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a b s t r a c t

Abstract: The transesterification reaction of soybean oil with methanol is studied with different gAl2O3

heterogeneous catalysts. The catalysts used are K-gAl2O3, Na-gAl2O3, Li-gAl2O3, Ca-gAl2O3 and Ba-gAl2O3

both 5% and 10% in metal content are prepared by impregnation. The first study concluded that only two
of the ten catalysts studied (K-gAl2O3, Na-gAl2O3 with 10% content in metal) gave a FAME (Fatty acid
methyl esters) yield result higher than 90%. A mixed-level design of experiments is used to know which
the best catalyst is between the K-gAl2O3 and the Na-gAl2O3 with 10% content in metal. Also, a factorial
design of experiments and central composite designs have been used with K-gAl2O3 with 10% content in
metal, which resulted the most active catalyst. The chosen variables are reaction time, initial catalyst
percent and methanol:oil ratio, while the response is the biodiesel yield. Soybean heterogeneous
transesterification is strongly affected by the methanol:oil ratio and it is slightly affected by the catalyst
percent. Nevertheless, reaction time has no important effects in the biodiesel yield. Finally, the industrial
application of the soybean biodiesel as determined through the study of the quality control of the biofuel
and the reuse of K-gAl2O3 with 10% content in metal.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, one of the main objectives of mankind is to search
how to improve clean and environmentally-friendly energy sour-
ces. Biodiesel, the valued product of the transesterification of tri-
glycerides, is one of these sources and keeps maintaining the
promise to substitute part of the petroleum diesel consume [1].
Transesterification can be carried out with different short-chain
alcohols, although the most used alcohol is methanol due to its
reactivity [2].

Transesterification involves three consecutive and reversible
reactions [3]; where monoglycerides, diglycerides and glycerol are
also produced. If the used catalyst is homogeneous, it will be within
the mixture of the reaction. However, the heterogeneous solid
catalyst can be removed easily from the product, making the overall
purification much more feasible. Moreover, there are more ad-
vantages when a heterogeneous catalyst is used in the
chez), casella@quimica.unlp.
racil), mmr1@quim.ucm.es
transesterification: catalyst reusability, easy separation of glycerol
and much simpler handling and management of waste [4]. On the
other hand, there are two important drawbacks in the use of het-
erogeneous catalysts which are the slow transesterification reac-
tion rate and the viscosity increase of the biodiesel [4]. However,
the entire process is still feasible using heterogeneous catalysts due
to the advantages mentioned before.

Currently, transesterification reaction can be carried out by five
different kinds of catalysts. The first type of catalyst is the alkali
homogeneous which is very active and inexpensive but the puri-
fication steps are more tedious [5e18]. Secondly, acid homogenous
catalysts are suitable for oils with a high content in FFA (Free fatty
acids) but the reaction rate is usually low and their separation is
difficult [5,6,10,13,19]. Thirdly, there are also alkali heterogeneous
catalysts which require high alcohol:oil ratio to be effective but are
more environmentally-friendly because they reduce waste emis-
sions [5,6,11,20e22]. The fourth kind of catalysts is the acid het-
erogeneous which are less corrosive and toxic but is more costly
and presents more diffusional problems than the homogeneous
catalyst [5,9,20,23]. The last kind of catalyst is the enzyme which
can be easily separated, regenerated and reused but, on the other
hand, has a low reaction rate and easily loses activity
[5,8,12,13,24e30].
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Heterogeneous catalysts have been largely used in the last few
years in different fields of research. These catalysts are alkali metal
oxides and derivatives [31,32], alkaline earth metal oxides and
derivatives [33,34], transition metal oxides and derivatives [35],
mixed metal oxides and derivatives [36], ion exchange resins type
acid heterogeneous catalyst [37], sulfated oxides as an acid het-
erogeneous catalyst [38], carbon based heterogeneous catalysts
[39], waste material used [40] as catalysts and enzymes [30].

