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A B S T R A C T

Lysosomal storage diseases are usually considered to be pathologies in which the passive deposition of unwanted
materials leads to functional changes in lysosomes. Lysosomal deposition of unmetabolized glycolipid substrates
stimulates the activation of pathogenic cascades, including immunological processes, and particularly the ac-
tivation of inflammation. In lysosomal storage diseases, the inflammatory response is continuously being acti-
vated because the stimulus cannot be eliminated. Consequently, inflammation becomes a chronic process.
Lysosomes play a role in many steps of the immune response. Leukocyte perturbation and over-expression of
immune molecules have been reported in Fabry disease. Innate immunity is activated by signals originating from
dendritic cells via interactions between toll-like receptors and globotriaosylceramide (Gb3) and/or globo-
triaosylsphingosine (lyso-Gb3). Evidence indicates that these glycolipids can activate toll-like receptors, thus
triggering inflammation and fibrosis cascades. In the kidney, Gb3 deposition is associated with the increased
release of transforming growth factor beta and with epithelial-to-mesenchymal cell transition, leading to the
over-expression of pro-fibrotic molecules and to renal fibrosis. Interstitial fibrosis is also a typical feature of heart
involvement in Fabry disease. Endomyocardial biopsies show infiltration of lymphocytes and macrophages,
suggesting a role for inflammation in causing tissue damage. Inflammation is present in all tissues and may be
associated with other potentially pathologic processes such as apoptosis, impaired autophagy, and increases in
pro-oxidative molecules, which could all contribute synergistically to tissue damage. In Fabry disease, the ac-
tivation of chronic inflammation over time leads to organ damage. Therefore, enzyme replacement therapy must
be started early, before this process becomes irreversible.

1. Introduction

Lysosomal storage disorders are a group of more than 50 monogenic
disorders resulting from defects in the function of a protein essential for
normal lysosome metabolism [1]. Lysosomes are membrane-bound
organelles with an acidic luminal pH and are found in most animal cells
[2]. The lysosome lumen contains more than 60 different hydrolytic
enzymes that degrade macromolecules [3]. Defective functioning of
these enzymes generally leads to the progressive accumulation of un-
degraded substrates inside lysosomes.

Beyond the degradation of unwanted materials, lysosomes have a
greater impact than previously thought on many other cellular pro-
cesses, including a central role in normal immune system functioning

[4,5]. This role is played at many stages of the immune response, in-
cluding antigen presentation and processing [6–8], secretion of per-
forins by cytotoxic T cells, phagocytosis, and release of pro-in-
flammatory mediators [7–9]. Pathologies altering lysosome function
are therefore hypothesized to have an effect on the immune system
[10,11].

Studies focusing on immune system irregularities in lysosomal sto-
rage disorders have shown that substrate deposits in lysosomes fuel
multiple pathogenic cascades that ultimately lead to an inflammatory
response, regardless of the specific substrate involved [10,12,13]. If the
inflammation continues over a long period of time, cellular damage can
increase and pathogenesis may become uncoupled from the substrate
accumulation by which it was first initiated. This may be a causative
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factor in progression of the underlying lysosomal disorder despite in-
itiation of therapy, and may be one possible explanation for the clinical
failure of therapy in some cases. In this article, we review the current
understanding of this rapidly evolving field by analyzing published
data.

2. Chronic inflammation versus acute inflammation is a disease
state involved in the pathogenesis of many different diseases

Inflammation is part of the complex biological response of body
tissues to harmful stimuli such as pathogens, damaged cells, and irri-
tants. It is a protective response involving immune cells, blood vessels,
and molecular mediators. Understanding the type of inflammation and
the mechanisms and cells involved is important for understanding its
potential involvement in Fabry disease pathogenesis. Inflammation is
part of an innate immune response that is generally nonspecific – one of
the body's first mechanisms of defense against local infection, injury,
and disease [14]. Damage-associated molecular patterns (DAMPs) are
endogenous molecules released from injured or dying cells. They are
recognized by pattern recognition receptors on immune cells, resulting
in the initiation of an inflammatory response [15]. Physiologically,
inflammation is an acute response that stops once the trigger is no
longer present, and is caused by the release of cytokines and other in-
flammatory mediators, resulting in extravasation of leukocytes into
tissues.

