in which 
the unimodular condition:

√−det gμν = 1 is also imposed from 
the very beginning (Finkelstein et al., 2001; Ellis et al., 2011;
Ellis, 2014). The resulting field equations correspond to the trace-
less Einstein equations and can be shown that they are equivalent 
to the full Einstein equations with the cosmological constant term 
�, where � enters as an integration constant and the equivalence 
between unimodular gravity and general relativity is given by the 
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arbitrary value of lamda. On the other hand the idea that the cos-
mological term arises as an integration constant is one of the mo-
tivations for the study of the unimodular gravity, for recent study, 
see Barrau and Linsefors, Barcelo et al., Carballo-Rubio, Firouzjaee 
and Ellis (2014, 2014, 2015, 2015) and Ellis and Mavromatos
(2013) in the context of supergravity. The fact that the determi-
nant of the metric is fixed has clearly profound consequences on 
the structure of given theory. First of all, it reduces the full group 
of diffeomorphisms to invariance under the group of unimodular 
general coordinate transformations which are transformations that 
leave the determinant of the metric unchanged.

Similar thing happens in the non-Riemannian case, as pointed 
out in Cirilo-Lombardo (2010, 2011a, 2011b, 2007, 2013), where 
the corresponding affine geometrical structure induces naturally 
the following constraint: K

g = constant . This natural constraint im-
pose a condition (ratio) between both basic tensors through their 
determinants: the metric determinant g and the fundamental one 
K (in the sense of a nonsymmetric theory that contains the an-
tisymmetric structures), independently of the precise functional 
form of K or g . In this work our starting point will be precisely 
the last one, where a metric affine structure in the space–time man-
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ifold (as described in Section 2) will be considered. We will also 
show that trace free gravitational equations can be naturally ob-
tained when the Lagrangian function (geometrical action) is taken 
as a measure involving a particular combination of the fundamen-
tal tensors of the geometry:√∣∣det f

(
gμν, fμν,Rμν

)∣∣
with the (0, 2) tensors gμν, fμν,Rμν : the symmetric metric, the 
antisymmetric one (that acts as potential of the torsion field) and 
the generalized Ricci tensor (proper of the non-Riemannian geom-
etry). The three tensors are related with a Clifford structure of 
the tangent space (for details see Cirilo-Lombardo, 2015) where 
the explicit choice for f

(
gμν, fμν,Rμν

)
is given in Section 3. This 

type of Lagrangians, because are non-Riemannian generalizations 
of the well known Nambu–Goto and Born–Infeld (BI) ones, can 
be physically and geometrically analyzed. Due the pure geomet-
rical structure of the theory, induced energy momentum tensors 
and fundamental constants (actually functions) emerge naturally. 
Consequently, this fact allows the physical realization of the Mach 
principle that is briefly treated in Section 8 after the (trace free) 
dynamic equations in Section 4 are obtained.

In Section 5 the trace free gravitational equations and the 
meaning of the cosmological term as integration constant are dis-
cussed from the physical point of view, meanwhile in Section 6
the constancy of G (Newton constant) is similarly discussed. The 
important role played by the dual of the torsion field as geomet-
rical energy–momentum tensor is given in Section 7. Some phys-
ical consequences of the model, as the geometrical origin of the 
α�-dynamo, is presented in Section 9 that it is very important 
because establish the link between the mathematical structure of 
the model of the first part of the article and the physics of the 
early universe and the particle physics of the second half of this 
work. In Section 10 the direct relation between the torsion with 
axion electrodynamics and Chern–Simons (CS) theory is discussed 
considering the geometrical structure of the dual vector of the tor-
sion field. In Section 11 an explanation about the magnetogenesis 
in FRW scenario, the structure of the GUT where the SM is derived 
and the role of the axion in the dynamics of the cosmic magnetic 
field is presented. Finally some concluding remarks are given in 
Section 11.

2. Basis of the metrical-affine geometry

The starting point is a hypercomplex construction of the (metric 
compatible) spacetime manifold (Cirilo-Lombardo, 2015; McInnes, 
1984)

M, gμν ≡ eμ · eν (1)

where for each point p ∈ M there exists a local affine space A. 
The connection over A, �̃, define a generalized affine connection 
� on M , specified by (∇, K ), where K is an invertible (1,1) tensor 
over M . We will demand for the connection to be compatible and 
rectilinear, that is

∇K = K T , ∇g = 0 (2)

where T is the torsion, and g the space–time metric (used to 
raise and lower the indices and determining the geodesics), that 
is preserved under parallel transport. This generalized compati-
bility condition ensures that the generalized affine connection �
maps autoparallels of � on M into straight lines over the affine 
space A (locally). The first equation above is equal to the con-
dition determining the connection in terms of the fundamental 
field in the U F T non-symmetric. Hence, K can be identified with 
the fundamental tensor in the non-symmetric fundamental theory. 
This fact gives us the possibility to restrict the connection to a 
(anti-)Hermitian theory.

The covariant derivative of a vector with respect to the gener-
alized affine connection is given by

Aμ;ν ≡ Aμ ,ν +�
μ
αν Aα (3)

Aμ;ν ≡ Aμ ,ν −�α
μν Aα (4)

The generalized compatibility condition (2) determines the 64
components of the connection by the 64 equations

K μ
ν;α = K μ

ρ T ρ
να where T ρ

να ≡ 2�
ρ

[αν] (5)

Notice that by contracting indices ν and α in the first equation 
above, an additional condition over this hypothetical fundamental 
(nonsymmetric) tensor K is obtained

Kμα;α = 0

that, geometrically speaking, reads

d∗K = 0.

This is a current-free condition over the tensor K . Notice that the 
metric is used here to down the indices (metric compatible space–
time) and consequently we can work also with Kαν = gαβ K β

ν .
The metric is uniquely determined by the metricity condition, 

which puts 40 restrictions on the derivatives of the metric

gμν,ρ = 2�(μν)ρ (6)

The space–time curvature tensor, that is defined in the usual way, 
has two possible contractions: the Ricci tensor Rλ

μλν = Rμν , and 
the second contraction Rλ

λμν = 2�λ
λ[ν,μ], which is identically zero 

due to the metricity condition (2).
In order to find a symmetry of the torsion tensor, let us de-

note the inverse of K by K̂ . Therefore, K̂ is uniquely specified by 
condition K̂ αρ Kασ = K αρ K̂ασ = δ

ρ
σ .

As it was pointed out in Cirilo-Lombardo (2010, 2011a, 2011b,
2007, 2013), inserting explicitly the torsion tensor as the antisym-
metric part of the connection in (5), and multiplying by 1

2 K̂ αν , 
results, after straightforward computations, in(

Ln
√−K

)
,μ −�ν

(μν) = 0 (7)

where K = det
(

Kμρ

)
. Notice that from expression (7) we arrive at 

the relation between the determinants K and g:

K

g
= constant

(strictly a constant scalar function of the coordinates). Now we can 
write

�ν
αν,β − �ν

βν,α = �ν
νβ,α − �ν

να,β , (8)

as the first term of (7) is the derivative of a scalar. Then, the tor-
sion tensor has the symmetry

T ν
ν[β,α] = T ν

ν[α,β] = 0 (9)

This implies that the trace of the torsion tensor, defined as T ν
να , 

is the gradient of a scalar field

Tα = ∇αφ (10)

In McInnes (1984) an interesting geometrical analysis is pre-
sented of non-symmetric field structures. There, expressions pre-
cisely as (1) and (2) ensure that the basic non-symmetric field 
structures (i.e. K ) take on a definite geometrical meaning when 
interpreted in terms of affine geometry. Notice that the tensor 
K carries the 2-form (bivector) that will be associated with the 
fundamental antisymmetric form in the next sections. Such an-
tisymmetric form is introduced from the tangent space via the 
generalization of the Ambrose–Singer theorem by exponentiation.
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3. Geometrical Lagrangians: the generalized Born–Infeld action

Let us start with the geometrical Lagrangian introduced in 
Cirilo-Lombardo (2010, 2011a, 2011b, 2007, 2013)

Lg =
√

det
[
λ
(

gαβ + Fαβ

)+ Rαβ

]
(11)

it can be rewritten as

Lg =
√

det
(
Gαβ +Fαβ

)
(12)

with the following redefinitions

Gαβ = λgαβ + R(αβ) and Fαβ = λFαβ + R[αβ] (13)

where a totally antisymmetric torsion tensor T α
γ β = εα

γ βδhδ is as-

sumed (hδ its dual vector field). Notice that the antisymmetric ten-
sor Fαβ , that takes the role of the electromagnetic field, is propor-
tional to the dual of the potential for the (totally antisymmetric) 
torsion field (Cirilo-Lombardo, 2010, 2011a, 2011b, 2007, 2013). 
A brief review on the origin of this type of Lagrangians in the con-
text of unified theories in reductive geometries is in Appendix A. 
Consequently the generalized Ricci tensor splits into a symmetric 
and antisymmetric part, namely:

Rμν =

R(μν)︷ ︸︸ ︷
◦
Rμν − T α

μρ T ρ
αν +

R[μν]︷ ︸︸ ︷
◦∇αT α

μν

where 
◦
Rμν is the general relativistic Ricci tensor constructed with 

the Christoffel connection. The expansion of the determinant leads 
to the Born–Infeld generalization in the usual form:

Lg = √|G|
√

1 + 1

2
FμνFμν − 1

16

(
FμνF̃μν

)2 (14)

= �2
√|g|

√
1 + 1

2
�2

1 Fμν F μν − 1

16b4

(
�2

2 Fμν F̃ μν
)2

(15)

where

� = λ + gαβ R(αβ)

4
(16)

�2
1 = λ2

⎛⎝1 + 2

λ

Fμν R[μν]

Fμν F μν
+ 1

λ2

R[μν] R[μν]

Fμν F μν

⎞⎠ (17)

�2
2 = λ2

⎛⎝1 + 2

λ

Fμν R̃[μν]

Fμν F̃ μν
+ 1

λ2

R[μν] R̃[μν]

Fμν F̃ μν

⎞⎠ (18)

Although the action is exact and have the correct limit, the analy-
sis can be simplest and substantially improved using the following 
action

Lgs =
√

det

[
λgαβ

(
1 + Rs

4λ

)
+ λFαβ

(
1 + R A

λ

)]
(19)

Rs ≡ gαβ R(αβ); R A ≡ f αβ R[αβ] (20)(
with f αβ ≡ ∂ ln

(
det Fμν

)
∂ Fαβ

,det Fμν = 2Fμν F̃ μν
)

that contains all nec-

essary information and is more suitable to manage. If the induced 
structure from the tangent space T p (M) (via Ambrose–Singer 
theorem) is intrinsically related to a (super)manifold structure, 
we have seen that there exists a transformation (Weyl, 1952;
Cirilo-Lombardo, 2015) U B

A (P ) = δB
A + RB

Aμνdxμ ∧ dxν → δB
A +

ωk (Tk)
B
A (with A, B.... generally a multi-index) having the same 

form as the blocks inside of the square root proposed Lagrangian 
(19): e.g. λgαβ

(
1 + Rs

)
∼ where the Poisson structure is evident 
4λ
(as the dual of the Lie algebra of the group manifold) in our case 
leading the identification between the group structure of the tan-
gent space with the space–time curvature as RB

Aμνdxμ ∧ dxν ≡
ωk (Tk)

B
A .

4. Field equations

The geometry of the space–time manifold is to be determined 
by the Noether symmetries

δLG

δgμν
= 0,

δLG

δ f μν
= 0 (21)

where the functional (Hamiltonian) derivatives in the sense of 
Palatini (in this case with respect to the potentials), are under-
stood. The choice “measure-like” form for the geometrical La-
grangian LG (reminiscent of a nonlinear sigma model), as is evi-
dent, satisfy the following principles:

i) the principle of the natural extension of the Lagrangian den-
sity as square root of the fundamental line element containing 
also Fμν ;

ii) the symmetry principle between gμν and Fμν (e.g. gμν and
Fμν should enter into LG symmetrically);

iii) the principle that the spinor symmetry, namely

∇μgλν = 0, (22)

∇μσλν = 0 (23)

with

gλν = γλ · γν, (24)

σλν = γλ ∧ γν ∼ ∗Fλν (25)

should be derivable from LG (21).
The last principle is key because it states that the spinor invari-

ance of the fundamental space–time structure should be derivable 
from the dynamic symmetries given by (21). The fact that the LG

satisfies the 3 principles shows also that it has the simpler form 
(Xin, 1996).

Notice that the action density proposed by Einstein (2014) in 
his nonsymmetric field theory satisfies i) and ii) but not iii).

Remark 1. Due the totally antisymmetric character of the tor-
sion field it is completely determined by the fundamental (struc-
tural 2-form) antisymmetric tensor, and consequently the varia-
tions must acquire the form given by expression (21): metric and 
torsion have each one their respective potentials that are in coin-
cidence with the fundamental structure of the geometry.

4.1. δg LG

The starting point for the metrical variational procedure is in 
the same way as in the standard Born–Infeld theory: from the fol-
lowing factorization of the geometrical Lagrangian:

L = √|g|√det (αλ)

√
1 + 1

2b2
Fμν F μν − 1

16b4

(
Fμν F̃ μν

)2

≡ √|g|√det (αλ)R (26)

where

b = α

β
= 1 + (R S/4λ)

1 + (R A/4λ)
, (27)

R S = gαβ Rαβ, (28)

R A = f αβ Rαβ, (29)
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and λ an arbitrary constant we perform the variational metric pro-
cedure with the following result (details see Appendix B)

δgL = 0 ⇒ (30)

R(αβ) − gαβ

4
Rs

= Rs

2R2α2

[
Fαλ F λ

β − Fμν F μν R(αβ)

Rs

]
+

+ Rs

4R2α2b2

[
Fμν F̃ μν

(
Fηρ F̃ ηρ

8
gαβ − Fαλ F̃ λ

β

)

+ Fηρ F̃ ηρ

2

R(αβ)

Rs

]
+

+ 2λ

[
gαβ + 1

R2α2

(
Fαλ F λ

β

+ Fμν F̃ μν

2b2

(
Fηρ F̃ ηρ

8
gαβ − Fαλ F̃ λ

β

))]
.

(31)

Remark 2. Notice that:
1) The eq. (31) is trace-free type, consequently the trace of 

the third term of the above equation (that is the cosmological 
one) is equal to zero. This happens trivially if λ = 0 or 4R2α2 =
− 
(

Fαλ F αλ −
(

Fμν F̃ μν
)2

4b2

)
. In terms of the Maxwell Lagrangian we 

have (Rα)2 =
(

LMaxwell +
(

Fμν F̃ μν
)2

16b2

)
≡ W (I S , I P ,b) that allow us 

to simplify the eq. (31) once more as follows

R(αβ) − gαβ

4
Rs

= Rs

2W

[
Fαλ F λ

β − Fμν F μν R(αβ)

Rs

]
+

+ Rs

4Wb2

[
Fμν F̃ μν

(
Fηρ F̃ ηρ

8
gαβ − Fαλ F̃ λ

β

)

+ Fηρ F̃ ηρ

2

R(αβ)

Rs

]
+

+ 2λ

[
gαβ + 1

W

(
Fαλ F λ

β

+ Fμν F̃ μν

2b2

(
Fηρ F̃ ηρ

8
gαβ − Fαλ F̃ λ

β

))]
,

2) b takes the place of limiting parameter (maximum value) for 
the electromagnetic field strength.

3) b is not a constant in general, in sharp contrast with the 
Born–Infeld or string theory cases.

4) Because b is the ratio α
β

= 1+(R S /4λ)
1+(R A/λ4)

involving both curvature 
scalars from the contractions of the generalized Ricci tensor: it is 
preponderant when the symmetrical contraction of Rαβ is greater 
than the skew one.

5) The fact pointed out in ii), namely that the curvature scalar 
plays the role as some limiting parameter of the field strength, was 
conjectured by Mansouri (1976) in the context of gravity theory 
over group manifold (generally with symmetry breaking). In such 
a case, this limit was established after the explicit integration of 
the internal group-valuated variables that is not our case here.

6) In similar form that the Eddington conjecture: R(αβ) ∝ gαβ , 
we have a condition over the ratios as follows:

R(αβ)

Rs
∝ gαβ

D
(32)

that seems to be universal.
7) The equations are the simplest ones when b−2 = 0 (β = 0), 
taking the exact “quasilinear” form

R(αβ) − gαβ

4
Rs = Rs

2α2

[
Fαλ F λ

β − Fμν F μν R(αβ)

Rs

]
︸ ︷︷ ︸

Maxwell-like

+ 2λ

[
gαβ + 1

W
Fαλ F λ

β

]
︸ ︷︷ ︸

g̃ef f

, (33)

this particular case (e.g. projective invariant) will be used through 
this work. Notice that when b−2 = 0 (β = 0) all terms into the 
gravitational equation (31) involving the pseudoscalar invariant, 
namely Fμν F̃ μν or Fαλ F̃ λ

β , vanishes. Consequently we arrive to 
the simplest expression (33) that will be used in Section 11 for 
example.

4.2. δ f LG

Let us to take as starting point the geometrical Lagrangian (19)

Lgs =
√

det

[
λgαβ

(
1 + Rs

4λ

)
+ λFαβ

(
1 + R A

4λ

)]
(34)

= √|g|λ2α2

(√
1 + 1

2
FμνFμν − 1

16

(
FμνF̃μν

)2

)
(35)

then, having into account that: R A = f μν Rμν and ∂ ln
(
det Fμν

)
∂ Fαβ

=
f αβ (due that b that contains R A must be also included in the 
variation) we obtain

δLG

δFσω
= 0 →

(√|g|λβ
2Rb

)[
F

σωβ − F

4λ
R[μν]χ

μνσω

]
= 0 (36)

where:

F ≡
[

Fμν F μν − 1

4
b−2 (Fμν F̃ μν

)2
]

,

F
σα≡

[
F σα − 1

4
b−2 (Fμν F̃ μν

)
F̃ σα

]
and

χμνσω ≡ f μω f σν − f μσ f ων.