The main objective of this study is to know how the trans-
esterification reaction of soybean oil behaves with different gAl2O3
based catalysts. Once the discrimination between the 10 catalysts
studied is done the next step is the optimization of the trans-
esterification process with the two better catalysts. This behavior is
evaluated thanks to factorial design and response surface meth-
odology. Also, according to the statistical analysis, the influences of
methanol:oil ratio, reaction time and catalyst percent on biodiesel
yield have been studied and the maximum value of biodiesel yield
is reached with these conditions for both potassium and sodium
based catalysts: 4 h, 7.28 methanol:oil ratio, 6% of catalyst.
2. Materials and methods

2.1. Reagents and materials

Refined soybean oil is supplied by Gracomsa Alimentaria
(Valencia, Spain). The characteristics of the soybean oil are deter-
mined according to AOCS official method and UCM method. The
main properties and the composition of the oil used as rawmaterial
can be found in Table 1. Certified methanol of 99.8% purity is sup-
plied by COR (Madrid, Spain). GC (Gas chromatography) standards
were supplied by Sigma Aldrich. The catalysts are K-gAl2O3, Na-
gAl2O3, Li-gAl2O3, Ca-gAl2O3 and Ba-gAl2O3 (5% and 10% in metal)
from La Plata University (Argentina).

KOH, NaOH, LiOH, Ba(OH)2 and Ca(OH)2 based catalyst sup-
ported on g-Al2O3 were prepared, which will be designated as K-
gAl2O3 Na-gAl2O3, Li-gAl2O3, Ca-gAl2O3 and Ba-gAl2O3. The g-Al2O3
(Air Products) was ground to a particle size of 60e100 mesh and
then calcined for 1 h at 450 �C. The precursor solutions were pre-
pared by dissolving the calculated mass of the hydroxide in 250 mL
of distilled water. The impregnation was carried out in a rotary
evaporator at 50 �C, 60 rpm and a pressure of 22 mm Hg which
corresponded to the same molar concentration as that of the
potassium-based catalyst. Before being used, the catalyst was
calcined at 350 �C for 3 h. The surface characteristics of the samples
were determined by N2 adsorption (77.4 K) in a Micromeritics
Accusorb 2100E instrument. SEM micrographs were obtained with
Table 1
Fatty acid composition (wt%) and properties of soybean oil.

Fatty acid (wt%)
Lauric C12:0 0.1
Miristc C14:0 0.3
Palmitic C16:0 10.9
Estearic C18:0 3.2
Oleic C18:1 24
Linoleic C18:2 54.5
Linolenic C18:3 6.8
Properties
Viscosity (cSt) 35.4
Iodine (I2/100g) 134
Oxidation stability (h) 6.7
Flash point (�C) 215
PP (�C) �9
Acidity (mg/g) 0.1
Moisture (%) 0.04
Density (g/cm3) 0.915
a scanningmicroscope Philips SEM 505. X-ray diffraction (XRD)was
conducted using Cu Ka (l ¼ 0.154 nm) as a radiation source in an
automatic X-ray Diffractometer (Philips PW 1740). The samples
were scanned in the range of 2q ¼ 5e75� at a scanning speed of
1 min�1. CO2 adsorption/desorption studies were conducted to
quantify the basic site density of the catalysts, which were carried
out with a Shimadzu TGA-50 instrument. The samples were pre-
treated at 100 �C in a 100 mL min�1 N2 flow. Subsequently, CO2
(purity 99.8%) was introduced at a flow rate of 100 mL min�1. The
variation of the sample weight was followed to determine the
adsorption/desorption performance at 75 �C. The results associated
to K/g-Al2O3 and Na/g-Al2O3 with 10% in metal are depicted in
Table 2.
2.2. Experimental setup

Experiments have been carried out in a 500 cm3 three necked
batch reactor, where the total volume of soybean oil is 170 cm3. The
reactor is equipped with a reflux condenser to return the evapo-
rated methanol back to the reactor, a mechanical stirrer and a
stopper to remove samples. The reaction temperaturewas achieved
immersing the reactor into a thermostatic bath (HETO) with an
electrical device connected to a PID controller which allows a
temperature control of ±0.1 �C [3].

Experiments have been performed according to the following
procedure: Soybean oil is added to the reactor. When the set
temperature is reached the catalyst and the methanol are intro-
duced in the reactor, and just at that moment the reaction time is
considered zero. The mixture is refluxed at 60 �C at 400 rpm to
avoid mass transfer limitations. The temperature is set at 60 �C
because of the partial evaporation of the methanol. During the
experiments the pressure and impeller speed are maintained
constant. After the reaction, the solid catalyst is removed by
filtration. The mixture is transferred to a separatory funnel,
allowing glycerol to separate by gravity for 1 h. When the layer of
glycerol removed, the methyl ester product is washed with two
volumes of water. Finally, the methanol is eliminated from the
product through a vacuum distillation at 10 mm Hg. Samples have
been taken according to the prepared design of experiments and
analyzed by gas chromatography.
2.3. Product analysis

