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This paper describes two types of problems related to tree shapes, as well as algorithms that
can be used to solve these problems. The first problem is that of comparing the similarity
of the unlabelled shapes instead of merely their degree of balance, in a manner analogous to
that routinely used to compare topologies for labelled trees. There are possible practical
applications for this comparison, such as determining, based on tree shape similarity alone,
whether the taxa in two phylogenies are likely to have a correspondence (e.g. hosts and par-
asites with high specificity). It is shown that tree balance is insufficient for this task and that
standard measures of topological difference (Robinson–Foulds distances, SPR distances or
retention indices of the matrices representing the trees, MRPs) can be easily adapted to the
problem. The second type of problem is to determine whether taxa of uncertain matching
unique to two different phylogenies could correspond to each other (e.g. the same species
in larvae and adults of metamorphic animals, fossils known from different body parts). This
second problem can be solved by either relabelling taxa in such a way that the number of
consensus nodes is maximized, or relabelling taxa in such a way that the sum of the number
of steps in the MRP of each tree mapped onto the other is minimum.
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Introduction
This paper calls attention to possible implications, for prac-
tising taxonomists and systematists, of aspects related to
tree shape. In phylogenetics, most of the relevant compar-
isons between trees are made for fully labelled trees. Unla-
belled trees are rarely referred to, especially by taxonomists
and systematists. Tree shapes have long been considered as
a means to test speciation/extinction models, an active field
of research which took momentum after Mooers & Heard
(1997). Almost all of the literature on this subject is based
on testing whether the degree of symmetry (or ‘balance’) in
trees obtained from real data matches that expected under
the model. Using the degree of symmetry in this way is so
common that, in many papers, ‘shape’ and ‘symmetry’ are
used interchangeably. The degree of symmetry is most
commonly measured with either the Sackin (Sackin 1972)

or Colless (Colless 1982) indices; other indices were pro-
posed by Shao & Sokal (1990), Mooers & Heard (1997),
McKenzie & Steel (2000) and Mir et al. (2013). Recent
examples of practical applications of this approach can be
found in Poon et al. (2013), and Frost & Volz (2013).
Related to this is the work on diversification rates (e.g.
Alfaro et al. 2009; Shah et al. 2012; Rabosky 2014), which
uses indirect measures of balance (i.e. differences in num-
ber of branching events in sister clades). Several R-
packages implement these indices, such as Ape (Paradis
et al. 2004), apTreeshape (Bortolussi et al. 2006) and Phy-
loTempo (Norstr€om et al. 2012). Stadler (2013) provided a
recent general review of the subject.
Although measures of tree balance seem adequate for

testing specific evolutionary models, the more general goal
of comparing the shapes – as opposed to merely the degree
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of balance – has received little attention from biologists
and phylogeneticists, and it is presently unclear how such
comparisons should be made. As recently noted by Lewitus
& Morlon (2016: 495–496), ‘[m]etrics like the Robinson–
Foulds distance (Robinson & Foulds 1981) and nearest
neighbor interchange (Moore et al. 1973) . . . are used to
compare different trees representing the same set of organ-
isms . . . They are not, however, built (or adapted) to func-
tion as comparative metrics between species trees
representing different sets of organisms’. The present paper
proposes such an adaptation of the Robinson–Foulds dis-
tance (and other measures of tree distance) and illustrates
contexts in which this comparison may be useful.
A few papers in the field of computer science have dealt

with the problem of comparing unlabelled tree shapes.
These papers have studied the cost of editing the strings of
parentheses representing the two trees, so that they become
equivalent (e.g. Germain & Pallo 1996; Wu & Huang 2010),
or the number of nearest neighbour interchange (NNI)
moves needed to convert the trees themselves (e.g. Pallo
1990; in this field, the NNI rearrangement operation is often
called a ‘tree rotation’). Although these computer science
papers deal with the problem of comparing tree shapes
beyond the mere quantification of balance, they have had lit-
tle influence on biologists.
In one of the most interesting papers on the subject,

