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Abstract The miR-29 family is involved in fibrosis in multi-
ple organs, including the intestine where miR-29b facilitates
TGF-β-mediated up-regulation of collagen in mucosal fibro-
blasts from Crohn’s disease (CD) patients. Myeloid cell
leukemia-1 (MCL-1), a member of the B-cell CLL/
Lymphoma 2 (BCL-2) apoptosis family, is involved in liver
fibrosis and is targeted by miR-29b via its 3’-UTR in cultured
cell lines. We investigate the role of MCL-1 and miR-29b in
primary intestinal fibroblasts and tissue from stricturing CD
patients. Transfection of CD intestinal fibroblasts with pre-
miR-29b resulted in a significant increase in the mRNA ex-
pression of MCL-1 isoforms [MCL-1Long (L)/Extra Short
(ES) and MCL-1Short (S)], although MCL-1S was expressed
at significantly lower levels. Western blotting predominantly

detected the anti-apoptotic MCL-1L isoform, and immunoflu-
orescence showed that staining was localised in discrete nu-
clear foci. Transfection with pre-miR-29b or anti-miR-29b
resulted in a significant increase or decrease, respectively, in
MCL-1L foci. CD fibroblasts treated with IL-6 and IL-8, in-
flammatory cytokines upstream of MCL-1, increased the total
mass of MCL-1L-positive foci. Furthermore, transfection of
intestinal fibroblasts with pre-miR-29b resulted in an increase
in mRNA and protein levels of IL-6 and IL-8. Finally, immu-
nohistochemistry showed reduced MCL-1 protein expression
in fibrotic CD samples compared to non-stricturing controls.
Together, our findings suggest that induction ofMCL-1 by IL-
6/IL-8 may surmount any direct down-regulation by miR-29b
via its 3’-UTR. We propose that an anti-fibrotic miR-29b/IL-6
IL-8/MCL-1L axis may influence intestinal fibrosis in CD. In
the future, therapeutic modulation of this pathway might con-
tribute to the management of fibrosis in CD.
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NTC Non-targeting control
SCD Stricturing Crohn’s disease

Introduction

Crohn’s disease (CD) is characterised by transmural inflam-
mation of the affected bowel, which drives disease progres-
sion from an inflammatory to a fibrostenosing (stricturing)
phenotype (Rieder et al. 2011; Thia et al. 2010). Intestinal
wound healing following acute inflammation-induced dam-
age is a complex sequence of events including inflammatory
cell activation of subepithelial fibroblasts. This leads to in-
creased collagen deposition and to a decrease in extracellular
matrix (ECM) degradation resulting from an imbalance be-
tween tissue-degrading matrix metalloproteinases and their
inhibitors (Di Sabatino et al. 2009; Graham et al. 1988;
Regan et al. 2000). The production of ECM proteins by acti-
vated fibroblasts is critical for intestinal wound healing and
the contraction of the wound area (Tomasek et al. 2002).
Chronic inflammation disturbs this physiological response
causing over-production of ECM molecules. This is normally
prevented by activation of apoptosis and subsequent removal
of the ECM-producing cells. Thus, the over-production of
ECM molecules by activated fibroblasts may be a conse-
quence of resistance to apoptosis. Failure of apoptosis pro-
motes the persistence of activated fibroblasts in tissues once
repair has been completed. Fibrotic disorders, including pul-
monary fibrosis, are often characterised by an overabundance
of fibroblasts and fibroblast resistance to apoptosis (Uhal et al.
1998; Huang et al. 2013), indicating that surmounting apopto-
sis resistance might be an effective treatment strategy for most
chronic fibroproliferative diseases. However, the success of
such a strategy requires a complete understanding of the
anti-apoptotic pathways.