GC (Gas chromatography): FAME (Fatty acid methyl esters),
monoglycerides, diglycerides and tryglycerides were monitored
using a HewlettePackard 5890 series II cromatograph, connected to
a HewlettePackard 3396SA integrator, equipped with a FID (flame
ionization detector) using a fused silica capillary column The in-
jection systemwas splitesplitless and the carrier gas was helium at
a flow of 1 ml/min. The injector and detector temperatures were
275 and 325 �C, respectively. A temperature program was used
starting with a 1 min hold at 120 �C; followed by a ramp rate of
5 �C min�1 to 320 �C. The analysis of the standards and the reaction
products were prepared dissolving the samples in CS2 and 1 ml was
injected into the GC equipment. The used procedure to characterize
Table 2
Textural characteristics and CO2 adsorption percentage of the studied catalyst.

Catalyst Surface area
(cm2/gr)

Pore volume
(cm3/gr)

CO2 adsorption(g/g) � 100

geAl2O3 252.13 0.36 0.70
K/geAl2O3 (10%) 168.92 0.29 2.70
Na/geAl2O3(10%) 172.0 0.43 e



Fig. 1. FAME yield obtained in the g-Al2O3 based catalysts.
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the samples was the internal standard. N-Octyl octanoate was used
as internal standard.

Acid value: Acid value for the soybean biodiesel obtained in this
study was determined following the method specified in ASTM
Method D 664, using a Metrohm Swiss model 702 SM Titrino.

Iodine value: Iodine value in this study was determined
following the method specified in AOCS Official Method Cd 1-25,
using a Metrohm Swiss model 702 SM Titrino.

Kinematic viscosity: The kinematic viscosisy of the soybean oil
was determined by the method ASTMD445 using a Cannon-Fenske
Viscosimeter.

Oxidation stability: Oxidation Stability in this study was
determined following the method specified in AOCS Official
Method Cd 12b-92, using a model 743 Rancimat instrument.

CFPP (Cold filter plugging point): Soybean biodiesel CFPP was
determined by the method ASTM D6371, using a CFFP tester (ISL
CPP 97-2).

CP (Cloud point): Soybean biodiesel CP was determined by the
method ASTM D2500, using a CFFP tester (ISL CPP 97-2).

PP (Pour point): Soybean biodiesel PP was determined by the
method ASTM D97, using a CFFP tester (ISL CPP 97-2).

Water content: Water content in this study was determined
following the method specified in ISO EN12937, using a Metrohm
Swiss model 702 SM Titrino.

Flash point: Flash point in this study was determined following
the method specified in ASTM D93, using a Petrotest PM4
(Instrumentaci�on Analítica S.A.).

Cetane number: Iodine value in this study was determined
following the method specified in ASTM D613, using an automatic
IROX DIESEL (Grabner Instruments).

2.4. Statistical analysis

These techniques have been largely used to optimize chemical,
physical and physic-chemical processes. In this study, two different
kinds of experimental designs have been used. Firstly, a mixed level
factorial design in order to know which the best catalyst between
K-gAl2O3 and Na-g-Al2O3 with 10% of metal content is and sec-
ondly, a standard Response Surface Methodology, called a CCD
(Central composite design), to study the heterogeneous trans-
esterification process with the best catalyst.

Mixed-level factorial design: A mixed-level factorial design
3$23 with four factors and one response (24 experiments) to know
how the transesterification reaction is carried out with K-gAl2O3
and Na-g-Al2O3 with 10% of metal content, was done. The four
factors are the reaction time (Xt), the methanol:oil molar ratio (XR),
the catalyst percent (Xt), and the used catalyst, K-gAl2O3 or Na-g-
Al2O3, (XK-Na) while the response is the FAME yield. In Table 4 is
charted the design of experiments used for the preliminary study
with the two chosen catalysts.

Full factorial design: A Central Composite Design and response
surface methodology were applied. The Full Factorial Design is
made for K-gAl2O3 catalyst with a 10% of metal content because it is
the best catalyst proved as it was tested in the preliminary exper-
iments. The application of this method requires the adequate se-
lection of responses, factors and levels. The response selected is the
molar yield of biodiesel while the factors are the reaction time (Xt),
the initial catalyst percent (XC) and the methanol:oil ratio (XR).