Notice that the quantity b = α/β (concretely β) was also varied in 
the above expression given the second term in (36).

Contracting (36) with Fαβ , a condition over the curvature and 
the electromagnetic field invariants is obtained as(√|g|λβ

Rb

)
F

[
β − R A

2λ

]
= 0

This condition is satisfied for R A = −4λ is the exact projective in-
variant case (that correspond with β = 0), and for R A = 2λ.

Remark 3. The variational equation (36) is a dynamic equation for 
the torsion field in complete analogy with the eqs. (31) for the 
curvature.

5. Emergent trace free gravitational equations: the meaning of �

Starting from the trace free equation (31) that is not assumed
but arises from the model, the task (Ellis, 2014) is to rewrite it 
as
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◦
Rαβ − gαβ

2

◦
R︸ ︷︷ ︸

≡Gαβ

= 6
(
−hαhβ + gαβ

2
hγ hγ

)
︸ ︷︷ ︸

≡T h
αβ

+ gαβ

2
Rs + T F

αβ +2λραβ

(37)

where

ραβ ≡ gαβ + 1

W

(
Fαλ F λ

β + Fμν F̃ μν

2b2

(
Fηρ F̃ ηρ

8
gαβ − Fαλ F̃ λ

β

))
(38)

T F
αβ ≡ Rs

2W

{(
Fαλ F λ

β − Fμν F μν R(αβ)

Rs

)
+ (39)

+ 1

2b2

[
Fμν F̃ μν

(
Fηρ F̃ ηρ

8
gαβ − Fαλ F̃ λ

β

)

+
(

Fηρ F̃ ηρ
)2

2

R(αβ)

Rs

]}

the LHS of (37) is the Einstein tensor. The “GR” divergence 
◦∇

α

of Gαβ is zero because is a geometrical identity and in an ana-

log manner 
◦∇

α (
T h
αβ + T F

αβ

)
= 0 because both tensors have 

the same symmetry that the corresponding GR energy momen-
tum tensors of a vector field and electromagnetic field respec-
tively:

◦∇
α

Gαβ = ◦∇
α (

T h
αβ + T F

αβ

)
= 0

consequently the remaining part must be a covariantly constant 
tensor that we assume proportional to gαβ :

∇α
( gαβ

2
Rs + 2λραβ

)
= 0

⇒
( gαβ

2
Rs + 2λραβ

)
= �gαβ → Rs = 2� (40)

Coming back to the original trace free expressions we have the 
expected formula

◦
Rαβ − gαβ

2

◦
R︸ ︷︷ ︸

≡Gαβ

= 6
(
−hαhβ + gαβ

2
hγ hγ

)
︸ ︷︷ ︸

≡T h
αβ

+ T F
αβ + �gαβ (41)

Remark 4. Tracing the first expression in (40) we have Rs = 2� =
◦
R + 6hμhμ linking the value of the curvature and the norm of the 
torsion vector field. Consequently, if the dual of the torsion field 
have the role of the energy–matter carrier, the meaning of lambda 
as the vacuum energy is immediately established.

Remark 5. Notice that the LHS in expression (40) instead to be pro-
portional to the metric tensor it can be proportional to the square 
of a Killing–Yano tensor.

6. On the constancy of G

At this level, no assertion can state with respect to G or even 
with respect to c. The link with the general relativistic case is given 
by the identification of electromagnetic energy–momentum tensor 
with the term analogous T F

αβ in our metric variational equations:

8πG

c4

(
Fαλ F λ

β − Fμν F μν gαβ

4

)
→ Rs

2W

(
Fαλ F λ

β − Fμν F μν R(αβ)

Rs

)

Co

κ =
gα

4
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nsequently we have:

8πG

c4
→ Rs

2R2α2
and

β = R(αβ)

Rs

e above expression indicates that the ratio must remains con-
nt due the Noether symmetries and conservation laws of the 
ld equations. Notice that (as in the case of b) there exists a limit 
 all the physical fields coming from the geometrical invariants 
antities.

The vector hμ and the energy–matter interpretation

One of the characteristics that more attract the attention in 
ified field theoretical models is the possibility to introduce the 
ergy and matter through its geometrical structure. In our case 
 torsion field takes the role of RHS of the standard GR gravity 

uation by mean its dual, namely hμ .
Consequently, in order to explain the physical role of hμ , we 

ow (due the Hodge–de Rham decomposition [Appendix C]) that 
can be decomposed as:

= ∇α� + ε
βγ δ
α ∇β Aγ δ + γ1

axial vector︷ ︸︸ ︷
ε

βγ δ
α Mβγ δ + γ2

polar vector︷︸︸︷
Pα (42)

ere γ1 and γ2 can be phenomenologically related to physical 
nstants (e.g.: γ1 = 8π

c

√
G is a physical constant related to the 

ckett formula, Blackett, 1947). The arguments in favor of this 
e of theories and from the decomposition (42) can be resumed 
follows:
i) the existence of an angular momentum Helmholtz theorem 

elmholtz, 1858, 1867): the theorem in analysis is exactly as in 
but, in the four dimensional case M4 there exists an additional 

ial vector;
ii) the concept of chirality is achieved in the model by the ex-

ence of polar and axial vectors in expression (42).
iii) if �, Aγ δ are the wave tensors and εβγ δ

α Mβγ δ, Pα the par-
le vectors (vector and axial part respectively), the concept of an 
rtial-wave vector is introduced in the equation (42).
Consequently, from the (36) with β = 0 for the torsion namely: 
T αβγ = −λF βγ and coming back to (42) we obtain the follow-
 important equation

Aγ δ − γ
[
∇α Mα

γ δ + (∇γ Pδ − ∇δ Pγ

)] = −λFγ δ (43)

t us consider, in particular, the case when λFγ δ → 0:

Aγ δ = γ
[
∇α Mα

γ δ + (∇γ Pδ − ∇δ Pγ

)]
(44)

We can immediately see that, if Mα
γ δ is identified with the in-

nsic spin angular momentum of the ponderable matter, Pδ is 
 lineal momentum vector and Aγ δ is the gravitational radiation 
sor, then eq. (44) states that the sum of the intrinsic spin angu-
 momentum and the orbital angular momentum of ponderable 
tter is conserved if the gravitational radiation is absent., if Mα

γ δ

identified with the intrinsic spin angular momentum of the pon-
rable matter, Pδ is its lineal momentum vector and Aγ δ is the 
vitational radiation tensor, then eq. (44) states that the sum 
the intrinsic spin angular momentum and the orbital angular 
mentum of ponderable matter is conserved if the gravitational 
iation is absent.
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7.1. Killing–Yano systems and the vector hμ

Without enter in many details (these will be treated some-
where) the antisymmetric tensor Aγ δ in the hβ composition is re-
lated with the Killing (Carter, 1968) and Killing–Yano (Yano, 1952)
systems. Consequently we can introduce two types of couplings 
into the Aγ δ divergence: it correspond with the generalized cur-
rent interpretation that also has hμ .

i) Defining

Aγ δ ≡ A[γ ;δ] (45)

such that
◦∇ρ A[γ ;δ] = 4π

3

(
j[γ g δ]ρ

)
(46)

then, in this case we can identify Aγ δ = 2Fγ δ because F δ
γ ;δ = 4 jγ

and A[γ δ;ρ] = F [γ δ;ρ] = 0.
In this case the contribution of Aγ δ to hβ is null.
ii) Let us consider now a fully antisymmetric coupling as

A[γ ;δ];ρ = 4π

3
j[γ F δ]ρ (47)

having into account the vorticity vector also

ωμ ≡ uλελμνρ∇νuρ (48)

and considering a plasma with electrons, protons etc.

jγ ∼ Aγ + qsnsuγ
s (49)

where Aμ is the vector potential and qs is the particle charge, ns
is the number density (in the rest frame) and the four-velocity of 
species s is uγ

s . In this case hα takes the form

hα = ∇α� + ε
βγ δ
α ∇β Aγ δ + γ1ε

βγ δ
α Mβγ δ + γ2 Pα → (50)

hα = ∇α� + ε
γ δρ
α

4π

3
j[γ F δ]ρ − γ1uλελανρ∇νuρ + γ2 Pα (51)

hα = ∇α� + ε
γ δρ
α

4π

3
[A + qsnsus][γ F δ]ρ (52)

− γ1uλελανρ∇νuρ + γ2 Pα

Consequently in 3 + 1 decomposition we have (overbar correspond 
to spacial 3-dim. vectors)

h0 = ∇0� + 4π

3
j · B + γ1u · (∇ × u

)+ γ2 P0 (53)

h0 = ∇0� + 4π

3

[
A · (∇ × A

)+ qsnsus · B
]

(54)

+ γ1u · (∇ × u
)+ γ2 P0

and

hi = ∇i� + 4π

3

[
−
(

j × E
)

i
+ j0 Bi

]
(55)

+ γ1

[
u0

(∇ × u
)+ (

u × ∇u0
)+

(
u ×

·
u

)]
i
+ γ2 Pi

hi = ∇i� + 4π

3

[− ((
A + qsnsus

)× E
)

i + (� + qsnsu0s) Bi
]

(56)

+ γ1

[
u0

(∇ × u
)+ (

u × ∇u0
)+

(
u ×

·
u

)]
i
+ γ2 Pi

Notice that in h0 we can recognize the magnetic and vortical he-
licities

h0 = ∇0� + 4π

3

[
hM + qsnsus · B

]+ γ1hV + γ2 P0 (57)

The above expression will be very important in the next sections, 
in particular to discuss magnetogenesis and particle generation. 
Notice the important fact that the symmetry of the vorticity can 
be associated to a 2-form bivector in the context of the notoph 
field (Ogievetsky and Polubarinov, 1965; Ogievetsky and Polubari-
nov, 1967; Kalb and Ramond, 1974) theory.