Matsen (2006) has pointed out that tree comparisons based
only on the degree of balance can be misleading and that
some more general evaluation of shape differences may be
desirable, and makes some points similar to those in the
present paper. As the present paper is less mathematically
oriented than Matsen’s (2006), presents specific instances
of the relevance of tree shapes for systematics (with biolog-
ical examples) and provides a computer implementation to
compare tree shapes, we hope that it will be more accessi-
ble to biologists and more effective in calling attention to
the relevance of tree shape in systematics.

Shape is not the same thing as balance
Measuring the balance of trees may be appropriate to test
specific models of evolution, but there is little doubt that
balance alone is simply one of the aspects of the ‘shape’ of
a tree. As the total degree of balance is a summary over all
the tree, trees which are closer in balance are not necessar-
ily closer in shape. Matsen (2006) made the same point
using a hypothetical diagram; Fig. 1 provides a specific
example, with four trees (A–D) arranged so that asymmetry
increases to the right. The values of the Sackin index (not
normalized, not counting the root itself) are shown below
each tree.
If differences in Sackin’s index were to be interpreted as

a measure of differences in shape, the two trees that differ

the most would be trees A and D. It is clear, however, that
trees A and D are the two trees with most similar shapes
(at least for most possible measures of similarity; see
below). For example, it is possible to interconvert between
trees A and D by an NNI move of a single branch (marked
with an asterisk in both trees). Tree C would be, under
that interpretation of Sackin’s index, identical to tree B,
but it is clear that tree C is the most different tree: all the
other trees can be interconverted between each other with
a single SPR move.
Thus, using Sackin’s index to measure the similarity of

shapes – instead of the degree of balance – is obviously
inappropriate. Note that similar examples could be con-
structed using any other measure of tree balance. Colless’
statistic, for example, would arrange the four trees in the
same sequence, also indicating that trees A and D are the
most different ones and that D is most similar to C (the
only difference is that trees B and C would not be identical
in that case; other sets of four trees, however, reproduce
the exact same situation of Fig. 1 for Colless’ statistic).
For comparing labelled trees, taxonomists routinely use a

number of measures of distance and similarity. Felsenstein
(2004, pp. 528–535) gives an overview; a more recent
review of the performance of some measures is provided by
Kuhner & Yamato (2015). These measures of distance
between labelled trees are well known by biologists, and
their meaning and definition are for the most part intuitive.
Two widely used measures are the Robinson–Foulds dis-
tance (RF; Robinson & Foulds 1979, 1981; the ‘rooted’
version is used in this paper) and the SPR distance (num-
ber of subtree–pruning–regrafting moves needed to inter-
convert the trees; Hein 1990). A third measure is the

Fig. 1 A case of four tree shapes (A–D) with different degrees of
balance, as measured by Sackin’s index (S). Shape B is exactly as
balanced as shape C, but it is very different, and more similar to
the other shapes (A and D, more and less balanced, respectively).
Tree shapes A, B and D can be interconverted by moving just the
terminal branch marked with a star.
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retention index R of Farris (1989, a modification of the
‘distortion coefficient’ of Farris 1973), based on calculating
the number of steps for the matrix representing one of the
trees mapped onto the other, or MRP (‘matrix representa-
tion with parsimony’ of Baum & Ragan 1993; what Farris
1973 had called ‘group membership variables’). Although
this measure, R, is not commonly used, it has interesting
properties (including the ease of calculation and ability to
detect subtle difference in the trees); Wheeler (1999) pro-
posed extensions of Farris’ (1973) original measure; Golob-
off et al. (2008a) used R to compare trees in their analysis
of the influence of weighting. In the present paper, the
totals of G (maximum possible), M (minimum possible) and
S (observed) are used (as in Farris 1989) instead of the
average (as in Farris’s 1973 original proposal); this is a
measure of similarity, with 1 indicating identity. Farris’
(1989) original measure is asymmetrical when used to mea-
sure tree similarity: the steps of the MRP for tree A
mapped onto tree B may not the same as the reciprocal
(Goloboff 2005), and thus, the measure cannot be a metric.
To eliminate that problem of asymmetry, the sum of the
maxima, minima and steps of the reciprocally mapped
matrices is used (as implemented in the tcomp command of
TNT; Goloboff et al. 2008b), so that the measure can
become a metric.
Of course, as these (and other) measures of similarity