The microRNA (miRNA) miR-29b is one member of the
miR-29 family, which comprises miR-29a, miR-29b-1, miR-
29b-2 and miR-29c (Chang et al. 2008; Eyholzer et al. 2010;
Mott et al. 2010). The miR-29 family precursors are tran-
scribed in two bi-cistronic clusters: miR-29a/b-1 on chromo-
some 7 (7q32) and miR-29b-2/c on chromosome 1 (1q32). A
single nucleotide outside of the seed sequence distinguishes
mature miR-29a and miR-29c, whilst miR-29b-1 and miR-
29b-2 have identical mature sequences. However, expression
of each family member is probably dependent on context, as
differential expression and subcellular localisation for individ-
ual members has been demonstrated (Hwang et al. 2007),
indicating that their functional roles are unlikely to be the
same. To date, the miR-29 family has been studied predomi-
nantly in the context of cancer and is known for its tumour-
suppressor function (reviewed by Wang et al. 2013). This
family has also been implicated in the pathogenesis of fibrosis
in various organs: the expression of all three members is

reduced in fibrosis of the kidney and liver (Qin et al. 2011;
Roderburg et al. 2011; Xiao et al. 2012), and miR-29b is
down-regulated following myocardial infarction (van Rooij
et al. 2008) in the lungs of patients with idiopathic pulmonary
fibrosis (Maurer et al. 2010) and in skin fibroblasts of patients
with systemic sclerosis (Pandit et al. 2011).

The role of this miRNA family in CD-related fibrosis has
not been extensively studied. However, we recently demon-
strated reduced miR-29 expression levels in the mucosa over-
lying strictured gut in CD patients and have shown that TGF-β-
mediated up-regulation of collagen in fibroblasts from CD pa-
tients is facilitated by reduction of miR-29b (Nijhuis et al.
2014). In addition, loss of miR-29-mediated immunoregulation
in CD dendritic cells is linked to the elevated expression of IL-
23 associated with this disease (Brain et al. 2013).

A role for miR-29 in resistance to apoptotic cues in CD
fibroblasts has not yet been considered. Interestingly, online
prediction tools identified MCL-1, an anti-apoptotic protein
and member of the B-cell CLL/Lymphoma 2 (BCL-2) family,
as a miR-29b target in four of the five target prediction sites
examined (TargetScan, MiRWalk, miRanda and DIANATools;
Fig. 1a). Several groups have now validated this prediction
demonstrating the binding of miR-29b to the 3’UTR of MCL-
1 through luciferase assays (Garzon et al. 2009; Li et al. 2013;
Mott et al. 2007; Roggli et al. 2012; Steele et al. 2010; Xiong

Fig. 1 Identification of a single miR-29b binding site with the 3’UTR of
MCL-1. a Predicted binding site of miR-29b within the 3’UTR ofMCL-1
(the 3’UTR is identical for all three isoforms). Nucleotides in red indicate
complementary binding between the seed sequence of miR-29b and the
3’UTR of MCL-1. b Schematic overview of MCL-1 gene consisting in
three exons. Alternative splicing produces three isoforms: MCL-1L,
containing the full length of all three exons; MCL-1S, exon 2 is lost due
to alternative splicing; and MCL-1ES, in which the first exon undergoes
alternative splicing. The MCL-1L protein containing all three BH do-
mains is part of the anti-apoptotic BCL-2 family, whilst MCL-1S and
MCL-1ES have death-inducing properties. Red line indicates the epitope
of the antibody used to detect MCL-1. The antibody detects both MCL-
1L and MCL-1S but not MCL-1ES
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et al. 2010). The MCL-1 gene consists in three exons that
undergo alternative splicing to generate three different mRNA
transcripts:MCL-1 long(L),MCL-1 short (S) andMCL-1 extra
short (ES) (Fig. 1b); MCL-1L is the full-length and most abun-
dant isoform. MCL-1S is expressed at lower levels than MCL-
1L (Bae et al. 2000; Bingle et al. 2000; Garzon et al. 2009; Li
et al. 2013; Kim 2009; Kim and Bae 2013), whilst MCL-1ES
was identified as minimally expressed by RT-PCR (Kim 2009).
In cancer, MCL-1L was expressed at much higher levels than
MCL-1S and MCL-1ES isoforms; the latter was expressed at
low or undetectable levels (Palve et al. 2014). The MCL-1L
protein’s anti-apoptotic function is consistent with its 35% ho-
mologywith the C-terminus of the anti-apoptotic BCL-2 family
members and its BCL-2 homology domains (BH)-1, BH-2 and
BH-3 (Fig. 1b) (Kozopas et al. 1993). Alternative splicing pro-
duces the pro-apoptotic proteins, MCL-1S and MCL-1ES (Bae
et al. 2000; Bingle et al. 2000; Kim and Bae 2013). The down-
regulation of MCL-1L by miR-29b has been shown to occur
predominantly at the protein level (Garzon et al. 2009; Mott
et al. 2007; Roggli et al. 2012; Steele et al. 2010; Xiong et al.
2010; Zhang et al. 2011) rather than at themRNA level (Garzon
et al. 2009), indicating that miR-29b might act as a post-
transcriptional regulator dependent on disease context and cell
type. A pro-apoptotic role for miR-29b in the context ofMCL-1
has been shown previously for a number of cellular models and
diseases including cancer, diabetes and pre-eclampsia (Li et al.
2013; Mott et al. 2007; Roggli et al. 2012; Xiong et al. 2010;
Zhang et al. 2011). However, these investigations did not iden-
tify the MCL-1 isoform directly. Deletion of theMcl-1 gene in
murine hepatocytes resulted in liver cell damage caused by
spontaneous induction of apoptosis (Weng et al. 2011).
Evaluation of MCL-1 in CD intestinal fibrosis and any inter-
action with miR-29b, remains to be investigated.