8. Physical consequences

In this section we will make contact with the physical con-
sequences of the model. Firstly we introduce the 3 + 1 splitting 
for axisymmetric spacetimes that is useful from the physical view-
point for the analysis of the electrodynamic equations with high 
degree of nonlinearity, as in our case. Secondly we take the 3 + 1
field equations in the in the linear limit where the induction equa-
tions (dynamo) are obtained, showing explicitly the important role 
of the torsion field as the generator of a purely geometric α-term. 
Thirdly, we derive the geometrical analog of the Lorentz force and 
the elimination of the electric field from the induction equations. 
Also, the origin of the seed magnetic field via the geometrical 
α-term generated by the torsion vector is worked out.

8.1. Electrodynamic structure in 3 + 1

The starting point will be the line element in 3 + 1 splitting 
(Thorne and Macdonald, 1982; Macdonald and Thorne, 1982) (Ap-
pendix D): the 4-dimensional space–time is split into 3-dimensional 
space and 1-dimensional time to form a foliation of 3-dimensional 
spacelike hypersurfaces. The metric of the space–time is con-
sequently, given by ds2 = −α2dt2 + γi j

(
dxi + β idt

) (
dx j + β jdt

)
where γi j is the metric of the 3-dimensional hypersurface, α is 
the lapse function, and β i is the shift function (see Appendix D
for details). For any nonlinear Lagrangian, in sharp contrast with 
the Einstein–Maxwell case, the field equations d ∗ F = ∗J and the 
Bianchi-geometrical condition dF = 0 (where we have defined the 
Hodge dual ∗ and F = ∂L

∂ F ) are expressed by the vector fields

E, B,E =∂L
∂ E

,B =∂L
∂ B

(58)

that live into the slice. In our case given by the geometrical La-
grangian Lg (not be confused with the Lie derivative Lβ !)

∇ ·E= −h ·B+ 4πρe (59)

∇ · B = 0 (60)

∇ × (αE) = −(∂t −Lβ)B

= −∂0 B + (β · ∇) B − (B · ∇) β (61)

∇ × (αB) + h0B−h ×E= −(∂t −Lβ)E+ 4πα j

= ∂0E− (β · ∇)E+ (E · ∇)β + 4πα j
(62)

where hμ is the torsion vector. Notice that, here and the subse-
quent sections, the overbar indicates 3-dimensional space vectors.

8.2. Dynamo effect and geometrical origin of α� term

In the case of weak field approximation and 
(

F 01 → Ei,

F jk → Bi
)

the electromagnetic Maxwell-type equations in 3 + 1
take the form

∇ν F νμ = T μνρ Fνρ = εμνρ
δhδ Fνρ

(
d∗ F =∗ J

)
(63)

∇ · E = −h · B (64)

∂t E − ∇ × B = h0 B − h × E (65)

and



D.J. Cirilo-Lombardo / Journal of High Energy Astrophysics 16 (2017) 1–14 7
∇ ∗
ν F νμ = 0 (dF = 0) (66)

∇ · B = 0 (67)

∂t B = −∇ × E (68)

Putting all together, the set of equations is

∇ · E + h · B = ρext (69)

∂t E − ∇ × B = h0 B − h × E − σext
[

E + v × B
]

(70)

∇ · B = 0 (71)

∂t B = −∇ × E (72)

where we have introduced external charge density and current. 
Following the standard procedure we take the rotational to the 
second equation above obtaining straightforwardly the modified 
dynamo equation

∇ × ∂t E + ∇2
B = ∇ ×

(
h0 B

)
+

(
h · B − ρext

)
h +

(
∇ · h

)
E

− σext
[
∂t B + (∇ · v

)
B
]

(73)

where the standard identities of the vector calculus plus the first, 
the third and the fourth equations above have been introduced. 
Notice that in the case of the standard approximation and (in the 
spirit of this research) without any external or additional ingredi-
ents, we have

∇2
B = h0 (∇ × B

)+
(

h · B
)

h +
(
∇ · h

)
E (74)

Here we can see that there exist and α-term with a pure geomet-
rical origin (and not only a turbulent one) that is given by h0 (the 
zero component of the dual of the torsion tensor).

8.3. The generalized Lorentz force

An important point in any theory beyond relativity is the con-
cept of force. As is known, general relativity has deficiencies at this 
point. Now we are going to show that it is possible to derive from 
our proposal the Lorentz force as follows. From expression (32) the 
geometrical induced current is recognized

∂t E − ∇ × B = h0 B − h × E ≡ J (75)

J × B =
(

h0 B − h × E − jext

)
× B (76)

= −
[(

h · B
)

E − (
E · B

)
h
]
− jext × B (77)

we assume jext proportional to the velocity and other contribu-
tions. Consequently, reordering terms from above, a geometrically 
induced Lorentz-like force arises

(
J + jext

)
× B = −

⎡⎢⎢⎣(
h · B

)
︸ ︷︷ ︸
ρgeom

E − (
E · B

)
h

⎤⎥⎥⎦ → (78)

(
h · B

)
︸ ︷︷ ︸
ρgeom

E +
(

J + jext

)
︸ ︷︷ ︸

jgen

× B = (
E · B

)
h → Lorentz induced force

(79)

being the responsible of the induced force, the torsion vector itself. 
Notice, from the above equation, the following issues:

1) The external currents are identified with J
2) We can eliminate the electric field in standard form

E =
(

E · B
)

h − jgen × B(
h · B

) (80)
being the above expression very important in order to replace the 
electric field into the dynamo equation, introducing naturally the 
external current in the model.

8.4. Generalized current and α-term

In previous paragraph we have derived a geometrical induced 
Lorentz force where the link between the physical world and the 
proposed geometrical model is through a generalized current jgen . 
An important fact of that expression is that it is possible to elimi-
nate the electric field (and insert it into the equation of induction) 
as follows.

From the formula of the induction, namely

∇2
B+∇ ×

(
−h0 B + h × E

)
︸ ︷︷ ︸

EGeom

= 0 (81)

and using the eq. (49) to eliminate the electric field as function of 
the torsion, the generalized current and the magnetic field respec-
tively:

h × E =
−h ×

(
jgen × B

)
(

h · B
) = −

(
h · B

)
jgen −

(
h · jgen

)
B(

h · B
) (82)

h × E = − jgen +
(

h · jgen

)
(

h · B
) B =

∣∣∣ jgen

∣∣∣(−n jgen
+ cosα

cosβ
nB

)
(83)

being α the angle between the vector torsion h and the general-
ized current jgen and β the angle between h and the magnetic 
field B . Above, nB and n jgen

are unitary vectors in the direction of 

B and jgen respectively. Notice the important fact that the RHS of 
(68) is independent of the torsion and the magnetic field. Conse-
quently we obtain

∇2
B+∇ ×

⎡⎣− jgen +
⎛⎝
(

h · jgen

)
(

h · B
) − h0

⎞⎠ B

⎤⎦
︸ ︷︷ ︸

EGeom

= 0 (84)

We introduce the explicitly the physical scenario via the general-
ized current jgen

− jgen ∼ σext
[

E + v × B
]+

(
c

e

∇p

ne

)
(85)

then

∇2
B+∇ ×

[
σext

[
E + v × B

]+
(

c

e

∇p

ne

)
+

((
h · jgen

)(
h · B

) − h0

)
B

]
︸ ︷︷ ︸

EGeom

= 0

(86)

∇2
B

+σext
[(−∂t B

)+ ∇ × (
v × B

)]+ ∇ ×
(

c

e

∇p

ne

)
+ ∇ ×

((
h · jgen

)(
h · B

) − h0

)
B︸ ︷︷ ︸

EGeom

= 0
(87)

finally the expected geometrically induced expression is obtained:
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∂t B = η∇2
B + ∇ × (

v × B
)+ η∇ ×

[(
c

e

∇p

ne

)
+ αB

]
= ∂t B

(88)

→ η ∇2
B︸︷︷︸

diffusive

+ ∇ × (
v × B

)︸ ︷︷ ︸
advective

+ η∇ × (
αB

)︸ ︷︷ ︸
α-term

+ c

e

∇p × ∇ne

n2
e︸ ︷︷ ︸

Biermann battery

= −∂t B

(89)

where η ≡ 1
σext

as usual and the geometric α:

α ≡
⎛⎝
(

h · jgen

)
(

h · B
) − h0

⎞⎠ (90)

=
⎛⎝cosα

∣∣∣ jgen

∣∣∣
cosβ

∣∣B∣∣ − h0

⎞⎠
8.5. Seed magnetic field

Notice from the last expression that αB is explicitly

αB =
cosα

∣∣∣ jgen

∣∣∣
cosβ

nB − h0 B (91)

or (via elimination of the unitary vector)

α
∣∣B∣∣ =

cosα
∣∣∣ jgen

∣∣∣
cosβ

− h0
∣∣B∣∣ (92)

we see clearly the first term in RHS independent of the intensity of 
the magnetic field. Considering only the terms of interest without 
the diffusive and advective term in the induction equation (only 
time-dependence for the magnetic field is preserved) namely

η∇ × (
αB

)︸ ︷︷ ︸
α-term

= −∂t B (93)

η∇
⎛⎝cosα

∣∣∣ jgen

∣∣∣
cosβ

⎞⎠ = −∂t
∣∣B∣∣ (94)

we see that the currents given by the fields (related to the geom-
etry via hα) originate the magnetic field.