The main cell types in the early inflammatory response are neu-
trophils and macrophages. Later, lymphocytes also become involved.
Acellular inflammatory mediators include several different classes of
molecules (lipid mediators such as prostaglandins and leukotrienes),
cytokines and chemokines, complement cascade factors, the kinin
system, and the coagulation system.

Chronic systemic inflammation differs from acute inflammation
because it is a disease state. If the trigger cannot be eliminated, the
prolonged secretion of DAMPs results in continuous activation of in-
flammation and leads to self-attack of cells and tissues and, eventually,
cell death. Any disease process causing tissue injury may simulta-
neously stimulate the inflammatory cascade. Chronic inflammation is
generally a silent and slow process [16], and patients often do not
realize that inflammation is present until there is irreversible damage
with clinical sequelae.

Autoinflammatory disorders are caused by the recognition of “ab-
normal self” or DAMPs in injured cells. There is no main direct effect on
lymphocyte function in autoinflammatory disorders. Instead, autoin-
flammatory disorders promote the release of chemokines, adhesion
molecules, and other pro-inflammatory mediators that enhance tissue
infiltration and eventually lead to tissue remodeling. Taking into ac-
count the molecular mechanisms fired in Fabry cells and tissues that
will be described in this review, we speculate that autoinflammatory
processes may contribute to the pathogenesis of Fabry disease.

3. Immune system activation via generation of an inflammatory
response is observed in Fabry disease

Fabry disease is a lysosomal storage disorder caused by a deficiency
of the enzyme alpha-galactosidase A, resulting from mutations in the
GLA gene. It is characterized by accumulating levels of glycolipids,
mainly globotriaosylceramide (Gb3) or globotriaosylsphingosine (lyso-
Gb3), within the lysosomes of many cell types throughout the body.
Early symptoms can manifest in childhood and include acroparesthesia,
angiokeratoma, and anhidrosis. The disease progresses into adulthood
with cardiac, renal, and cerebral complications, ultimately leading to
premature death due to organ failure, peaking in the fifth decade for
males and the seventh for females [17].

The high levels of glycolipids in the cells and plasma of patients
with Fabry disease are not sufficient to explain the pathophysiology of
this disorder. Moreover, family members with GLA mutations can have

very different clinical presentations (intra-familial phenotypic varia-
bility) [18]. It has been suggested that the anomalous accumulation of
Gb3 or lyso-Gb3 due to alpha-galactosidase A deficiency in patients
with Fabry disease could trigger different cellular mechanisms that
contribute to the phenotypic expression of this disease [19,20]. Lyso-
somal deposits may behave as DAMPs or cause DAMP production by
injured cells, with subsequent pro-inflammatory activity, because it has
been shown that addition of Gb3 to normal control cells induces
apoptosis and cytokine secretion [21,22]. This may help explain the
pathological changes seen in Fabry disease target organs, including the
kidney and heart. Indeed, there is growing evidence to support the
concept that different mechanisms of the immune system are activated
in Fabry disease [23].

Several studies have focused on inflammation markers and leuko-
cyte activity in Fabry disease. Leukocytes and endothelium from pa-
tients with Fabry disease show signs of inflammatory activation
[24,25], characterized by increased expression of adhesion molecules,
such as CD31 in CD3+ lymphocytes, monocytes, and granulocytes,
when compared with healthy controls [26]. This increased surface ex-
pression of adhesion molecules could be involved in the extravasation
of leukocytes into peripheral tissues.