By modulating expression of miR-29b in intestinal fibro-
blasts isolated from CD patients, we now show that MCL-1L
expression is altered by this miRNA via the cytokines IL-6
and IL-8 and that MCL-1L levels in stricturing CD tissue
samples are lower than in non-stricturing CD samples.

Material and methods

Isolation of intestinal fibroblasts and culturing

Intestinal fibroblasts were isolated from the mucosa overlying a
stricture in resection specimens from individual CD patients
andmaintained as independent cultures as described previously
(Nijhuis et al. 2014). The number of patients from which cul-
tures were isolated is denoted in the figure legends. The studies
received the appropriate local Ethics Committee approval (East
London REC2) and informed consent was obtained in all
cases. Briefly, intestinal mucosa from CD patients undergoing
surgery for stricturing disease was used to isolate intestinal

fibroblasts. The mucosa was washed twice with HBSS with
EDTA (1 mM for 10 min at 37 °C) under gentle agitation to
remove epithelial cells. Specimens were cut into smaller pieces
and incubated in 20 ml Dulbecco’s modified Eagle’s medium
(DMEM) (PAA, UK) with collagenase type 1A (1 mg/ml) and
DNase I (10 U/ml) for 45–60 min under gentle agitation at
37 °C in 5% CO2 atm. Cells were washed twice with PBS
and transferred to a T25 flask and maintained in DMEM sup-
plemented with 10% heat-inactivated FCS, penicillin (100
U/ml) and streptomycin (100 μg/ml) (Pen/Strep). Adherent
cells were passaged at 80% confluency at 1:2 to 1:3 ratio using
Trypsin-EDTA (PAA). Intestinal fibroblast cultures between
passages 4 and 10 were used for functional experiments.

Transfection of intestinal fibroblasts

Intestinal fibroblasts were seeded overnight in 96-well plates
(Nunc, UK) before being transiently transfected with 60 nM
negative control siRNA (non-targeting control, NTC
#1027281), 60 nM pre-miR-29b, or 120 nM anti-miR-29b
(all from Qiagen, UK) using Dharmafect 3 transfection re-
agent (Dharmacon, USA). Next, 48 h post-transfection, cells
were fixed for immunofluorescence. RNAwas extracted from
6 wells and combined for qRT-PCR and the culture medium
collected for ELISA experiments.

Stimulation experiments

Intestinal fibroblasts were seeded in 96- or 24-well plates
overnight in complete medium. The next day, cells were stim-
ulated with recombinant human 1 or 10 ng/ml IL-6 or IL-8
(R&D Systems, UK) for 4, 8 or 24 h in complete medium.
Cells cultured in 96-well plates were then fixed for immuno-
fluorescence and RNA was extracted from cells cultured in
24-well plates.