If we consider all the currents of the fields of theory (fermions, 
bosons, etc.) the seed would be precisely these field currents. The 
other missing point is to derive the fluid (hydrodynamic) equations 
(which as is known does not have a definite Lagrangian formu-
lation) from the same unified formulation. Notice that there are, 
under special conditions, analogous formulas for vorticity ω than 
for the magnetic field B . This would mean that the 2-form of 
vorticity must also be included in the fundamental antisymmet-
ric tensor, together with the electromagnetic field.

8.6. Comparison with the mean field formalism

Now we compare the obtained equations with respect to 
the mean field formalism (Rädler and Rheinhardt, 2007; Cirilo-
Lombardo, 2017). Starting from expressions (69)–(72) as before, 
we have:

η∇2
B + ∇ × (

v × B
)− ∂t B+η∇ ×

(
−h0 B + h × E

)
︸ ︷︷ ︸ = 0 (95)
EGeom
EGeom takes the place of electromotive force due the torsion 
field with full analogy as E =〈u × b〉 is the mean electromotive 
force due to fluctuations. Also as in the mean field case that there 
are the splitting

E = E 〈0〉 + E
〈
B
〉

(96)

with E 〈0〉 independent of 
〈
B
〉

and E
〈
B
〉

linear and homogeneous in 
B , we have in the torsion case the following correspondence

−h0 B ←→ E
〈
B
〉

h × E ←→ E 〈0〉

geometrical ←→ turbulent

Consequently, the problems of mean-field dynamo theory that are 
concerned with the generation of a mean EMF by turbulence, have 
in this model a pure geometric counterpart. In the past years, 
attention has shifted from kinematic calculations, akin to those 
familiar from quasilinear theory for plasmas, to self-consistent the-
ories which account for the effects of small scale magnetic fields 
(including their back-reaction on the dynamics) and for the con-
straints imposed by the topological conservation laws, such as that 
for magnetic helicity. Here the torsion vector generalize (as we can 
see from above set of equations) the concept of helicity. The conse-
quence of this role of the dual torsion field is that the traditionally 
invoked mean-field dynamo mechanism (i.e. the so-called alpha 
effect) may be severely quenched or increased at modest fields 
and magnetic Reynolds numbers, and that spatial transport of this 
generalized magnetic helicity is crucial to mitigating this quench. 
Thus, the dynamo problem is seen in our model as one of general-
ized helicity transport, and so may be tackled like other problems 
in turbulent transport. A key element in this approach is to un-
derstand the evolution of the torsion vector field besides of the 
turbulence energy and the generalized helicity profiles in space–
time. This forces us to confront the problem of spreading of strong 
MHD turbulence, and a spatial variant or analogue of the selective 
decay problem with the dynamics of the torsion field.

9. Torsion, axion electrodynamics vs. Chern Simons theory

Let us review briefly the electromagnetic sector of the theory 
QCD based in a gauge symmetry SU (3) × U (1)

L Q C D/Q E D = +
∑

ψ f

[
γ μ

(
∂μ − ig f tα Aα

μ − iq f Aμ

)
− m f

]
ψ f

(97)

− Gα
μνGαμν

4
− Fμν F μν

4
− g2θGα

μν G̃αμν

32π2
− g2θ Fμν F̃ μν

32π2
.

As is well know, electromagnetic fields will couple to the elec-
tromagnetic currents, namely: Jμ = ∑

f
q f ψ f γμψ f consequently, 

there appear term will induce through the quark loop the coupling 
of Fμν F̃ μν (the anomaly) to the QCD topological charge. The ef-
fective Lagrangian can be written as

LMC S = − Fμν F μν

4
− Aμ Jμ − c

4
θ Fμν F̃ μν (98)

where a pseudo-scalar field θ = θ(x, t) (playing the role of the 

axion field) is introduced and c = ∑
f

(
q f e

)2

2π2 . This is the Chern–
Simons Lagrangian where, if θ is constant, the last term is a total 
divergence: Fμν F̃ μν = ∂μ JμC S . The question appear if θ is not a 
constant θ Fμν F̃ μν = θ∂μ JμC S = ∂μ

(
θ JμC S

)− JμC S∂μθ .
Now we can see from the previous section that if, from the 

general decomposition of the four dimensional dual of the torsion 
field via the Hodge de Rham theorem we retain bα as gradient of 
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a pseudoscalar (e.g.: axion) these equations coincide in form with 
the respective equation for MCS theory. Precisely because under 
this condition hα = ∇αθ , in flat space (curvature = 0 but torsion 
�= 0) the equations become the same as in Kharzeev (2010) namely

∇ · E − c P · B = ρext (99)

∂t E − ∇ × B = −c
·
θ B + c P × E − σext

[
E + v × B

]
(100)

∇ · B = 0 (101)

∂t B = −∇ × E (102)

provided:

h0 → −c
·
θ (103)

h → −c P (104)

where from QCD the constant c is determined as c = e2

2π and the 

∂μθ =
( ·

θ, P

)
in the Kharzeev (2010) notation. The main differ-

ence is that while in the case of photons in axion ED was given 
by Wilzcek (1987) the Lagrangian where that above equations are 
derived is

LMC S = − Fμν F μν

4
− Aμ Jμ + c

4
Pμ JμC S , JμC S ≡ εμσρν Aσ Fρν

(105)

in our case is the dual of the torsion field (that we take as the 
gradient of a pseudoscalar) responsible of the particular structure 
of the set of equations.

10. Magnetic helicity generation and cosmic torsion field

Here we consider the projective invariant case: β = 0 (R A =
−4λ) where the gravitational and field equations are considerably 
simplified because R = 1 and b−1 = 0. Scalar curvature R and the 
torsion 2-form field T a

μν with a SU (2)-Yang–Mills structure are 
defined in terms of the affine connection �λ

μν and the SU (2) val-
uated (structural torsion potential) f a

μ by

R = gμν Rμν Rμν = Rλ
μλν (106)

Rλ
μλν = ∂ν�λ

μρ − ∂ρ�λ
μν + ...

T a
μν = ∂μ f a

ν − ∂ν f a
μ + εa

bc f b
μ f c

ν

G and � are the geometrically induced Newton gravitational con-
stant (as we have been discussed before) and the integration cos-
mological constant, respectively. From the last equation for the 
totally antisymmetric Torsion 2-form, the potential f a

μ define the 
affine connection �λ

μν . Similarly to the case of Einstein-Yang–Mills 
systems, for our new U F T model it can be interpreted as a pro-
totype of gauge theories interacting with gravity (e.g. QCD, GUTs, 
etc.). We stress here the important fact that all the fundamen-
tal constants are really geometrically induced as required by the 
Mach principle. After varying the action, we obtain the gravita-
tional equation (41), namely
◦
Rαβ − gαβ

2

◦
R = 6

(
−hαhβ + gαβ

2
hγ hγ

)
(107)

+ κgeom

[
Fαλ F λ

β − Fμν F μν gαβ

4

]
+ �gαβ

with the “gravitational constant” geometrically induced as

κg ≡ Rs

2W
= 8πG

c4

∣∣∣∣
today

(108)

and the field equation for the torsion 2-form in differential form
d∗T a + 1
2εabc ( fb ∧∗ Tc −∗ Tb ∧ fc) = −λ∗ f a (109)

Notice that (108) κg and � are not independent, but related by 
Rs = 2�. In this case β = 0 we have the simplest expression:

κg ≡ Rs

2
(

1 + Rs
4λ

)2
= �(

1 + 2�
4λ

)2

in consequence, generalizing the conjecture of Markov (1984), if �
is proportional to the energy, κ goes as � if |�| ≤ 1, and as �−1

in other case.
We are going to seek for a classical solution of (107) and (109)

with the following ansatz for the metric and gauge connection

ds2 = dτ 2 + a2 (τ )σ i ⊗ σ i ≡ dτ 2 + ei ⊗ ei . (110)

Here τ is the Euclidean time and the dreibein is defined by ei ≡
a (τ )σ i . The gauge connection is

f a ≡ f a
μdxμ = f σ a, (111)

for a, b, c = 1, 2, 3, and for a, b, c = 0 we have

f 0 ≡ f 0
μdxμ = sσ 0. (112)

This choice for the potential torsion is accordingly to the symme-
tries involved in the problem.