One of the consequences of inflammation is the generation of re-
active oxygen species, which were found to be produced in endothelial
cells exposed to Gb3 in vitro [25]. Furthermore, Biancini and colleagues
reported altered glutathione metabolism, high lipid peroxidation levels,
and high levels of nitric oxide equivalents in patients with Fabry disease
[27–29]. The same group also reported a significant increase in plasma
carbonyl groups, indicative of oxidative protein damage [27]. Altered
peptides derived from these damaged proteins may serve as neoanti-
gens and induce autoimmune responses. Such a mechanism could po-
tentially explain the coexistence of Fabry disease and autoimmune
disorders reported in the literature, whereby the high prevalence of
autoantibodies found in patients with Fabry disease may be due to
glycolipids representing a constant stimulus and inducing autoimmune
disorders [30,31].

If glycolipids behave as antigens, the accumulation of Gb3 or lyso-
Gb3 in Fabry disease may have a direct effect on the immune system.
Glycolipids are recognized as antigens when they are presented to
natural killer T (NKT) cells by CD1d-bearing antigen-presenting cells
[32], and CD1d moves through the endolysosomal compartments [33]
where accumulation occurs. Based on this hypothesis, studies were
conducted on NKT cells from patients with Fabry disease [26,34]. Al-
though no difference was found between studies with respect to the
total numbers of CD8+ NKT cells, discordant results were found be-
tween the studies in the proportion of CD8+ NKT cells: Rozenfeld et al.
[26] found proportions of 26% vs 19% (p < 0.01) CD8+ NKT cells in
samples from normal controls vs patients with Fabry disease, whereas
no significant difference was found by Pereira et al. [34]. Further leu-
kocyte perturbations were also found; specifically, reduced numbers of
monocytes, CD8+ cells, and dendritic cells, and increased percentages
of total lymphocytes and B cells [26]. The clinical relevance of these
changes is not yet known.

Although reports of inflammatory cell infiltration into Fabry target
organs are currently limited, one study reported increased levels of the
macrophage-related markers CD68, CD163, and CD45 in en-
domyocardial biopsy samples from patients with Fabry disease [35].
This may indicate some degree of myocardial macrophage infiltration,
but more evidence is required before the involvement of classical in-
flammatory pathways in Fabry disease can be confirmed.

4. Urinary markers of inflammation in Fabry disease have been
discovered via proteomic/transcriptomic profiling

Identifying proteins differentially expressed among patients with
Fabry disease compared with healthy controls could help to identify
biological processes that are amplified in the disease state, and could
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also help to reveal the pathophysiological mechanisms leading to organ
damage. Moreover, they could serve as potential biomarkers for Fabry
disease [36].

Despite the many different technologies that exist for proteomic
analysis, they have not been widely applied in Fabry disease. Two
studies looking at protein changes in peripheral blood mononuclear
cells (PBMCs) used different methods: one looked directly at protein
levels in these cells and the other looked at gene expression [37,38].
Although both studies used the same cell types, the results differed with
regard to the specific proteins or genes detected; nonetheless, activation
of inflammation or apoptosis was detected in both studies. The first
study found higher levels of galectin-1 in PBMCs from patients with
Fabry disease compared with healthy controls. This protein is expressed
by many immune cell types such as neutrophils, mast cells, macro-
phages, T and B lymphocytes, and endothelial cells [37], and it parti-
cipates in the inhibition of extravasation, mast cell degranulation, and
arachidonic acid and prostaglandin E2 release by lipopolysaccharide-
stimulated macrophages. Upregulation of galectin-1 could be part of the
body's attempt to downregulate the inflammatory insult [37]. In a
transcriptomic assay in the second study, NAIP (the gene for neuronal
apoptosis inhibitory protein) was found to be upregulated in children
with Fabry disease [38]. This gene is thought to play a role in mod-
ulating the assembly of the inflammasome, a multi-protein complex of
innate immune receptors and sensors that activates inflammatory cas-
pases in response to DAMPs or pathogen-associated molecular patterns
(PAMPs) [39,40].