RNA extraction and qRT-PCR

Total RNA from intestinal fibroblasts was extracted using the
miRNeasy kit (Qiagen) according to the manufacturer’s pro-
tocol. RNA concentrations were determined using a
NanoDrop Spectrophotometer (NanoDrop Technologies,
USA) and 1 μl was run on an agarose gel (1%) to assess
RNA quality. RNA samples were reverse transcribed using a
High-Capacity-RNA to cDNA kit (Applied Biosystems,
USA) in a 20-μl reaction. cDNA was then incubated with
TaqMan assays (MCL-1L/MCL-1ES, MCL-1S, IL6, IL8,
COL1A2, COL3A1 or GAPDH) and TaqMan Universal
MasterMix (Applied Biosystems) on a 7500 Fast System
RealTime PCR cycler (Applied Biosystems) according to
the manufacturer’s instructions. The Taqman probe for
MCL-1L also detects the MCL-1ES isoform while there is no
commercially available probe for just MCL-1ES. A separate
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probe for selective MCL-1S was used. Fold-changes were
calculated using the 2-ΔΔCt method normalised to GAPDH.

Immunofluorescence

Intestinal fibroblasts cells were fixed with 3.7% PFA for 15min
at RT before being washed with PBS and permeabilised in
0.1% Triton X-100 (Sigma, UK) in PBS for 20 min. Cells were
thenwashed and blocked for 30minwith 0.25%Bovine Serum
Albumin (BSA; Sigma) in PBS before incubation for 2 h with
primary antibody MCL-1 (1:250, Cat #32087; Abcam, UK).
The antibody used to detect MCL-1 (Cat #ab32087; Abcam)
binds epitopes in both the anti-apoptotic MCL-1L and pro-
apoptotic MCL-1S isoforms but not MCL-1ES. Cells were
washed for 30 min with PBS/BSA (0.25%) and incubated for
2 h with Alexa-Fluor-488 conjugated secondary antibody
(1:500; Invitrogen, UK), Hoechst 33342 (1:10,000;
Invitrogen) and CellMask Deep Red (1:20,000; Invitrogen)
for 2 h. Cells were washed twicewith PBS before being imaged
on the INCell Analyzer 1000microscope (GEHealthcare, UK)
under identical exposure conditions. The IN Cell Developer
v.1.8 was used to create a mask overlying the foci. This mask,
in combination with Hoechst-positive nuclei, was used to de-
termine the median MCL-1 foci mass within each nuclei [foci
mass/nuclei = (total foci pixel intensity x total foci area)/total
nuclei count]. Pixel intensities were compared to NTC
transfected cells. IN Cell Developer v.1.8 (GE Healthcare)
was used to analyse the images.

Western blotting

Validation of the MCL-1 antibody by western blotting was
performed on cell lysates from isolated fibroblasts. The colo-
rectal cancer cell line (CRC) HCT116 was used as a positive
control, as MCL-1 has been detected previously in this cell
line (Bolesta et al. 2012). Other CRC cell lines used were
DLD-1, HT-55, HT-29, SW837 and VACO4S. Lysates were
separated using a 4–12% sodium dodecyl sulphate-
polyacrylamide gel (Invitrogen). After electrophoresis, pro-
teins were transferred using an electrical field onto PVDF
membranes (GE Healthcare). Membranes were blocked for
1 h with 5% non-fat milk in PBS-Tween before being incu-
bated with MCL-1 (1:250) and β-actin (1:50,000; Abcam)
primary antibodies overnight at 4 °C in blocking buffer.
Goat anti-rabbit or anti-mouse antibodies conjugated to horse-
radish peroxidase (1:3,000; DAKO, UK) were used as a sec-
ond layer, before detection using the ECL plus kit (Amersham
Biosciences, UK).

Immunohistochemistry

Formalin-fixed paraffin-embedded 4-μm human tumour sec-
tions were dewaxed in xylene and placed in absolute alcohol

before application of an endogenous peroxide block for
10 min and rehydrating through graded alcohol concentra-
tions. Antigen retrieval was performed by microwaving sec-
tions in a TRIS/EDTA buffer (pH 9.0) for 15 min. Non-
reactive staining was blocked using goat serum (1:25 dilution)
before MCL-1 primary rabbit antibody application (1:100) for
45 min. Sections were washed in PBS before the secondary
goat anti-rabbit antibody (1:250) was applied for 45 min.
After further washing, antibody binding was detected using
a diaminobenzidine reaction kit (Cat #K3468, DAKO, UK).

Tissue imaging and scoring

IHC slides were analysed using a light microscope and scored
by a pathologist according to stain intensity and proportion of
MCL-1-positively staining cells. The percentage of crypt cells
and lamina proprial stromal (LPS) cells showing staining at two
levels of intensity (1: weak; 2–3: intermediate/strong) was de-
termined. Aweighted score from the percentages was then cal-
culated using the following formula: (1 × the percentage staining
at intensity 1) + (2 × the percentage staining at intensity 2–3).