The σ i 1-form satisfies the SU (2) Maurer–Cartan structure 
equation

dσ a + εa
bcσ

b ∧ σ c = 0 (113)

Notice that in the ansatz the frame and SU (2) (isospin-like) in-
dices are identified (as for the case with the non-abelian-Born–
Infeld (NBI) Lagrangian of Cirilo-Lombardo, 2005) The torsion 
2-form

T γ = 1

2
T γ

μνdxμ ∧ dxν (114)

becomes

T a = df a + 1

2
εa

bc f b ∧ f c (115)

=
(

− f + 1

2
f 2
)

εa
bcσ

b ∧ σ c

d∗T a + 1
2εabc ( fb ∧∗ Tc −∗ Tb ∧ fc) = −2λ∗ f a

(−2 f + f 2)(1 − f )dτ ∧ eb ∧ ec = −2λdτ ∧ eb ∧ ec (116)

∗T a≡h(−2 f + f 2)dτ ∧ ea

a2
(117)

∗ f a = − f
dτ ∧ eb ∧ ec

a3
(118)

Note that to be complete in our description of the possible physi-
cal scenarios, we include f 0 as an U (1) component of the torsion 
potential (although does not belong to the space SU (2)/U (1)). 
Having all the above issues into account, the expression for the 
torsion is analogous to the non-abelian 2-form strength field of 
Cirilo-Lombardo (2005).

Inserting T a from (115) into the dynamic equation (109) we 
obtain

(−2 f + f 2)(1 − f )dτ ∧ eb ∧ ec = −λdτ ∧ eb ∧ ec, (119)

and from expression (119) we have an algebraic cubic equation 
for f

(−2 f + f 2)(1 − f ) + λ = 0 (120)
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Fig. 1. Wormhole solution {a vs. t) for f = 2.35 and K = π < 1.

We can see that, in contrast with our previous work with a 
dualistic theory (Cirilo-Lombardo, 2005) where the NBI energy–
momentum tensor of Born–Infeld was considered, there exist three 
non-trivial solutions for f , depending on the cosmological constant 
λ. In this preliminary analysis of the problem, only the values of f

that make the quantity 
(
− f + 1

2 f 2
)

∈ R. Consequently for λ = 2

we find f = 2.35 then

T a
bc = 2

5

εa
bc

a2
; T a

0c = 0 (121)

That is, only spatial torsion field is non-vanishing while cosmic 
time torsion field vanishes (an analogous feature with magnetic 
and electric Yang–Mills can be seen in the solution of Giddings and 
Strominger and in Cirilo-Lombardo, 2005). Substituting the expres-
sion for the torsion 2-form (121)1 into the symmetric part of the 
variational equation we reduce the gravitational equations to an 
ordinary differential equation for the scale factor a,

3

⎡⎣( .
a

a

)2

− 1

a2

⎤⎦− � = 3κg

4a2

(
f 2 + s2

)
+ 3

2a4
f 2 ( f − 2)2 (122)

that in the case for the computed value for f ∼ 2.35 with s = 10
and � � 1 the scale factor is described in Fig. 1 and the scale 
factor goes as:

a (τ ) = �−1/2

×
√(

1 − 12κ2
g �

α

)1/2

sinh
(√

�/3 (τ − τ0)
)

− 1 + κg
(

f 2 + s2
)
/4

(123)

where we define the geometrically induced fine structure function 
α ≡ κg

(
f 2 + s2

)
/4.

10.1. Primordial symmetries of standard model and torsion field

In Alvarez-Castillo et al. (2017) the cross section for neu-
trino helicity spin flip obtained from this type of f (R; T ) model 
of gravitation with dynamic torsion field introduced by us in 
Cirilo-Lombardo (2013), was phenomenologically analyzed using 
the relation with the axion decay constant fa (Peccei–Quinn pa-
rameter) due the energy dependence of the cross section. Conse-
quently, the link with the phenomenological energy/mass window 
was found from the astrophysical and high energy viewpoints. The 
important point is that, in relation with the torsion vector interac-
tion Lagrangian, the fa parameter gives an estimate of the torsion 

1 In the tetrad: 
◦
R00 = −3

··
a
a , 

◦
Rab = − 

[
··
a
a + 2

( ·
a
a

)2

− 2
a2

]
.

field strength that can variate with time within cosmological sce-
narios as the described above, potentially capable of modifying the 
overall leptogenesis picture, the magnetogenesis, the baryogenesis 
and also to obtain some indication about the primordial (super) 
symmetry of the early universe.

In FRW scenario given here we saw that the torsion through its 
dual vector, namely:

h0 = 2

5

δ0
a Cτ

a2
dτ ∧ ea (124)

goes as ∼ a−2 with Cτ a covariantly constant vector field 
(

e.g.:

◦∇Cτ = 0

)
that we take of the form Cτ ∼

( ·
θ + qτ

)
(due the 

Hodge–de Rham decomposition of hμ , expression (42)) where θ
is a pseudoscalar field playing the obvious role of axion and qτ :
vector field linking h0 with the magnetic field via the equation of 
motion for the torsion. Consequently, the torsion dual vector hi has 
the maximum value when the radius of the universe is amin, e.g. 
amin = a (τ0) increases to the maximum value the spin-flip neu-
trino cross section and, for instance, the quantity of right neutrinos 
compensating consequently the actual (e.g. atoday = a (τ )) asym-
metry of the electroweak sector of the SM (see the behavior of 
a in Fig. 1). This fact indicates that the original symmetry group 
contains naturally SU R (2)× SU L (2) × U (1) typically inside GUT’s 
structurally based generally in S O (10), SU (5) or some exceptional 
groups as E(6), E (7), etc.

Also it is interesting to note that from the FRW line element 
written in terms of the cosmic time the Hubble flow electro-
magnetic fields Eμ ≡ (0, Ei) = a−2 (0, ∂τ Ai) and Bμ ≡ (0, Bi) =
a−2

(
0, εi jk∂ j Ak

)
∇ · E +

(
α

f
∇θ + �

)
·
(

a2 B
)

= 0 (125)

∂τ

(
a2 E

)
− ∇ ×

(
a2 B

)
=

(
α

f
∂τ θ + �0

)(
a2 B

)
(126)

−
(

α

f
∇θ + �

)
× E

∇ · B = 0 (127)

∂t B = −∇ × E (128)

where �μ ≡ fμ
(
uμ,γ 5bμ, e Aμ.....

)
is a vector function of phys-

ical entities as potential vector, vorticity, angular velocity, axial 
vector etc. as described by expression (42). In principle we can 
suppose that it is zero (low back reaction, Kolb and Turner, 1994) 
then

h = α

f
∇θ, h0 = α

f
∂τ θ (129)

being 
[
∂2
τ − ∇2 − α

f ∂τ θ∇×
] (

a2 B
) = 0 the second order equation 

for the magnetic field that shows the chiral character of the plasma 
particles.

10.2. Magnetogenesis and cosmic helicity

Now we pass to see which role plays the torsion field in the 
magnetic field generation in a FRW cosmology. Taking as the start-
ing point the (hyper) electrodynamic equations (Joyce and Sha-
poshnikov, 1997) and introducing a Fourier mode decomposition 
B
(
x
) = ∫

d3kB
(

k
)

e−ik·x with B
(

k
)

= hi
−→e i where i = 1, 2, −→e 2

i =
1, −→e i · −→

k = −→e 1 · −→e 2 = 0 the torsion-modified dynamical equa-
tions for the expanding FRW become
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·
z +

[(
2

·
a + k2

σ

)
+ ah0 |k|

σ

]
z = 0 (130)

·
z +

[(
2

·
a + k2

σ

)
− ah0 |k|

σ

]
z = 0 (131)

where the magnetic field is written in terms of complex variable 
z
(
z
)

as

z = h1 + ih2 (132)

z = h1 − ih2 (133)

from equation (117) we see that the solution for z namely:

z = z0e
−
(

2a+ k2
σ τ

)
+∫ ah0 |k|

σ dτ
(134)

contains the instable mode in the sense of Joyce and Shaposhnikov
(1997) k

σ τ <
∫ ah0

σ dτ . Consequently a defined polarization of the 
magnetic field appear and from the dynamical equation for the 
torsion field: ∇[μ h ν] = −λ F̃μν that in this case we have

∇[i h τ ] = ∇i

(
a−2qτ

)
= −λBi (135)

that implies a relation between the vector part of the h0 (namely 
qτ ) with the vector potential Ak of the magnetic field as follows:

∇iqτ ≈ −λεi jk∇ j Ak (136)

Consequently, the primordial magnetic field (or seed) would be 
connected in a self-consistent way with the torsion field by 
means of the dual vector h0. It (hμ) in turn, would be connected 
phenomenologically with the physical fields (matter) of theory 
through Hodge–de Rham decomposition expression (42). We note 
from expression (120) that the pseudo-scalar (axion) controls the 
stability, growth and dynamo effect but not the generation of the 
magnetic field (primordial or seed) as is clear from expression 
(122) where the (pseudo-)vector part of h0 contributes directly to 
the generation of the magnetic field as clearly given by eq. (121).