3. Results

The first step in this study is the discrimination among the ten g-
Al2O3 based catalysts through a transesterification reaction. Sec-
ondly, the heterogeneous transesterification of soybean oil using
gAl2O3 based catalysts as catalysts was carried out by two different
factorial designs of experiments to determine the best catalyst and
to optimize the heterogeneous transesterification process.
3.1. Preliminary experiments

The ten studied catalysts are K-gAl2O3, Na-gAl2O3, Li-gAl2O3, Ca-
gAl2O3 and Ba-gAl2O3 with a 5% metal content and K-gAl2O3, Na-
gAl2O3, Li-gAl2O3, Ca-gAl2O3 and Ba-gAl2O3 with a 10% metal
content. The operation conditions are 6 h of reaction time, a 5% of
the catalyst percent and a methanol:soybean oil ratio of 6. The
obtained results by the transesterification reaction for each catalyst
are depicted in Fig. 1. A previous work quantified the catalytic ac-
tivity of the blank gAl2O3 for the transesterification of the rapeseed
oil at 60 �C for 1 h and 9:1molar ratio, obtaining a FAME yield of
3.17% [41]. In addition [42], studied the transesterification of soy-
bean oil with K-gAl2O3 and Na-gAl2O3 with a metallic charge of 8%
at 120 �C, 6 h of reaction time and 1% of catalyst percent obtaining a
FAME yield of 98.9 and 97.1, respectively. As stated before, this
paper deals with the optimization of the process using Design of
Experiments and Response SurfaceMethodologywhile [42] is more
focused on the characterization of the catalysts. Therefore, there is a
clear increase in the catalytic activity when alkaline or earth alka-
line metals are added in the blank gAl2O3.

According to the results, the most active catalysts are K-gAl2O3,
Na-gAl2O3 with a 10%metal content. Also, Li-gAl2O3, Ca-gAl2O3 and
Ba-gAl2O3 either 10% metal content or 5% metal content trans-
esterification experiments give poor results in the FAME yield. As it
was stated in previous researches, the surface Al-O-Metal group is
the active site in the gAl2O3 based catalysts [34,41e43]. These
active sites can extract protons from the methanol and thereby
methoxide ions are produced to carry out the transesterification
reaction [41]. Therefore, the catalysts with the highest capacity to
produce the methoxide ion are the most active because they have
more base strength [44]. The stability of the aluminate groups are
KAlO2 > NaAlO2 > LiAlO2 > Ca0.5AlO2 > Ba0.5AlO2 [45] which co-
incides with the activity of the catalysts studied. In addition, the
catalysts with the higher content in metal are the most actives
because there are more Al-O-Metal groups on the surface of the
catalysts. These are the reasons why the chosen catalysts for the
design of experiments are K-gAl2O3, Na-gAl2O3 with 10% metal
content. The results associated to the chosen catalysts are depicted
in Table 2.
3.2. Choice of the best catalyst

The results in the design of experiments proposed for the two
most active heterogeneous catalysts are charted in Table 3. The



Table 3
Mixed-level design of experiments.

Run
number

Time
(h)

Catalyst
percent
(%)

Ratio
(�)

Catalyst Xt Xc XR XR Yield
(%)

1 2 4 6 K/g-Al2O3 �1 �1 �1 �1 90.6
2 2 4 6 Na/g-Al2O3 �1 �1 �1 1 85
3 2 5 6 K/g-Al2O3 �1 1 �1 �1 90.7
4 2 5 6 Na/g-Al2O3 �1 1 �1 1 91
5 2 4 9 K/g-Al2O3 �1 �1 1 �1 91.4
6 2 4 9 Na/g-Al2O3 �1 �1 1 1 89.4
7 2 5 9 K/g-Al2O3 �1 1 1 �1 93.2
8 2 5 9 Na/g-Al2O3 �1 1 1 1 91.7
9 4 4 6 K/g-Al2O3 0 �1 �1 �1 91.1
10 4 4 6 Na/g-Al2O3 0 �1 �1 1 91.1
11 4 5 6 K/g-Al2O3 0 1 �1 �1 91.5
12 4 5 6 Na/g-Al2O3 0 1 �1 1 91
13 4 4 9 K/g-Al2O3 0 �1 1 �1 91.5
14 4 4 9 Na/g-Al2O3 0 �1 1 1 91.7
15 4 5 9 K/g-Al2O3 0 1 1 �1 92.9
16 4 5 9 Na/g-Al2O3 0 1 1 1 92
17 6 4 6 K/g-Al2O3 1 �1 �1 �1 91.6
18 6 4 6 Na/g-Al2O3 1 �1 �1 1 91.6
19 6 5 6 K/g-Al2O3 1 1 �1 �1 91.7
20 6 5 6 Na/g-Al2O3 1 1 �1 1 91.7
21 6 4 9 K/g-Al2O3 1 �1 1 �1 91.6
22 6 4 9 Na/g-Al2O3 1 �1 1 1 91.9
23 6 5 9 K/g-Al2O3 1 1 1 �1 93
24 6 5 9 Na/g-Al2O3 1 1 1 1 92.7

Table 5
Levels of factors for the central composite design.