ELISA

Supernatants were taken from intestinal fibroblast cells fol-
lowing transfection with NTC, pre-miR-29b and anti-miR-
29b. Cytokines IL-6 and IL-8 were quantified using R&D
DuoSet ELISA kits following the manufacturer’s protocol
(R&D Systems, USA).

Statistics

Graphpad Prism analysis software was used to calculate sig-
nificance using a two-tailed Student’s t tests. A p value of
<0.05 was considered statistically significant.

Results

MiR-29 up-regulates the MCL-1L/ES mRNA transcript
to a greater extent than MCL-1S

To assess the relationship between miR-29b and MCL-1
mRNA expression, intestinal fibroblasts were transfected with
NTC or pre-miR-29b and fold change in MCL-1 mRNAwas
determined relative to the NTC control. A significant increase
in MCL-1 mRNA transcript levels was observed in intestinal
CD fibroblasts (MCL-1L/ES, p = 0.004; MCL-1S, p = 0.0008;
Fig. 2a). It should be noted that, although both MCL-1L and
MCL-1S transcripts were detected in the isolated fibroblasts,
the expression ofMCL-1Lwas expressed 43 times higher than
MCL-1S (p = 0.0044; Fig. 2b). The probe for MCL-1L also
detects MCL-1ES but the later is likely expressed at much
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lower levels thanMCL-1L andMCL-1S as reported previously
(Kim 2009; Kim and Bae 2013; Palve et al. 2014). These data
show the up-regulation of MCL-1/ES transcripts following
transfection of miR-29b in intestinal fibroblasts.

MCL-1L is the predominant protein isoform in CD
intestinal fibroblasts

Next, the expression of the MCL-1 protein in intestinal fibro-
blasts was investigated. A dominant band at 41 kDa that cor-
related with the molecular weight of MCL-1L was confirmed
(Fig. 2c; Supplementary Table S1). By contrast, the 31-kDa
band equivalent to the molecular weight for MCL-1S was
much fainter. Image J software used to quantify MCL-1-
positive bands showed that theMCL-1L isoform was detected
at higher levels than MCL-1S in CD fibroblasts and CRC cell
lines (Fig. 2c). Taken together, the mRNA and protein data

indicate that the most common isoform present in CD fibro-
blasts is the anti-apoptotic MCL-1L (Fig. 2).

MiR-29 up-regulates MCL-1L protein

To explore further the effects of miR-29b on MCL-1L in intes-
tinal fibroblasts, protein expression and localisation was deter-
mined by immunofluorescence using the MCL-1 antibody that
detects predominately the MCL-1L isoform in the CD fibro-
blasts (Fig. 2c). Fibroblasts were transfected with NTC, pre-
miR-29b or anti-miR-29b and the MCL-1L protein was found
localised in discrete nuclear foci (Fig. 3a, b). Intestinal fibro-
blasts transfected with pre-miR-29b generated a significant in-
crease in the median MCL-1L-positive foci mass, whilst cells
transfected with anti-miR-29b resulted in a significant decrease
in median foci mass compared to cells transfected with NTC
(pre-miR-29b, p = 0.0029; anti-miR-29b, p = 0.0003; Fig. 3c).

Fig. 2 Expression ofMCL-1mRNA following miR-29b tranfection and
MCL1 protein in CD fibroblasts. a Intestinal fibroblasts transfected (n =
5, each from a different individual) with NTC or pre-miR-29b.
Fold change in expression of MCL-1L/ES and MCL-1S measured by
qRT-PCR. b Expression values (2^-Ct) for MCL-1L/ES and MCL-1S
normalised to GAPDH. Bars represent mean values with SEM.
**p < 0.01, ***p < 0.001. c Cell lysates from six CRC cell lines
(HCT116, DLD-1, HT29, HT55, SW837 and VACO4S) and intestinal

fibroblasts from CD patients were subjected to western blotting. An
antibody against both MCL-1L and MCL-1S and β-actin was used at
1:200 and 1:50,000, respectively. The molecular weights for MCL-1L
and MCL-1S are 41 kDa and 31 kDa, respectively and both isoforms
are detected in CRC lines and CD fibroblasts. The molecular weight of
MCL-1ES is 25 kDa and was not detected. Avery faint non-specific band
about 30 kDa is also detected but only in the CRC lines not the CD
fibroblasts
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Representative images are shown in Fig. 3d–f. In addition,
over-expression of miR-29 increased the number of MCL-1
foci (p = 0.0198; Supplementary Fig.S1)