An interesting hypothesis is that molecular clues reflecting the
kidney's lysosome-related inflammatory processes can be found in
urine. A proteomic study looking for biomarkers analyzed urinary
proteins from Italian patients with Fabry disease and determined that
55% of the proteins belonged to biological processes related to the
immune response, inflammation, or both [41]. For example, serine-type
endopeptidase inhibitor was found to be enriched in the patients ana-
lyzed. This protein is involved in the modulation of serine proteases,
which are involved in blood clotting, the immune system, and in-
flammation [41]. Furthermore, the study revealed early urinary mar-
kers of Fabry disease-related nephropathy, showing an upregulation of
some inflammatory proteins such as uromodulin and prostaglandins.

Studies have also been undertaken using tissues from Fabry
knockout mice. Gene expression and protein levels of liver serum
amyloid A1, S100 calcium-binding protein A8 and A9, and lipocalin 2
were significantly increased in untreated Fabry mice compared with
wild-type mice [42]. Serum amyloid A is a superfamily of acute-phase
proteins, the blood level of which increases in response to tissue injury
and inflammation, and S100 calcium-binding proteins A8 and A9, and

lipocalin 2, modulate inflammation.

5. Pro-inflammatory cytokines and apoptosis are upregulated in
Fabry disease

Supported by many reports showing evidence for chronic immune
system stimulation in other lysosomal storage disorders, research
groups have recently focused their attention on the production of in-
flammatory mediators and on cellular apoptosis in Fabry disease. As
part of this work, Dr. Rozenfeld's group studied apoptosis and pro-in-
flammatory cytokine profiles in PBMCs from patients with Fabry dis-
ease. In one study, higher levels of apoptosis were detected in cells from
untreated patients compared with healthy controls, and reduced levels
of apoptosis in treated patients compared with untreated patients [21].
Later, the group reported on the disease state in cultured PBMCs from
patients with Fabry disease that induces constitutive secretion of pro-
inflammatory cytokines tumor necrosis factor alpha (TNF-α) and in-
terleukin (IL)-1β [22]. These cytokines secreted from Fabry PBMCs are
a hallmark of autoinflammatory disorders [43].

Receptors expressed in cells of the innate immune system could
be involved in the molecular mechanism by which abnormal sub-
strate deposits in lysosomal storage disorders trigger the production
of pro-inflammatory cytokines. The innate immune system re-
cognizes danger signals through pattern recognition receptors ex-
pressed mainly on the surface of macrophages and dendritic cells;
for example, toll-like receptor 4 (TLR4). TLR4 can recognize en-
dogenous molecules exposed during cellular injury. In Fabry dis-
ease, the binding of glycolipids such as lyso-Gb3 to TLR4 may
trigger Notch1 signaling, in turn activating the nuclear factor kappa
B (NF-κB) pathway, resulting in the production of pro-inflammatory
cytokines and giving rise to systemic and local inflammatory re-
sponses [44,45]. It has been revealed that Gb3 may also be re-
cognized by TLR4 [22]. This receptor has been shown to participate
in other lysosomal storage disorders, including mucopolysacchar-
idoses [46] and Niemann-Pick type C [47]. The finding that lyso-
Gb3 and Gb3 are recognized by TLR4 adds to the emerging body of
evidence indicating that TLRs could play a role in organ in-
flammation and damage (Fig. 1).

6. Inflammation plays a role in the pathogenesis of Fabry-related
organ damage

Progression of this chronic disorder leads to irreversible tissue in-
jury, resulting in fibrosis. Ultimately, these pathological changes lead to
target organ failure, which may reduce life expectancy if it involves the