10.3. Magnetogenesis and cosmic helicity II

In the case to include the complete alpha term given by equa-
tions (92) and in the same analytical conditions (e.g.: Fourier de-
composition) from the previous paragraph, the torsion-modified 
dynamic equations for the expanding FRW become

·
z +

⎡⎣(
2

·
a + k2

σ

)
+ a |k|

σ

⎛⎝h0 −
cosα

∣∣∣ jgen

∣∣∣
cosβ

∣∣z∣∣
⎞⎠⎤⎦ z = 0 (137)

·
z +

⎡⎣(
2

·
a + k2

σ

)
− a |k|

σ

⎛⎝h0 −
cosα

∣∣∣ jgen

∣∣∣
cosβ |z|

⎞⎠⎤⎦ z = 0 (138)

where in this case the magnetic field is written (by convenience) 
in terms of complex variable z

(
z
)

as

z = |z| eiρ → ·
z =

( ·|z| + i
·
ρ |z|

)
eiρ (139)

z = ∣∣z∣∣ e−iρ →
·
z =

( ·∣∣z∣∣− i
·
ρ
∣∣z∣∣) e−iρ (140)

From equation (124) we see that the solution for z namely:
z = z0 exp

⎡⎣−
(

2a + k2

σ
τ

)
+

∫
a |k|
σ

⎛⎝h0 −
cosα

∣∣∣ jgen

∣∣∣
cosβ |z0|

⎞⎠dτ

⎤⎦
(141)

with z0 = |z0| eiρ0 (|z0| = const)

contains the instable mode in the sense of Joyce and Shaposhnikov

(1997) for example (117) k
σ τ <

∫ a
σ

(
h0 − cos α

∣∣∣ jgen

∣∣∣
cos β|z|

)
dτ . But now 

there are not a definite polarization for the magnetic field, but now all 
depends on the difference:∫

a

σ

⎛⎝h0 −
cosα

∣∣∣ jgen

∣∣∣
cosβ |z0|

⎞⎠dτ

Replacing explicitly hα from the decomposition (42) we can see 
in a clear form, the interplay between the physical entities, as the 
vortical and magnetic helicities for example:(

∇0� + 4π

3

[
hM + qsnsus · B

]+ γ1hV + γ2 P0

)
−

cosα
∣∣∣ jgen

∣∣∣
cosβ |z0|

Now considering in 
∣∣∣ jgen

∣∣∣the fermionic current 
∑

f
q f ψ f γμψ f , �

as the axion a, |z0| = cos β
cos α and putting γ2 = 0 we have an interest-

ing expression:

∇0a + 4π

3

[
hM + qsnsus · B

]+ γ1hV =
∣∣∣∣∣∣
∑

f

q f ψ f γμψ f

∣∣∣∣∣∣
The above expression it is very important because establishes 
the desired connection between helicities, magnetic field and 
fermionic fields and axion. We can order it as

∇0a −
∣∣∣∣∣∣
∑

f

q f ψ f γμψ f

∣∣∣∣∣∣ = −
[

4π

3

(
hM + qsnsus · B

)+ γ1hV

]
We now clearly see the link between the axion and the fermionic 
fields (the dynamics of the interacting fields and the involved cur-
rents) in the LHS and the macroscopic physical observables in the 
RHS giving an indication of the origin of leptogenesis and baryoge-
nesis in the context of this non-Riemannian gravitational model.

10.4. Dark matter, energy condition and UFT model

As is well know, in a wormhole solution energy conditions are 
always violated in the standard general relativity. In the context 
of general relativity, this fact is closely related to the necessity 
to introduce exotic matter through the energy momentum tensor. 
Physically speaking, the observations of Type Ia Supernova (SNIa), 
together with the cosmic microwave background radiation (CMB)[ 
and the larger scale structure, suggest that the present universe is 
in accelerating expansion, which needs something as dark energy 
with a negative equation of state (e.g. phantom field, non-canonical 
dynamical terms, etc.). The simplest standard model introduces 
the cosmological constant term �, which has a constant effective 
equation of state w = −1, and drive the acceleration of the uni-
verse assuming the effective energy of the � term occupies ∼ 73%
of the total energy (assuming also ∼ 23% dark matter, ∼ 4% baryon 
matter and ∼10–5% radiation) constituting the �CDM model. This 
simple model satisfies more or less all the cosmological observa-
tions but is still a phenomenological one. Also the model suffers 2 
important drawbacks: the ‘fine-tunning’ (Jain et al., 2015) and the 
‘coincidence’ (Velten et al., 2014) problems. In consequence other 
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candidates as the dark energy (especially the dynamical models) 
are required. Beyond the general relativity, there are proposals in 
the literature where wormoholes of different kinds (Bronnikov and 
Galiakhmetov, 2015) and other solutions with torsion were per-
formed. For example, the Einstein–Cartan model ECM is the sim-
plest version of the Poincare gauge theory of gravity (PGTG), in 
which the torsion is not dynamic because the gravitational ac-
tion is proportional to the curvature scalar of Riemann–Cartan 
space–time (the ECT is a degenerate gauge theory in this particu-
lar aspect): wormholes were treated for example in Bronnikov and 
Galiakhmetov (2015).

The proposed model presented in this paper is purely geomet-
ric: no energy–momentum tensor (EMT) is introduced. As have 
been seen, an effective TEM (e.g.: eqs. (39)–(41)) is obtained when, 
from the general gravitational equations, the standard Einstein ten-
sor is isolated. In our case, the effective TEM of the wormhole 
solution is diagonal (in the corresponding coordinates) with the 
isotropic typical structure ≈ R ⊗ SU (2). Consequently, we can 
proceed analyzing this effective TEM (geometrical) by mean the 
standard energy conditions expressions (Hawking and Ellis, 1973), 
namely:

i) WEC (weak energy condition)

Tμν

∣∣
ef f ζμζ ν � 0,(

ζ ν : any timelike vector
) ⇒ ρ � 0,ρ + pk � 0, (k = 1,2,3)

guarantees that the energy density as measured by any local ob-
server is nonnegative.

ii) DEC (dominant energy condition)

T00|ef f � |Tik|ef f(
ζ ν : any timelike vector

) ⇒ ρ � 0,ρ + pk � 0, (i,k = 1,2,3)

includes WEC and requires each principal pressure never exceeds 
the energy density which guarantees that the speed of sound can-
not exceed the light velocity c.

iii) SEC (strong energy condition)

requires → ρ +
∑

pk � 0

and defines the sign of the acceleration due to gravity. In our case, 
the wormhole solution presented in Fig. 1, the condition iii) is ful-
filled jointly with conditions i) and ii). As we have made mention 
above, in Bronnikov and Galiakhmetov (2015) wormhole solutions 
with nondynamical torsion were constructed in the context of the 
standard Einstein–Cartan model (ECM) fulfilling the energy con-
ditions also. The fundamental differences between the model in 
Bronnikov and Galiakhmetov (2015) and here are:

• In the case of Bronnikov and Galiakhmetov (2015) the energy 
conditions are fulfilled only for particular values (local conditions 
or windows) of the parameters in the introduced equation.

• In our case there are not free parameters but geometrically 
induced functions mutually related. Consequently, there are no pa-
rameters that can be freely chosen but geometrically induced and 
mutually related functions, so that the freedom to choose them in-
dependently is restricted: e.g. once one of them is fixed, the others 
are automatically related to each other by means of expressions of 
a dynamic character (like the analogue of field b) or by means of 
the constraint given by �, etc. (see Sections 5 and 6). This im-
portant fact, which will be treated in a particular way in another 
work (Cirilo-Lombardo, in preparation), would give an indication 
that the solutions could have an overall character in our model.