Taken together, these data demonstrated that miR-29b in-
duced an increase of the anti-apoptotic MCL-1L form at both
the mRNA and protein level in intestinal fibroblasts. In sup-
port of this, transfection with pre-miR-29 or anti-miR-29 did
not alter the number of cells compared to NTC transfected
cells (pre-miR-29, p = 0.773; anti-miR-29b, p = 0.784;
Supplementary Fig. S2), indicating that the pro-apoptotic
forms of MCL-1 (MCL-1S and MCL-1ES) protein are not
induced by miR-29b.

miR-29b up-regulates MCL-1L potentially through IL-6
and IL8

We hypothesised that the up-regulation of MCL-1 observed
following miR-29b transfection occurs via two known up-
stream regulators of MCL-1, interleukin (IL)-6 and IL-8
(Puthier et al. 1999a, b; Sarkar et al. 2012). First, we examined
the regulatory effect of IL-6 and IL-8 on MCL-1. Intestinal
fibroblasts from CD patients were treated with IL-6 and IL-8
(1 or 10 ng/ml) for 4, 8 or 24 h and MCL-1L foci quantitated.
Fibroblasts treated with either IL-6 or IL-8 for 4 h up-
regulated the median mass of MCL-1-positive foci (1 ng/ml
IL-6, p = 0.029; 10 ng/ml IL-6, p = 0.509; 1 ng/ml IL-8,

p = 0.025; 10 ng/ml IL-8, p = 0.015; Fig. 4a). Stimulation for
longer than 4 h (8 or 24 h; 1 or 10 ng/ml) diminished this up-
regulation (all p values >0.08; Fig. 4b, c). These data support
the hypothesis that Il-6 and IL-8 up-regulate MCL-1L protein
expression in CD intestinal fibroblasts.

To identify whether the miR-29b/IL-6/IL-8 axis affects the
collagen genes previously shown to be down-regulated in fi-
broblasts from CD patients by miR-29b (Nijhuis et al. 2014),
mRNA expression of both COL1A2 and COL3A1 was mea-
sured following stimulation with IL-6 or IL-8 (10 ng/ml). Fold
change in expression relative to non-treated (NT) fibroblasts
demonstrated no change in the expression of either COL1A2
or COL3A1 following stimulation with IL-6 (COL1A2, p =
0.1988; COL3A1, p = 0.1997; Fig. 4d) or IL-8 (COL1A2, p =
0.2274; COL3A1, p = 0.1222; Fig. 4d).

To further test the hypothesis that miR-29b up-regulates
MCL-1 via IL-6 or IL-8, intestinal fibroblasts were transfected
with NTC and pre-miR-29b. IL6 and IL8 mRNA expression
was assessed via qRT-PCR and normalised to the housekeep-
ing gene GAPDH. Fibroblasts transfected with pre-miR-29b
showed a significantly increased fold change of IL6 compared
to NTC transfected cells (p = 0.0077; Fig. 5a). IL8 mRNA
levels were also up-regulated by pre-miR-29b and approached
significance (p = 0.06; Fig. 5b). ELISAwas then used to mea-
sure IL-6 and IL-8 production in the supernatant of fibroblasts
following transfection. Levels of both cytokines were

Fig. 3 MCL-1L protein expression following miR-29b transfection.
Intestinal fibroblasts (n = 3, each from a different individual) were
transfected with NTC, pre-miR-29b and anti-miR-29b for 72 h. Cells
were fixed and stained with Hoechst 33342 (blue) and an antibody
against MCL-1 (green) a, b Representative immunofluorescence
images of CD fibroblasts transfected with NTC to illustrate the
generation of the MCL-1L foci overlying mask (b). c Fold change in

median foci mass/nuclei following transfection with pre-miR-29b or
anti-miR-29b relative to NTC. d–f Representative images of MCL-1L
foci following transfection with NTC, pre-miR-29b or anti-miR-29.
Rectangles outline digital zoomed area. Bars over columns mean values
±SEM. **p < 0.01, ***p < 0.001. Zoomed images g-i 20 µm bars,
original images d-f 100 µm
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increased significantly by fibroblasts transfected with pre-
miR-29b compared to NTC (IL-6, p = 0.0027; IL-8,

p = 0.0268; Fig. 5c, d). These results demonstrate that miR-
29b up-regulates the expression of IL6 and IL8 at the mRNA