Factor Levels

�a �1 0 1 a

Time (h) 1.32 2 3 4 4.68
Met:oil ratio (�) 4.6 5.28 6.28 7.28 7.96
Catalyst percent (%) 3.32 4 5 6 6.68

Fixed variables: T ¼ 60 �C, pressure ¼ 710 mm Hg.
Note: �a low start point level; �1: low factorial point level; 0: central point
level; þ1: high factorial point level; þa: high star point level.
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main conclusion is that K-gAl2O3 has a slightly better performance
in the transesterification reaction than the Na-gAl2O3, especially at
lower catalyst percent, soybean oil: methanol molar ratio and re-
action time levels. According to the obtained results in Table 4 of
the main influences among factors and interactions, K-gAl2O3 is a
better catalyst compared to Na-gAl2O3 because higher FAME yields
are reached sooner and in more moderated conditions. That is why
the chosen catalyst in order to do a Central Composite Design is K-
gAl2O3 with 10% in metal content. Nevertheless, the overall activity
of these two heterogeneous catalysts is pretty similar. Therefore,
the heterogeneous potassium and sodium catalysts have the same
behavior as the homogeneous potassium and sodium hydroxides in
terms of similarity [6]. For each design of experiments the biodiesel
yield results are fitted to a linear model and the statistical models
are obtained for K-gAl2O3 and Na-gAl2O3 with 10% in metal content
experiments (Table 4 and Equations (1) and (2)).

3.3. Optimization of the heterogeneous biodiesel process

According to the preliminary experiments and the mixed-level
factorial design previously applied the best catalyst among the
ten catalysts tested is the K-gAl2O3 with 10% in metal content. For
this reason, the full factorial design is used with K-gAl2O3 with 10%
in metal content to optimize the biodiesel process.

The levels of the chosen factors are given in Table 5, including
the center and star points. The center points together with the
factorial points make the evaluation of the curvature effect
possible. The star points are additional and necessary experiments
to the factorial design in order to determine the nonlinear model.
Table 4
Main influences and interaction of the proposed mixed-level designs of
experiments.

y It IC IR IK/Na ItC ItR It�K/Na ICR

Global 91.32 1.61 1.21 1.2 �0.84 �0.98 �0.71 1.09 e

K-gAl2O3 91.73 0.5 1.07 0.97 e �0.5 e e 0.67
Na-gAl2O3 90.9 2.7 1.33 1.57 e �0.95 �1.85 e �0.44
3.3.1. Linear stage
First of all, a linear stage is made through 8 experiments because

a 23 factorial design is studied. Also, six more experiments are
carried out in order to evaluate the experimental error (center
points). Coded factor and natural factor levels with the biodiesel
yield results corresponding to each experiment are charted in
Table 6. Experiments are carried out randomly. The biodiesel yield
is determined from the initial volume of soybean oil poured in the
reactor.

For determining the main effects and interaction effects of the
reaction time, the methanol:oil ratio and the catalyst percent a
statistical analysis is made using the coded and natural factors
levels and their response. The results of this analysis are charted in
Table 7. Confidence interval and main effects and interactions are
used for determining the effect of the factor in the response. Thus,
the conclusion is that, on one hand, the reaction time is not sig-
nificant because its influence is a bit lower than the confidence
interval and, on the other hand, the methanol:oil ratio and the
catalyst percent have influence on biodiesel yield.

Finally, the biodiesel yield results are fitted to a linear model
and, therefore; the statistical model and industrial model are ob-
tained (Equations (1) and (2)).