between labelled trees may arrange trees in slightly differ-
ent sequences, it is clear that they capture slightly different
aspects of ‘the shape’ (see, e.g., Bansal et al. 2010: 10), but
the interpretation and limitations of these measures are
generally well understood. For example, it is well known
that RF may be increased more by a single terminal mov-
ing to a far away position than by several terminals moving
to nearby locations, even if the second case can be consid-
ered as changing the tree more. In what is in a sense the
opposite situation, the SPR distance between the original
tree and each of the trees resulting from moving a terminal
to alternative locations (farther or closer away) will always
be the same, even if some of those moves represent a more
radical transformation of the tree (e.g. Goloboff 2008).
The retention index R will be intermediate in any of these
situations. In general, biologists are well aware of the con-
texts in which a given measure may be problematic.
Coming back now to the shape of unlabelled trees, how

could these be compared, beyond mere balance? For prac-
tising phylogeneticists to easily grasp the meaning of a
given tree comparison, the ideal situation would be that
some of the measures already established for labelled trees
are adapted to the unlabelled case (cf. Lewitus & Morlon
2016). If the tree shapes are identical, then it will be possi-
ble to label both trees in such a way that the measure of
distance d indicates that no difference exists between the

trees. Likewise, when the shapes are not exactly identical,
labelling the trees in such a way that d produces the maxi-
mum possible similarity between the shapes will give an
indication of the similarity between shapes. More properly,
it gives an indication which is as good as the measure used;
for example, just one taxon switching between two distant
positions will strongly increase the RF, will count as just
one SPR move and will mildly decrease the value of R
(more strongly so for more distant moves). In this paper,
to indicate that these measures of distance or similarity
between trees are being used to compare shapes, through
optimal relabelling of the two trees, the subindex s (‘shape’)
will be used: RFs, Rs and SPRs distances.
When applied to the example of Fig. 1, this relabelling

produces a sensible comparison between the tree shapes.
Figure 2 shows a possible optimal labelling. Note that the
optimal labelling will normally be different for different
pairwise comparisons between trees (in this particular
example, the four trees can be optimally labelled at the
same time). Figure 2 shows the consensus of possible pairs
of trees, together with the values of Rs and SPRs distances.
With the labelling shown, tree C is identified as the most
different tree (with the lowest number of groups shared,
the lowest Rs and the largest number of SPRs moves, when
compared to any of the other trees), and trees A–D are
identified as the most similar. Tree B is more similar to
trees A and D than it is to tree C (even if it is exactly as
balanced as tree C, according to Sackin’s index).

When is tree shape relevant for systematists?
In general, comparing tree shapes may be of interest when
the correspondence between the taxa in one tree and the
taxa in the other is not known with certainty, but might be
established as consequence of topological correspondence.
These will generally be special circumstances, of cases
where lack of information forces us to rely on the similarity
of phylogenies to establish a correspondence. It is hard to
know how often the situation may arise in the practical
work of taxonomists, especially because publication of phy-
logenies fulfilling this requirement may have been impeded
by the general lack of discussion on the problem, and the
lack of relevant phylogenetic tools. The case is certainly
possible, and even if uncommon, interesting from the
methodological point of view.
Consider a hypothetical case where phylogenies are