Fig. 1. Pathogenic hypothesis of tissue damage in Fabry
disease. While all kinds of cells are exposed to lyso-Gb3
and Gb3, the response differs according to cell type.
Apoptosis may occur in all organs, while activation of in-
flammation and the immune response mostly occurs in
cells with exolysosomes, such as monocytes, lymphocytes,
and dendritic cells. Moreover, in some parenchyma, such
as the kidney, lyso-Gb3 induces the transformation of
epithelial and endothelial cells into mesenchymal cells,
with production of pro-inflammatory and pro-fibrotic cy-
tokines. Gb3 = globotriaosylceramide; iNKT = invariant
natural killer T cell; lyso-Gb3 = globotriaosylsphingosine;
NF-κB = nuclear factor kappa B; TGF-β = transforming
growth factor beta; TLR = toll-like receptor.
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kidney, heart, or central nervous system (CNS) [48,49]. However, the
pathogenic link between the metabolic abnormality and tissue injury is
still unclear. The initial metabolic derangement may promote the pro-
duction of secondary mediators of injury that lead to inflammation,
parenchymal cell loss, and fibrosis.

6.1. Kidney

From a clinical point of view, Fabry disease-related nephropathy is
characterized by mild proteinuria and a progressive reduction in glo-
merular filtration rate. As in other nephropathies, it is noteworthy that
the degree of proteinuria at enzyme replacement therapy (ERT) initia-
tion, and during treatment [50], affects the progression of renal disease
[51–53]. Histologically, there is progressive glomerulosclerosis, tubular
atrophy, and interstitial fibrosis associated with an interstitial in-
flammatory cellular infiltrate [54]. Deposition of Gb3 is mostly present
in endothelial and epithelial glomerular cells. Among epithelial cells,
Gb3 deposition frequently occurs in podocytes, which have shown
partial resistance to ERT clearance [55]. This is most likely because
podocytes have a very low turnover and are separated from blood lu-
mina by the glomerular basement membrane. Conversely, endothelial
and mesangial cells, having a higher turnover and greater exposure to
blood circulation, are more accessible to Gb3 clearance by ERT [52].
The intracellular persistence of Gb3 may continuously stimulate pa-
thogenetic processes, including inflammation, while the cellular clear-
ance of Gb3 by ERT limits histological damage. Deposition of Gb3 in
glomerular cells is followed by focal segmental glomerular sclerosis and
an increase in the mesangial matrix, resulting in global glomerular
sclerosis. Transforming growth factor β1 (TGF-β1), a regulatory cyto-
kine with key functions under inflammatory conditions [56], is known
to play a role in the development of nephropathy [57], and has been
shown to be produced by podocytes [58]. Interestingly, it is highly
expressed in kidneys from Fabry mice compared with normal controls;
moreover, the exposure of bovine aortic endothelial cells to Gb3 in-
duced TGF-β1 production [57].

Possible mediators of Fabry disease-related nephropathy were also
revealed when the addition of lyso-Gb3 to in vitro cultured podocytes
induced the production of TGF-β1 through Notch1 activation and the
production of CD74 through macrophage migration inhibitory factor
activation [58–60]. TGF-β1 promotes fibrosis in response to chronic
inflammation by enhancing the synthesis of extracellular matrix in
renal cells via epithelial-to-mesenchymal transition [59,61]. Indeed,
blocking TGF-β1 reduced extracellular matrix protein expression, and
Notch receptor inactivation prevented TGF-β1 from inducing epithelial-
to-mesenchymal transition [58,59]. The activation of CD74 was fol-
lowed by the release of inflammatory cytokines [60]. Further evidence
to support the induction of epithelial-to-mesenchymal transition via the
activation of TGF-β by lyso-Gb3 was obtained in cultured tubular cells,
where blocking TGF-β also inhibited the expression of epithelial-to-
mesenchymal transition markers [62].