Fig. 5 miR-29b up-regulates IL-6 and IL-8. a, b Intestinal fibroblasts
(n = 6, each from a different individual) were transfected with NTC or
pre-miR-29b for 48 h. The graphs represent the fold change in expression
of IL6 (a) and IL8 (b) mRNA relative to the NTC control as measured by

qRT-PCR. c, d Supernatant was collected from fibroblasts transfected
with NTC or pre-miR-29b after 48 h. The graphs represent the production
of IL-6 (c) and IL-8 (d) as measured by ELISA. Bars above columns
mean values±SEM. *p < 0.05, **p < 0.01

Fig. 4 MCL-1L protein
expression is induced by IL-6 and
IL-8. Intestinal fibroblasts (n = 5,
each from a different individual)
were treated with 1 or 10 ng/ml of
IL-6 or IL-8 for 4, 8 and 24 h.
Cells were fixed stained with
Hoechst 33342 and an antibody
against MCL-1 and median foci
mass quantitated. a–c Median
MCL-1L mass/nuclei following
treatment with 1 or 10 ng/ml IL-6
or IL-8, relative to NT at 4 h (a),
8 h (b) and 24 h (c). d Intestinal
fibroblasts (n = 3, each from a
different individual) were treated
with 10 ng/ml of IL-6 and IL-8 for
48 h. qRT-PCR was performed on
extracted RNA and mRNA levels
COL1A2 and COL3A1
determined. The graphs represent
fold change relative to the NT
control. Bars above columns
mean±SEM, *p < 0.05
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level, although this change did not quite reach significance for
IL8 (Fig. 5) and their release into the supernatant.

MCL-1 expression is reduced in fibrotic CD tissue

We have shown previously that miR-29b was down-regulated
in stricturing CD (SCD) compared to non-stricturing (NSCD)
(Nijhuis et al. 2014). Based on our finding here, we
hypothesised that anti-fibrotic MCL-1 expression will also
be reduced in SCD intestinal tissue resected from CD patients.
Immunohistochemistry was performed on four healthy control
samples and four paired SCD and NSCD samples (Fig. 6a–f).
A decrease in staining intensity of both crypt and LPS cells in
SCD compared to NSCD tissues was found, while the levels
of MCL-1 in control gut was similar to NSCD tissues
(Fig. 6g, h). The reduction in MCL-1 expression in stricturing

CD tissue provides in vivo support for a role for the anti-
fibrotic miR-29b/MCL-1 axis in CD.

Discussion

It has been reported that direct targeting of the 3’UTR of
MCL-1L by miR-29 leads to its down-regulation in cell
lines (Garzon et al. 2009; Li et al. 2013; Mott et al. 2007;
Roggli et al. 2012; Steele et al. 2010; Xiong et al. 2010).
In contrast, we found that transfection with pre-miR-
29b of primary fibroblasts isolated from CD patients re-
sulted in an increase of MCL-1L at both mRNA and pro-
tein levels. In addition, we have shown previously that
miR-29b is anti-fibrotic in CD intestinal fibrosis (Nijhuis
et al. 2014). This accords well with both our observation

Fig. 6 MCL-1 protein expression
in CD tissue samples.
Immunohistochemical staining
for MCL-1 in human ileal tissue:
four pairedNSCD and SCD tissue
samples and four samples from
healthy control patients. a, b
Mucosa from a healthy control
patient. Staining in both epithial
cells and lamina proprial stromal
(LPS) cells. c, d Mucosa from a
patient with non-stricturing CD
showing extensive cytoplasmic
MCL-1 expression by crypt epi-
thelial and LPS cells. e, fMucosa
from a patient with stricturing CD
showing extensive staining in the
epithelial cells but little or no
expression by LPS cells. Digitally
zoomed areas on the right (b, d,
f). g, h The weighted score from
the intensity percentages is shown
for both crypt cells (g) and LPS
(h) cells
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here, that this miRNA up-regulates MCL-1L in fibro-
blasts, and the reported anti-fibrotic properties in the liver
(Kahraman et al. 2009; Vick et al. 2009; Weng et al.
2011). Hence, we hypothesised that the up-regulation of
MCL-1L via miR-29b in intestinal CD fibroblasts is indi-
rect. Moreover, that the mediator(s) through which this
up-regulation is affected is strong enough to overcome/
override the modest direct down-regulation that miR-29b
may exert on MCL-1L through its 3’UTR.