known for a genus of fish, and for a group of parasites sus-
pected (but not known) to parasitize that genus of fish with
high specificity. Of course nothing is better than having
actual data on the association, but assume for the sake of
the argument that only the phylogenies are available, for
the same numbers of terminal taxa in each case. The shape
of the parasite phylogeny is as in tree D of Figs 1–2; the
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shape of the fish phylogeny is as in tree C. If the parasites
are highly specific, then the shapes of the two phylogenies
should be similar. But the shapes of trees D and C are very
different; this situation is not what could be expected if the
parasites are highly specific for that genus of fish. Trees D
and C differ in shape more (at the 5% significance level)
than expected if the topologies of the fish and parasite are
totally independent of one another, when measured with
RFs. The proper test to address this problem is the genera-
tion of multiple pairs of random trees (i.e. all trees
equiprobable), relabelling the trees so that RF is minimal,
and counting the proportion of cases in which RFs is larger
than the observed. In TNT, this is easily achieved with the
following commands:

shpcomp =+ 0 1 ;

var: OBS count ;

set OBS rrfdist 0/1 ;

set count 0;

loop 1 1000

keep 0; rseed*; randtree 2;

shpcomp =+ 0 1;

if ( rrfdist 0/1 >= 0OBS0)

set count ++ ; end

stop

quote 0count0 cases;

The pairs of random trees had differences in shape equal
to or greater than the observed one (0.53846) in only 3.4%
per cent of the cases; thus, by generating pairs of random

Fig. 2 The four shapes shown in Fig. 1,
labelled so that the trees become as
similar as possible. The consensus of
different tree pairs is shown (as well as the
number of nodes in the strict consensus).
With this labelling, tree C is the most
distinct tree, for the Robinson–Foulds
distances, the retention index of the
MRPs (R) and the number of SPR moves.
Note that for two binary trees of t taxa,
the Robinson–Foulds distance is directly
proportional to the number of nodes n in
their strict consensus (with
RF = 2 9 (t – n – 3)), so that fewer
nodes in the consensus indicate a larger
RF distance.
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trees, it is unlikely that we will obtain trees that are as dif-
ferent in shape as trees C and D. If the phylogeny of
another fish genus is available, with shape as in tree A of
Figs 1–2, then that other fish genus is a much better candi-
date for being the host of these parasites; even if the shapes
of the trees are not exactly identical, only 0.1% of the pairs
of random trees had a RFs smaller than the observed
(0.07692; we used ‘smaller than or equal’ in this compar-
ison, instead of ‘larger than or equal’). Thus, the shape of
the phylogeny of the second genus of fish resembles the
shape of the phylogeny of the parasite more than expected
by chance alone.
Similar examples can be made regarding the association

between larvae and adults in animals with metamorphosis,
or males and females that have not been unequivocally
associated in groups with strong sexual dimorphism. In
palaeontology, it is common for fossil taxa to be known
from disarticulated remains and the association between
different body parts is often uncertain. Applying a reason-
ing like the one illustrated for hosts and parasites may
serve to determine whether cranial and postcranial remains
(for example) are likely to belong to the same group of
taxa.

Calculating optimal relabellings
Although the approach above is conceptually simple, the
relabelling that maximizes a given measure of tree similar-
ity is not easy to find. This section describes the algorithm
used in recent versions of TNT (Goloboff et al. 2003;
Goloboff & Catalano 2016), which does a sort of ‘heuristic
search’ for better labellings.
The algorithms used in TNT take advantage of the fact

that the MRP can be updated quickly, using incremental
reoptimization (as in Goloboff 1996) of the variables repre-
senting groups to measure changes in fit (i.e. differences in
sums of observed steps, S, in the formula for the retention
index, R; note that the relabelling can affect neither G nor
M).
Unlike the case for searching trees, the shape of both