The role of TLR4 in causing renal fibrosis has been confirmed in
diabetic nephropathy, in a process by which high glucose levels sti-
mulate TLR4, resulting in NF-κB activation and consequent fibrosis
[63]. It may be possible that a similar situation occurs in Fabry disease,
where continued exposure to increased levels of glycosphingolipids
causes changes in inflammatory gene expression and protein produc-
tion that have an impact upon the development of subsequent Fabry-
related complications. This “glycolipid legacy” remains to be confirmed
but, in Fabry renal disease, endogenous TLR4 ligands are indeed ex-
posed, leading to the production of cytokines and chemokines by im-
mune cells and intrinsic renal cells. This, in turn, is followed by leu-
kocyte recruitment to the kidney, with consequent interstitial
inflammation and interstitial fibrosis [64]. TLR4 is expressed in in-
trinsic and infiltrating cells in glomeruli and interstitial tissues [44].
The interaction between these cells and TLR4 determines the release of
chemokines, promoting local recruitment of leukocytes and the

amplification of glomerular injury [65].
A detailed description of the relationship between changes in the

profile of cytokine synthesis and kidney fibrosis in Fabry nephropathy
was recently reported [66]. This paper emphasizes the roles of TGF-β
and the renin–angiotensin system in the progression of renal sclerosis.
We believe that the perturbations in the immune response reported in
Fabry disease trigger the inflammatory processes that later result in
tissue fibrosis.

Proteinuria, a classic manifestation of Fabry renal disease, is itself
able to stimulate interstitial inflammation and fibrosis. In the presence
of proteinuria, tubular cells undergo a partial epithelial mesenchymal
transdifferentiation, triggering cell-cycle arrest and promoting the re-
lease of fibrogenic cytokines [67,68].

6.2. Heart

Inflammation might play a critical role in the development of car-
diac changes in Fabry disease. In end-stage cardiomyopathy in patients
with Fabry disease, fibrosis in the left ventricle (but not in the right
ventricle) is a common finding [69]. A study of patients with Fabry
disease and cardiomyopathy revealed considerably hypertrophic and
disorganized cardiomyocytes, apoptosis, expression of inducible nitric
oxide synthase and nitrotyrosine, and glycosphingolipid accumulation
in endomyocardial biopsies [70]. Concentric hypertrophy and extra-
cellular matrix remodeling are associated with ischemia of the heart
tissue [71,72]. Moreover, serum levels of IL-6, IL-1β, TNF-α, monocyte
chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1,
and soluble vascular adhesion molecule were significantly higher in
patients with Fabry disease [73]. These findings indicate that pro-in-
flammatory cytokines might play a role in the progression of Fabry
disease-related cardiomyopathy. The roles of pro-inflammatory cyto-
kines in cardiomyopathy may differ between patients with and without
Fabry disease.

Scattered apoptotic myocytes have been identified based on cas-
pase-3-positive cytoplasmic staining in autopsy specimens from patients
with Fabry disease. A mild T-lymphocyte interstitial infiltrate in the
myocardium has also been demonstrated by CD3 staining [74]. More-
over, the observation that endomyocardial biopsy specimens from pa-
tients with Fabry disease were infiltrated by inflammatory macrophages
suggests that these cells act as key players in myocardial injury [35].

6.3. Vascular system

Fabry disease involves smooth muscle too, although it is uncertain
whether the initiating step in Fabry vasculopathy takes place in en-
dothelial cells, with a subsequent pro-thrombotic state, or in smooth
muscle cells in the arterial media layer [24,75]. It appears that lyso-Gb3
plays a major role in the pathogenesis of Fabry vasculopathy, and it has
been proposed that smooth muscle cells, rather than endothelial cells,
are the initial target for lyso-Gb3 accumulation [20,75,76]. Exposure of
smooth muscle cells to lyso-Gb3 results in proliferation that might be
associated with the hypertrophy of arterial walls [20]. Storage of lyso-
Gb3 within the media layer of the arteries may also promote cell pro-
liferation, with fibrotic remodeling of the arterial wall leading to ar-
terial wall stiffness. The resulting shear stress may increase the ex-
pression of angiotensin 1 and 2 receptors in endothelial cells, in turn
increasing reactive oxygen species, NF-κB, β-integrin, and cycloox-
ygenase 1 and 2 activity, and decreasing nitric oxide synthesis [75].
These factors may initiate an inflammatory cascade with pro-throm-
botic and pro-inflammatory effects on leukocytes, endothelial cells, and
vascular smooth muscle cells [75,77].