One of the most potent inducers of MCL-1 is IL-6
(Puthier et al. 1999a, b), a classic pro-survival cytokine
that is crucial in mounting an effective immune response.
In addition, recent studies have shown that IL-6 expres-
sion is up-regulated in renal fibrosis in mice (Fielding
et al. 2014) and that this cytokine can induce the expres-
sion of collagen I (O’Reilly et al. 2014). Furthermore, IL-
6 has been implicated in a variety of fibrotic conditions
via alternative trans-signalling pathways (O’Reilly et al.
2012). The up-regulation of MCL-1 by IL-6 is most likely
due to the activation of the STAT3 transcript factor
(reviewed in Aggarwal et al. 2009). A second cytokine,
IL-8, can also increase the expression of MCL-1 (Puthier
et al. 1999b) and elevated serum levels of IL-8 are asso-
ciated with fibrosis in chronic liver disease (Nobili et al.
2004). In this study, we confirmed the up-regulation of
MCL-1 by IL-6 and IL-8 in intestinal fibroblasts at the
protein but not mRNA level (Fig. 4). Crucially, transfec-
tion with pre-miR-29b significantly increased the produc-
tion of IL-6 and IL-8 (Fig. 5), identifying a functional
interplay between miR-29b, IL-6/IL-8 and MCL-1L.

Moreover, the down-regulation of MCL-1 by miR-29b
can be abrogated by IL-6 (Zhang et al. 2001). This sug-
gests that the induction of MCL-1 by IL-6/IL-8 may sur-
mount its direct down-regulation by miR-29b via 3’-UTR
of MCL-1. Overall, our observational data led to a hy-
pothesis that an anti-fibrotic miR-29b/IL-6 IL-8/MCL-1
axis exists in CD intestinal fibrosis.

To our knowledge, this is the first time MCL-1 expression
has been investigated in tissue samples from CD patients. In
support of our findings, Liu and colleagues showed thatMCL-
1 is down-regulated in intestinal tissues from patients with
ulcerative colitis and mice with dextran sodium sulfate-
induced colitis (Liu et al. 2010). The decrease in MCL-1 in
fibrotic CD tissue samples supports our previous observations
of reduction of miR-29b expression in stricturing CD (Nijhuis
et al. 2014). A hypothetical model of how TGF-β may exert
its pro-fibrotic action through the miR-29b/IL-6/MCL-1 axis
is shown in Fig. 7. We propose a mechanism whereby the up-
regulation of the anti-fibrotic mediator MCL-1 by miR-29b is
mediated through IL-6 and IL-8. The pro-fibrotic cytokine
TGF-β modulates fibrosis through down-regulation of miR-
29b, resulting in increased deposition of collagen and there-
fore fibrosis. Hence, the down-regulation of miR-29b results
in reducedMCL-1 expression. Further functional experiments
are warranted to confirm this anti-fibrotic pathway in vivo.
The latter may well require the development of new animal
models including conditional modulation of miR-29b expres-
sion in the mouse intestine using a suitable knock-in construc-
tion. In the future, therapeutic modulation of this pathway to
reduce fibrosis might be possible.

Fig. 7 Proposed model of the
role of miR-29b in CD fibrosis.
TGF-β is a potent pro-
inflammatory cytokine. TGF-β
modulates fibrosis through down-
regulation of miR-29b, resulting
in increased deposition of
collagen and therefore fibrosis. In
CD fibrosis, additional down-
stream pathways of miR-29b are
as yet unknown. Up-regulation of
anti-fibrotic mediator MCL-1 by
miR-29b may potentially be
mediated through IL-6 and IL-8.
Up-regulated genes are in green,
down-regulated genes in red
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