trees must remain the same, and this requires that all the
‘moves’ are instead switches between taxa in one of the
trees. The exchange between two taxa A and B in one tree
proceeds in the following steps: first, the states of A are
made identical to those of B for each character represent-
ing a group in the other tree and then each character is
reoptimized incrementally; second, the states for B are
made identical to those that A had, and each character is
reoptimized incrementally; third, the actual tree structure is
changed, switching taxa A and B. The other tree does not
change, but the matrix representing the changed tree must
be changed (by switching the states assigned to taxa A and
B), then incrementally reoptimizing the other tree below A

and B. Differences in length for each of the characters are
calculated as the incremental reoptimization proceeds.
Rather than attempting switches at random, the switches

are attempted on the basis of the mapping on one tree of
each character representing a group of the other tree. By
switching together independent derivations of the same
state, or switching down to plesiomorphies what are
mapped as reversals, the number of steps needed to fit the
MRP is more likely to be decreased. Such guided switches
consists of three phases (a)–(c):

(a) For every character of the MRP representing one
of the trees (tree A), mapped onto the other (tree B),
list all the branches of tree B with 1?0 changes (in-
cluding potential ones, resulting from ambiguous opti-
mization). From all pairs of branches in the list (bi, bj,
where i > j), for each of the sisters (in tree B) of bi that
do not have state 0, attempt a label switch between bj
and the sister of bi. If the switch produces a better
MRP score, accept it, remove bj from the list and
update ancestral assignments for both MRPs. This is
illustrated in Fig. 3A. After trying all the sisters of bi,
if none produced a better MRP score, then for each of
the sisters of bj that do not have state 0, attempt a
label switch in the same way.
(b) For every character of the MRP, list all the
branches with 0?1 changes. Operate similarly: for all
bi, bj in the list, attempt label switches for the sisters
that do not have state 1 (instead of 0, as before), first
for the sisters of bi, then if no exchange produced any
improvement, for the sisters of bj that do not have
state 1.
(c) For each branch bi of tree B that remained in the
first list (i.e. the list of branches with 1?0 changes),
travel down the tree (i.e. from bi towards root) until
finding the first node n which there is a change 0?1.
Let bj be the descendant of that node n in the path to
bi. Then, for each of the sisters of bj, attempt to switch
labels between bi and sister of bj. This is illustrated in
Fig. 3B. If the switch produces a better score, remove
bi from the list and update ancestral assignments on
each tree B for the MRP representing the other tree.

A cycle of guided switches consists of performing routi-
nes (a–c), in both directions (i.e. exchanging trees A and B
once). In the illustration, only terminal taxa are being
exchanged. When bi or bj are groups (internal nodes)
instead of terminal taxa, the exchange is performed by
switching, one at a time, each of the terminals from the
two groups (updating the MRPs for each exchange of ter-
minal taxa); these individual pairwise exchanges are tried in
an arbitrary sequence. Note that when the groups are of
different size, some terminal taxa in the larger group will
not be exchanged.
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Every individual switch can be carried out (or undone)
rather quickly, using incremental reoptimization; in a stan-
dard computer, TNT can evaluate about 87 800 switches
per second for 50 taxa and about 36 500 for 100 taxa.
These guided switches quickly improve the mutual MRP
fit, but can get trapped in ‘local optima’. An example is in
the two trees shown in Fig. 3C,D. Note that the two tree
shapes are identical, and the first split below the out-group
comprises two groups of the exact same size. It is possible
to obtain two identical labelled topologies by exchanging
the taxa in those two groups, but this would have to be car-
ried out with a specific sequence. That is, B must be
exchanged with E, C with D, F with O, etc., at the same
time. Recall that the exchange of internal nodes is per-
formed by exchanging the terminals descended from the
nodes in an arbitrary sequence; there is no way to know
which specific sequence of exchanges will produce the
desired identity. Thus, if the guided switches start from a