Statistical model:

Biodiesel yield ¼ 90.57 þ 1.73XR þ 0.98XC � 0.80XtC
� 1.275XRC þ 0.80XtRC [1]

(r ¼ 0, 97)

Industrial model:

Biodiesel yield ¼ 34.83 þ 6.23XR þ 8.98XC þ 0.61
XtC � 0.96XRC � 0.10XtRC [2]

(r ¼ 0, 93)

The difference between the statistical and the industrial analysis
is that the factors used in statistical model are coded and in the
industrial model are natural. These equations are only valid within
the experimental range studied.

Since the curvature has no significance in the FAME yield for the
studied variables, the linear model predicted in this section is the
equation used for the surface response (Fig. 2). In Fig. 2, the time
chosen is 3 h because it is the value that corresponds to the center
point (Xt¼ 0). The contour plot is represented in Fig. 3 and the same
way the reaction time is fixed at 3 h in the surface response and the
axes are the methanol:oil ratio and the catalyst percent. On one
hand, the linear fitting and its residual distribution of the predicted
data to the experimental data are observed in Fig. 4 and Fig. 5,
respectively. On the other hand, the curve fitting and its residual
distribution are represented in Fig. 6 and Fig. 7. As seen in Figs. 4e7,
the linear fitting is more correct than the curve fitting because there
is no tendency in the residual distribution as seen in Fig. 5.



Table 6
Experimental matrix and results.

Stage/type of experiment Run number Time (h) Ratio (�) Cat (%) Xt XR XC Yield (%)

Linear stage 1 2 5.28 4 �1 �1 �1 84.1
2 4 5.28 4 1 �1 �1 89.1
3 2 7.28 4 �1 1 �1 92.3
4 4 7.28 4 1 1 �1 92.9
5 2 5.28 6 �1 �1 1 91.8
6 4 5.28 6 1 �1 1 90.4
7 2 7.28 6 �1 1 1 91.7
8 4 7.28 6 1 1 1 92.3

Center points 9 3 6.28 5 0 0 0 92.4
10 3 6.28 5 0 0 0 92.0
11 3 6.28 5 0 0 0 89.0
12 3 6.28 5 0 0 0 90.9
13 3 6.28 5 0 0 0 90.2
14 3 6.28 5 0 0 0 91.8

Non-linear stage
Star points 15 1.32 6.28 5 �1.68179 0 0 91.2

16 4.68 6.28 5 1.68179 0 0 91.4
17 3 4.6 5 0 �1.68179 0 90.8
18 3 7.96 5 0 1.68179 0 92.5
19 3 6.28 3.32 0 0 �1.68179 91.7
20 3 6.28 6.68 0 0 1.68179 91.6

Note: t: time; R: methanol to vegetable oil molar ratio; C: catalyst percent; X: coded value; Yield: biodiesel yield.
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3.3.2. Non-linear stage
A full central composite design, according to Box and Wilson

[46], incorporates factorial points, star points and center points, as
is shown in Table 6. Therefore, six more experiments, called star
points, are included in the two-level factorial design for the reac-
tion time, the methanol:oil ratio and the catalyst percent. Addi-
tionally, star points are coded as ± a, where a is the distance
between the origin to the star point, and it can be calculated with
the expression a ¼ 2n/4 (in this case, n ¼ 3 and a ¼ 1.681).

In the linear stage section, the results related to the significance
of the curvature are charted in Table 7. The main conclusion of
Table 7 is that the confidence curvature interval is higher than the
curvature, and therefore, the curvature has no significance and it is
not necessary to obtain a quadratic model for predicting how the
biodiesel yield changes with the factors.
4. Discussion

In this section, the influence of the studied variables, which are
the reaction time, the methanol:oil ratio and the catalyst percent,
Table 7
Statistical analysis of 23 factorial design.

Response biodiesel yield (%)

Main effects and interactions y ¼ 90.57
It ¼ 1.2
IR ¼ 3.45
IC ¼ 2
ItR ¼ �0.6
ItC ¼ �1.6
IRC ¼ �2.55
ItRC ¼ 1.6

Significance test: c confidence level: 95%
Mean response 90.57
Standard deviation t ¼ 2.571 s ¼ 1.28
Confidence interval ±1.35
Significant variables R,C, tC, RC, tRC
Significance of curvature
Curvature �0.475
Confidence curvature interval ±1.78
Significance No

Note: t: time, R: methanol to vegetable oil ratio, C: catalyts concentration, I: main
effect: s ¼ standard deviation.
are discussed. Also, the influence of the interactions will be dis-
cussed from the statistical model.