11. Discussion and perspectives

In this paper we have introduced a simple geometric Lagrangian 
in the context of a unified theory based on affine geometry. From 

th
th
tr
to
of
vi
po
fi
ph
po
fi
da
ra
th
it
po
ti
ca
co
bi
m
so
th
of
m
to
ar
ex

A

h
th
th
re
m
N
de

A

is
m
al

L

ch
Th
fo
al

R

ta√
in
in
tr
El
m

ri
e functional action proposed, that is as square root or measure, 
e dynamic equations were derived: an equation analogous to 
ace free Einstein equations T F E and a dynamic equation for the 
rsion (which was taken totally antisymmetric). Although the aim 
 this paper was to introduce and to analyze the model from the 
ewpoint of previous research, we bring some new results and 
ssible explanations about the generation of primordial magnetic 

elds and the link with the leptogenesis and baryogenesis. The 
ysically admissible analysis of the torsion vector hμ , from the 
int of view of the symmetries, has allowed us to see how matter 

elds can be introduced in the model. These fields include some 
rk matter candidates such as axion, right neutrinos and Majo-
na. Also the vorticity can be included in the same way and, as 
e torsion vector is connected to the magnetic field, both vortic-

y and magnetic field can be treated with equal footing. The other 
int is that from the wormhole solution in a cosmological space-

me with torsion we show that primordial cosmic magnetic fields 
n be originated by the dual torsion field hμ being the axion field 
ntained in hμ , the responsible to control the dynamics and sta-
lity of the cosmic magnetic field, but is not responsible of the 
agnetogenesis itself. Also the energy conditions in the wormhole 
lution are fulfilled. The last important point to highlight is that 
e dynamic torsion field hμ acts as mechanism of the reduction 
 an original (early, primordial) GUT (Grand Unified Theory) sym-
etry of the universe containing ∼SU(3)×SU(2)R ×SU(2)L ×U(1)

 SU(3)×SU(2)L ×U(1) today. Consequently, the GUT candidates 
e S O (10), SU (5) or some exceptional groups as E(6), E (7) for 
ample.
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ppendix A

We must to remind that the model where the interaction arises 
 based on a pure affine geometrical construction where the geo-
etrical Lagrangian of the theory contains dynamically the gener-
ized curvature R= det(Ra

μ), namely

g =
√

detRa
μRaν =

√
detGμν

aracterizing a higher dimensional group manifold e.g.: SU (2, 2). 
en, after the breaking of the symmetry, typically from the con-

rmal to the Lorentz group e.g.: SU (2, 2) → S O  (1,3), the gener-
ized curvature becomes to

a
μ = λ

(
ea

μ + f a
μ

)
+ Ra

μ

(
Ma

μ ≡ eaν Mνμ

)
king the original Lagrangian Lg the following form: Lg →
Det

[
λ2

(
gμν + f a

μ faν

)
+ 2λR(μν) + 2λ f a

μR[aν] + Ra
μRaν

]
, rem-

iscent of a nonlinear sigma model or M-brane. Notice that f a
μ , 

 a sharp contrast with the tetrad field ea
μ , carries the symme-

y eaμ f a
ν = fμν = − fνμ .– see (Velten et al., 2014; Hawking and 

lis, 1973; Cirilo-Lombardo, 2010, 2011a, 2011b, 2007) for more 
athematical and geometrical details of the theory.

Consequently the generalized Ricci tensor splits into a symmet-
c and antisymmetric part, namely:
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Rμν =

R(μν)︷ ︸︸ ︷
◦
Rμν − T α

μρ T ρ
αν +

R[μν]︷ ︸︸ ︷
◦∇αT α

μν

where 
◦
Rμν is the general relativistic Ricci tensor constructed with 

the Christoffel connection, T α
μρ T ρ

αν is the quadratic term in the 

torsion field and the antisymmetric last part 
◦∇α T α

μν is the diver-
gence of the totally antisymmetric torsion field that introduce its 
dynamics in the theory. From a theoretical point of view our the-
ory containing a dynamical totally antisymmetric torsion field is 
comparable to that of Kalb–Ramond in string or superstring the-
ory (Green et al., 1987) but in our case all: energy, matter and 
interactions are geometrically induced.

Notice that ∗ fμν in Lg must be proportional to the physical 
electromagnetic field, namely j Fμν where the parameter j ho-
mogenizes the units such that the combination gμν + j Fμν has 
the correct sense. We will not go into details but the great advan-
tage of the model is that it is purely geometric without energy–
momentum tensor added by hand.

Appendix B

On the g-variation:
from

L = √|g|√det (αλ)

√
1 + 1

2b2
Fμν F μν − 1

16b4

(
Fμν F̃ μν

)2

≡ √|g|√det (αλ)R (B.1)

where

b = α

β
= 1 + (R S/4λ)

1 + (R A/4λ)
, (B.2)

R S = gαβ Rαβ, (B.3)

R A = f αβ Rαβ, (B.4)

and λ arbitrary constant. Knowing that, in the metrical case we 
have as usual procedure:

δgL =
[
δ
(√|g|√det (αλ)

)
R+√|g|√det (αλ)δR

]
(B.5)

δ
(

Fμν F μν
) = 2Fμλ F λ

ν δgμν (B.6)

δ
(

F̃μν F μν
) =

(
−1

2
F̃ηρ F ηρ gμν + 4 F̃μρ F ρ

ν

)
δgμν (B.7)

then[
2R(αβ) − gαβ

2
Rs

]
R (B.8)

= Rs

Rα2

[
Fαλ F λ

β + 1

2b2
Fμν F̃ μν

(
Fηρ F̃ ηρ

8
gαβ − Fαλ F̃ λ

β

)]

− Fμν F μν R(αβ) + R(αβ)

Rα2

[(
Fηρ F̃ ηρ

)2

4R2b2
− Fμν F μν

]

+ 4λ

[
gαβ + 1

R2α2

(
Fαλ F λ

β

+ Fμν F̃ μν

2b2

(
Fηρ F̃ ηρ

8
gαβ − Fαλ F̃ λ

β

))]
,

R(αβ) − gαβ

4
Rs (B.9)

= Rs
2 2

[
Fαλ F λ

β − Fμν F μν R(αβ)
]

+

2R α Rs
+ Rs

4R2α2b2

[
Fμν F̃ μν

(
Fηρ F̃ ηρ

8
gαβ − Fαλ F̃ λ

β

)

+ Fηρ F̃ ηρ

2

R(αβ)

Rs

]
+

+ 2λ

[
gαβ + 1

R2α2

(
Fαλ F λ

β

+ Fμν F̃ μν

2b2

(
Fηρ F̃ ηρ

8
gαβ − Fαλ F̃ λ

β

))]
.

Appendix C

Some remarks on the general Hodge–de Rham decomposition 
of h = hαdxα

Theorem 6. if h = hαdxα /∈ F ′ (M) is a 1-form on M, then there exist 
a zero-form �, a 2-form α = A[μν]dxμ ∧ dxν and an harmonic 1-form 
q = qαdxα on M that

h = d� + δα + q → hα = ∇α� + ε
βγ δ
α ∇β Aγ δ + qα (C.1)

Notice that even if is not harmonic, and assuming that qα is 
a polar vector, an axial vector can be added such that the above 
expression takes the form

hα = ∇α� + ε
βγ δ
α ∇β Aγ δ + ε

βγ δ
α Mβγ δ + qα (C.2)

where Mβγ δ is a completely antisymmetric tensor (of such a man-

ner that εβγ δ
α Mβγ δ ≡ γ 5bα is an axial vector).

Consequently, we know that in unified theories where we are 
not able to deal with energy–momentum tensor, the fields and 
they interactions are effectively restricted due the same geometri-
cal framework: the spacetime itself. This fact permits us to rewrite 
(14) considering the physical quantities of interest:

hα = ∇α� + ε
βγ δ
α ∇β Aγ δ + γ 5bα + (Pα − e Aα) .

Appendix D

D.1. Electrodynamical equations in 3 + 1

The starting point will be the line element in 3 + 1 split-
ting (Thorne and Macdonald, 1982; Macdonald and Thorne, 1982): 
the 4-dimensional spacetime is split into 3-dimensional space and 
1-dimensional time to form a foliation of 3-dimensional spacelike 
hypersurfaces. The metric of the spacetime is consequently, given 
by

ds2 = −α2dt2 + γi j

(
dxi + β idt

)(
dx j + β jdt

)
where γi j is the metric of the 3-dimensional hypersurface, α is 
the lapse function, and β i is the shift function. At every spacetime 
point, a fiducial observer (FIDO) is introduced in such a way that 
his corresponding world-line is perpendicular to the hypersurface 
where he is stationary.

His FIDO 4-vector velocity is then given by

Uμ = 1

α

(
1,−β i

)
, Uμ = (−α,0,0,0)

one deals with the physical quantities defined on the 3-dimensional 
hypersurface as measured by the FIDO. For example, the electric 
field and the magnetic field are defined with the help of the Uμ

respectively, by
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Eμ = F μνUν

Bμ = − 1

2
√−g

εμνρσ Uν Fμν

notice that the zero components are null: E0 = B0 = 0. Also, the 
4-current Jμ can be similarly decomposed as

Jμ = ρeUμ + jμ

where we defined

ρe = − JμUμ

jμ = Jμ + JνUνUμ

then j0 = 0. So that j, E and B can be treated as 3-vectors in 
spacelike hypersurfaces. In terms of these 3-vectors the Maxwell 
eqs. can be written as

∇ · E = 4πρe

∇ · B = 0

∇ × (αE) = −(∂t −Lβ)B

= −∂0 B + (β · ∇) B − (B · ∇) β

∇ × (αB) = −(∂t −Lβ)E + 4πα j

= ∂0 E − (β · ∇) E + (E · ∇) β + 4πα j

The derivatives in these equations are covariant derivatives with 
respect to the metric of the absolute space γi j being Lβ the Lie 
derivative operator geometrically defined as: Lβ V = d 

(
iβ · V

)
with 

V a vector field.
ZAMOs observers

U = 1

α

(
∂t − β iei

)
in the Boyer–Lindquist coordinates we have er, eθ and eϕ =

1√
gϕϕ

∂ϕ . The plasma 4-velocity (medium) u can be expressed as 
u = γ

(
U + v

)
where v is the plasma 3-velocity with respect to 

the ZAMOs.
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