random labelling, the two trees in Fig. 3C,D become iden-
tical in about half of the cases, the rest of the times getting
trapped in a ‘local optimum’ like the one shown. It must
be noted that there are simple algorithms (e.g. based on a
renumbering of terminal taxa within groups, with groups
examined in a postorder traversal, so that the numbering
depends on the size of the group) that can quickly detect
whether two tree shapes are identical; these algorithms
have been purposefully avoided in the present implementa-
tion, so as to allow testing the ability of the heuristic based
on guided switches to detect identity.
The guided switches thus work reasonably well in some

cases, although they can be easily trapped in local optima.
The solution adopted in TNT is switching a low number
of terminal taxa at random, and applying the guided
switches again, a number of times. Every certain number
of tries of this milder perturbation, a larger number of ran-
dom switches (so as to start again completely from scratch)
is effected. The labelling that produces the best (lowest)
MRP score of all these cycles is stored and reported at the
end.
With this randomization (using by default four starting

points, randomly exchanging 25% of the taxa every time,
and analysing each of those with 30 rounds of random
exchanges of 10% of the taxa, and five cycles of guided
switches), the identity of trees with 50–60 taxa is detected
in the vast majority of cases within a second. Beyond those
numbers of taxa, the times needed to approximate optimal
labellings increase rapidly, and the heuristic begins to fail
more frequently.
To us, one of the unexpected results of applying this

algorithm to a number of examples is that all trees can be
made to agree substantially by appropriate taxon rela-
bellings, even on random trees. The typical result of pro-
ducing random labelled trees is an unresolved consensus,
but when the trees are relabelled, they can normally be
made to share more groups without altering their shapes.
Although unanticipated, this result actually follows from
the fact that (under the uniform model) the number of
cherries for random trees of n taxa tends to n/4 (McKenzie
& Steel 2000: 88), and all cherries can be made equivalent.
As a consequence, for random trees of 50 or more taxa, the
value of Rs is usually above 0.90 (indicating a high degree
of similarity), and the RFs distance is often below 0.50. In a
similar vein, for maximum agreement subtrees, it has also
been observed that random trees can be expected to share
identical subtrees of a substantial size (e.g. Bryant et al.
2003). We conjecture that maximum differences will be
obtained between completely balanced and completely
pectinate trees; for such trees (with 64 taxa plus an out-
group), the Rs is 0.88309, but RFs is (more appropriately)
0.90476. The problem is thus more acute for Rs; perhaps

Fig. 3 —A. Example to show how taxon switches in a tree can be
guided by parallel 1?0 changes in a character representing a
group in the other tree; exchanging bj and the sister of bi reduces
the number of steps in the character from 3 to 2, thus making the
groups in the trees more similar. A similar reasoning can be
applied for parallel 0?1 changes. —B. Example to show how
taxon switches can be guided by reversals; moving bi down the
tree, to be the first sister of the rest of the group (n) with a change
0?1, causes the number of steps for the character to go from 2 to
1. —C,D. Two identical shapes, labelled so that the taxon-
switching algorithm cannot produce any improvement in the
similarity of the tree (i.e. a local optimum for the relabelling
algorithm).
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this statistic could be rescaled when used to compare tree
shapes, so that the values that indicate maximum difference
are more easily interpretable.
The heuristic implemented in TNT is a first, proof-of-

concept approximation to the problem of finding optimal
relabellings, useful only for relatively small problems. No
doubt, it can be improved using smarter algorithms. An
obvious possibility for improvement is in trying to divide
the trees to compare in sectors, identifying subtrees of
identical shape (e.g. the upper subtree in both Fig. 3C,D;
recall that shape identity can be established easily), so that
the subtree can be replaced by a single label, piecemealing
the problem.
Note that the actual minimization performed is of

the sum of the number of steps implied by each tree on
the MRP of the other. This will normally also increase the
number of shared nodes between the trees, thus decreasing
RF and other measures of distance. When the RF is to be
minimized, then the exchanges are attempted based on the
criteria (a–c) above, but the actual RF distance is used
instead of the raw number of steps to decide whether a
better labelling has been found (the RF distance is the
number of characters with more than a single step, easily
obtained from the routines described above).