4.1. Reaction time influence

The experimental range studied for the reaction time is from 2
to 4 h as is mentioned before. The most important conclusion about
the influence of the reaction time on the FAME yield in the het-
erogeneous transesterification using K-gAl2O3 as catalyst is that it
has no importance in the experimental range studied. Although
reaction time is not a significant variable it affects the trans-
esterification in a slightly positive way. Therefore, 4 h of reaction
time gives the highest value of FAME yield, although it is not the
best value when scaling up the heterogeneous process because of
the slight alteration of the yield when the reaction time is
increased.
Fig. 2. Response surface of ester yield vs. methanol:oil ratio and catalyst percent.
Reaction time: 3 h.
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4.2. Methanol/oil molar ratio influence

The experimental range studied for the methanol:oil ratio is
from 5.28 to 7.28 as is mentioned before. According to the statistical
analysis, this variable has the most important effect on heteroge-
neous transesterification using K-gAl2O3. Therefore, the higher the
methanol:oil ratio is the higher FAME yield will be obtained.
Logically, the transesterification chemical equilibrium is displaced
towards the formation of more products when the value of the
methanol:oil ratio is increased. This reaction behavior is the same
as the KOH homogeneous catalyst [4].

4.3. Influence of the catalyst percent

The experimental range studied for the reaction time is from 4
to 6% wt as is mentioned before. From the statistical analysis, the
main conclusion about this variable is that it has a positive effect on
the FAME yield but is lower than the methanol:oil ratio. Therefore,
the higher the catalyst percent is in the transesterification reactor,
the higher the FAME yield will be. The catalyst percent value which
Fig. 4. Experimental data vs. predicted data for biodiesel yield according to statistical
model linear fitting.
gives the best result is 6%. However, there is an optimum catalyst
concentration where the reaction reaches its maximum. Starting
from this optimum catalyst, mass transport limitation influences
the transesterification reaction, thus, adding more catalyst in the
middle of the reaction does not mean a higher FAME yield [40]. In
this experiment, the catalyst content range studied does not permit
identifying where the mass transport limitation starts, but it can be
guaranteed through the studied design of experiments this value is
higher than 6%.
4.4. Influence of the interaction

First of all, the t-R interaction has a slight positive effect on the
transesterification reaction, although it has no significance ac-
cording to the statistical analysis. Secondly, the teC interaction has
a negative effect on the FAME yield and does not have significance.
Thirdly, the teR interaction has the highest negative effect on this
heterogeneous reaction regarding all the studied interactions.
Finally, the teReC interaction has a positive effect and it has
importance.
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4.5. Analysis of the response: FAME yield

The surface response obtained by the statistical model can be
seen in Fig. 1. This Figure represents the variation in the FAME yield
when the methanol:oil ratio and the catalyst percent change in the
studied experimental range. The reaction time has no significance,
as it is proved in the results section, and is fixed at 3 h (center point).
According to the surface response themaximumvalue for the FAME
yield is reachedwhen themethanol:oil ratio is at itsmaximumvalue
andwhen thepercent of solid catalyst is about 5%.Moreover, in Fig. 2
can be seen that the experimental results are fitted correctly and
there are no tendencies in the linear regression fit.
5. Industrial application of gAl2O3 based cataysts

5.1. Recycling of K-gAl2O3

From an economic point of view, the more cycles the catalyst is
used the better the performance is. The reuse of K-gAl2O3 is studied
by two recoveries of the catalyst. Once the reaction is completely
finished, the product is filtered and the solid is recovered. Next, the
catalyst is cleaned with 100ml of methanol and dried in the oven at
150 �C. Part of the byproduct, glycerol, is retained in the catalyst
and thewashing with a polar solvent is required for the reuse of the
Table 8
Quality control of biodiesel from soybean oil.

Property Value EU standard EN 14214

Viscosity at 40�C (mm2/s) 4.8 3.50e5.00
Water content (%) 0.03 Max. 0.05
Ester content (%wt) 99.2 Min. 96.5
MG content (%wt) 0.8 Max. 0.8
DG content (%wt) e Max. 0.2
TG content (%wt) e Max. 0.2
Acid value (mg KOH/g) 0.14 Max. 0.5
Iodine value (mg I2/g) 130.4 Max. 120
Oxidation stability (h) 6.3 Min. 6
Flash point (�C) 161 Min. 120
Cetane number 49 Min. 51
CFPP (�C) �3 Summer � 0
European zone 3 Winter � �10
PP (�C) �3 e

CP (�C) 1 e
catalyst. In this experiment, the used soybean is refined and
therefore, there are no traceable amounts of soap.