6.4. Central nervous system

Inflammatory processes occurring in the CNS in lysosomal storage
disorders have already been reported in the literature [10]. Interest in
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the CNS and lysosomal storage disorders is easy to understand when we
consider that the CNS is the primary target for many lysosomal storage
disorders, inasmuch as, for all its intrinsic peculiarities (highly differ-
entiated cells with limited chances of replication), the CNS often
dominates the clinical picture.

In many lysosomal storage disorders the inflammatory response in
the CNS primarily involves microglial cells (resident dendritic cells) and
astrocytes. Lysosomes in damaged cells release PAMPs or DAMPs that
stimulate astrocytes and microglial cells, probably via TLR signaling
(innate immunity), to release cytokines, causing inflammation and
cellular death. The question of whether these processes are the drivers
for or the consequence of tissue damage remains to be definitively
clarified, and applies to all lysosomal storage disorders, including Fabry
disease.

Stroke is the main symptom of CNS involvement in Fabry disease
and is caused by inflammatory processes acting on vascular and cardiac
pathways. The three components of the vascular pathway to stroke,
which are all affected by inflammation, are endothelial cell dysfunc-
tion, impaired vessel wall structure and function, and altered blood
components. The main component of the cardiac pathway is throm-
boembolic events, caused by arrhythmia, which is also influenced by
inflammatory processes in the heart (Fig. 2).

Brain lesions are found upon magnetic resonance imaging in vir-
tually all patients with Fabry disease who have had a stroke. Although
the mechanism behind these lesions is unclear, an inflammatory com-
ponent was indicated by the finding of an association between poly-
morphisms in genes coding for the pro-inflammatory markers IL-6,
endothelial nitric oxide synthase, factor V, and protein Z and the like-
lihood of developing brain lesions related to small vessel disease [81].

6.5. Lungs

Fabry disease affects the lungs in all patients, characterized by
moderate obstructive ventilatory disorder and associated with symp-
toms of dyspnea, dry cough, wheezing, and prolonged expiration. Lipid
deposits are present in the vascular endothelium and bronchial smooth
muscle. The sites of obstruction are the small airways. The subsequent
inflammation fueled by glycolipid deposits might represent an im-
portant mechanism in the development of small airway disease [82].

7. The effect of ERT on the immune system and inflammatory
processes in Fabry disease remains to be confirmed

As described earlier, Fabry disease leads to a pro-inflammatory
profile in the cells of affected patients, and this immune dysregulation
could be associated with the organ damage seen in patients with Fabry
disease. ERT with an exogenous recombinant enzyme preparation, such
as agalsidase alfa or agalsidase beta, is stabilizing because it halts the

progressive accumulation of glycosphingolipids in organs and thus
slows the deterioration of organ function. An important question is
whether ERT also modulates the immune system to reduce the level of
inflammation. Studies on pro-inflammatory cytokines have produced
discordant findings in patients undergoing ERT, and direct comparisons
between agalsidase alfa and beta are hindered by differences in the
methodology used (Table 1).

Increased levels of pro-inflammatory cytokines and oxidative da-
mage, along with altered antioxidant defenses, were found in patients
with Fabry disease, some of whom had been treated with agalsidase alfa
or agalsidase beta ERT [27–29]. However, these studies mixed agalsi-
dase alfa and beta treatments, and also treated and untreated patients;
thus, it is difficult to assess the immunomodulatory effects of ERT in
these analyses. Furthermore, some of the changes in levels of pro-in-
flammatory cytokines described during ERT may actually be due to the
effects of concomitant medications, such as non-steroidal anti-in-
flammatory drugs and statins.

Proteomic studies have assessed the immunomodulatory effects of
ERT in animal models and human studies. One study in the Fabry
mouse model showed that the expression of genes associated with in-
flammation and vascular and renal functions was normalized by agal-
sidase beta ERT [42]. In humans, one study on the urinary proteome of
patients with Fabry disease showed that the production of some pro-
inflammatory proteins, such as uromodulin and prostaglandins, was
reduced in patients who had been treated with agalsidase beta [41]. In
another study, abnormalities in urinary proteome markers from female
patients with Fabry disease were corrected by ERT with agalsidase alfa
(n = 11) and agalsidase beta (n = 1) [36].