There are several factors which have contribution on the deac-
tivation of these catalysts. Previous studies have proved the nega-
tive effect of the soap on the reusability of different heterogeneous
catalysts, such as CaO [1]. Another source of deactivation is the
water presence or CO2 either in the middle of the reaction or
environmentally. Wan et al. [47] demonstrated that removing wa-
ter and carbon dioxide was an effective way to elevate the catalyst
stability in methanol when sodium aluminate is used as catalyst.
But, the most likely deactivation reason is the leakage of potassium
in the glycerol phase, losing the active part of the solid catalyst [48].
In a previous research the leaching process for K-gAl2O3 has been
described (Equation (3)) assuming that KAlO2-like (or KeOeAl)
species would be formed at the surface of the solid [43].

KAlO2 þ CH3OH / AlOOH þ Kþ þ CH3O� [3]

There is a marked drop of the FAME yield in the trans-
esterification with the catalyst obtained in the first and the second
recoveries with respect to the fresh catalyst. The FAME yield is
reduced in the transesterificationwith the catalyst recovered in the
first and in the second cycles by 28.5% (63.8% for the first cycle and
35.3% for the second cycle) which means the same deactivation has
been produced. In conclusion, this catalyst did not show good
recycling ability in either the second or third recoveries.
5.2. Quality control of biodiesel

Once the optimum conditions for the heterogeneous trans-
esterification using K-gAl2O3 with 10% of metal content as catalyst
have been determined (4 h, 7.28 methanol: ratio and 4% wt cata-
lyst), some properties of the purified biodiesel have beenmeasured.
The quality parameters quantified were: Kinematic Viscosity, water
content, ester content, monoglyceride content, diglyceride content,
triglyceride content, acid value, iodine value, flash point, oxidation
stability (h), CFPP (Cold filter plugging point), CP(Cloud Point ), PP
(Pour Point) and cetane number. The results have been compared
with the European Union Standard EN 14214 and are charted in
Table 8.

Since ester content, kinematic viscosity and water content are
within the Standard EN 14214, the transesterification reaction us-
ing K-gAl2O3 with 10% of metal content is completed and the ob-
tained product has been separated and purified correctly.
Monoglyceride, diglyceride and triglyceride contents also fulfill the
European requirements, therefore, the reaction is completed as
aforementioned. The iodine value is higher than the minimum
value requested in the European Standard because of the compo-
sition of the soybean oil (high proportion of unsaturated acids),
however the acid value and the flash point are within the Standard.
The cetane number is slightly lower than the specified limit and the
CFPP only is valid according the standard in summer time. A
possible solution is the use of blends from different rawmaterials in
order to produce a biodiesel which fulfill all the requirements ac-
cording to UNE EN 14214 [49e51].
6. Conclusions

The main conclusions obtained in this study are:

� Among ten different heterogeneous catalysts supported on g-
Al2O3 the most actives are K-gAl2O3 and Na-gAl2O3 with a 10%
content in metal. The FAME yield is close to 92% in both cases
after 6 h of reaction time.
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� A portion of the decanted glycerol is retained in the catalyst, and
this fact lowers the activity of the catalyst in its reuse. In addi-
tion, the washing steps of the catalyst become more difficult.

� A mixed-level design of experiments is made for K-gAl2O3 and
Na-gAl2O3 with 10% metal content and the results show that
their activity is pretty similar at high reaction times; however
the potassium based catalyst needs more mild conditions to
reach the maximum yield. The studied variables in the experi-
ment are the catalyst content, the methanol:oil ratio and the
reaction time.

� A K-gAl2O3 Full Factorial Design is made by studying the same
variables as in the previous design of experiments: catalyst
content, methanol:oil ratio and reaction time. Reaction time is
no significant in the experimental range studied, nevertheless;
the catalyst content and the methanol:oil ratio are significant in
the transesterification process.

� The most influential variable in this heterogeneous trans-
esterification is the methanol:oil ratio.

� K-gAl2O3 reuse is studied and the catalyst loses its efficiency in
the first and in the second cycles proportionally. K-gAl2O3 is not
ideal for being used in biodiesel plants because it does not give
high FAME yields and it can't be reused in many cycles. Ac-
cording to previous papers, the most probable cause of the
catalyst deactivation is the loss of potassium in the solid because
the metal is retained in the glycerol phase due to a partial
leakage.
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