One study designed to analyze the short-term effects of enzyme
replacement infusions found that immune and inflammatory pathways
were upregulated, on the basis of gene expression analysis, after agal-
sidase beta infusion. The authors observed more pronounced ERT-as-
sociated gene expression changes in male patients than female patients
[83], which may have been related to the generally greater disease
severity observed in male patients and the different organs involved, in
turn related to lyonization and skewed X-chromosome inactivation in
female patients [84].

No change in the expression of pro-inflammatory cytokines, such as
IL-1β, IL-6, and TNF-α, was observed by one research group when
comparing patients with Fabry disease who did not receive treatment
with those who received agalsidase alfa ERT [22], whereas another
group showed significant reductions in serum levels of these pro-in-
flammatory cytokines and markers of oxidative stress following agal-
sidase alfa ERT [62,73]. One limitation of the latter studies was that all
the patients had the IVS4+919G>A cardiac variant mutation, the role
of which in determining the Fabry phenotype has not yet been clearly
defined [85]. However, they were comparatively large studies for this
field, and the authors were able to correlate the inflammatory findings
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Fig. 2. Inflammation may contribute to stroke in Fabry
disease. CD = cluster of differentiation;
ICAM = intercellular adhesion molecule; NO = nitric
oxide; TIA = transient ischemic attack; VCAM= vascular
cell adhesion molecule. Figure adapted from DeGraba et al.
[24], Schiffmann and Moore [78], Germain [79], Zarate
and Hopkin [80].
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with the clinical results. For example, in Chen et al. 2016 changes in left
ventricular mass index correlated with changes in IL-6 and MCP-1, in-
dicating a potential use for these cytokines as pro-inflammatory bio-
markers in Fabry disease [73].

One study by Dr. Rozenfeld's group assessing the apoptotic state of
PBMCs in Fabry disease found reduced levels of apoptosis in cells from
patients who had received agalsidase alfa ERT compared with untreated
patients [21]. Another study analyzed changes in leukocyte populations
and reported higher percentages of lymphocytes and CD19+ cells, and
reduced proportions of monocytes, CD8+ cells, and myeloid dendritic
cells, in patients with Fabry disease compared with healthy controls.
However, no significant differences in cell populations were reported
between untreated patients and those who received agalsidase alfa ERT
[26].

Thus, the effects of ERT on the immune system and inflammatory
processes in Fabry disease need to be confirmed. Further studies are
warranted to clarify whether ERT is able to modulate or reverse Fabry
disease-related inflammatory responses. It is also possible that in-
flammatory processes are more active some days after infusion because
of a reduction in enzyme activity [86], and a treatment with a longer
effect might improve the outcome in patients with progressive Fabry
disease despite ERT.

8. Conclusions

In recent years, it has become clear that inflammation and con-
comitant activation of the innate immune system are a general response
in Fabry disease and are primarily caused by glycolipid accumulation
(Gb3 and lyso-Gb3) and its recognition as a danger signal. Owing to
continuous exposure to glycolipids, inflammation in Fabry disease is
chronic, and it is possible that, after the initial inflammatory response
to Gb3 deposition, tissue damage progresses independently. Chronic
inflammation is a disease state and it is responsible for irreversible
changes in tissues that ultimately lead to organ failure. The exact cel-
lular and molecular mechanisms that link the intracellular accumula-
tion of substrates like Gb3 to inflammatory processes and organ pa-
thology are not completely understood. Mechanisms other than
glycosphingolipid accumulation may also be involved. Thus, further
studies investigating the pathophysiology of Fabry disease are clearly
needed to help us understand the effects of specific treatments like ERT
and to help developing even more targeted ones.
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