Other uses for shape comparisons: taxon
correspondences
The examples given above consider the case of fully unla-
belled trees. There is another case where considerations of
tree shape may be relevant, and this is when a plausible
correspondence or synonymy needs to be identified. In that
case, the two trees may share some or most of the taxa,
and the goal will be to match those taxa that are found in
only one of the trees. In the absence of additional informa-
tion (e.g. unique morphological characters, or specimens
collected together, in the case of matching sexes), the tree
topologies for two separate phylogenies may suggest alter-
native pairings.
Consider the example of Fig. 4A, with two trees for five

taxa each. Taxa E and C are present in only one of the
trees, and taxa F and C are present only in the other; there
is the suspicion that E and C might be synonyms with F
and G, but the precise correspondence is not known with
certainty. Assuming that the phylogenies for both sets of
taxon names are indeed equivalent, taxon E can be seen to
be in the same position – relative to the general shape of
the tree – as G, and taxon C in the same position as F.
Thus, the expected result is E = G, and C = F.
Aside from visual inspection of both trees, the only exist-

ing tool to vaguely approximate this conclusion is a super-
tree (Fig. 4D), which allows combining trees with different
taxon sets. For the present example, species E and G on

the one side, and C and F on the other, will appear as part
of two trichotomies, thereby suggesting that they occupy
analogous positions in the trees and that the proper match-
ing would be E with G, and C with F.
The supertree, however, only allows establishing proper

conclusions in some cases, not in general. Figure 4B shows
another example, where B, C and E are suspected syn-
onyms of F, G, H, but the specific pairings are not known.
The expected result, considering the shapes of the trees, is
B = F, C = G and E = H. The supertree for the eight taxa
is a complete bush (Fig. 4E), thus providing no information
as to possible correspondences.

Finding matchings that maximize the number of consensus
nodes
Two possible criteria to deal with this situation have been
explored and implemented. The first criterion for deciding

Fig. 4 Different cases in which taxon correspondence might be
determined. —A–C. Input trees and expected correspondence (taxa
of uncertain correspondence marked with a star); (D) semi-strict
supertree (Goloboff & Pol 2002) for the input trees in (A); (E)
semi-strict supertree for the input trees in (B).
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the best matchings is in counting the number of nodes in
the consensus of the two trees, after names of matched taxa
have been made equivalent in both trees, and unmatched
taxa are removed from the trees. Those matchings that
maximize the number of nodes in the consensus are cho-
sen. There may be, of course, several alternative matchings
that maximize the number of consensus nodes. In the
implementation of TNT, the user can optionally choose to
maximize the number of nodes in either the combinable
component (Bremer 1990) or the strict consensus tree (ob-
viously, when input trees are fully resolved, both options
produce identical results).
Counting the number of consensus nodes will properly

solve cases like the one shown in Fig. 4C. Taxa E and F
might match taxa G and H, but these are placed in distant
positions in the trees. Any matching will produce fewer
than the two nodes (not counting root node) obtained by
not matching at all. Thus, the best conclusion seems in
principle that taxa E, F and taxa G, H do not match. How-
ever, the criterion of simply counting the number of con-
sensus nodes has the drawback that the position of the taxa
to be matched must be identical in both trees, or differ at
the most by a single node, for the matching to be preferred
over a non-matching. Consider the case of Fig. 5, with a
single taxon unmatched in each of two otherwise identical
trees (F in the first tree, Fig. 5A, G in the second,
Fig. 5B–D). Comparing trees A and B, in which taxa F and
G occupy exactly the same position, the synonymy F = G
is always preferred. When G is placed one node apart (as

in the tree of Fig. 5C), the synonymy produces a tri-
chotomy for DEF, while the non-matching produces a
group DE (with F and G removed from the consensus);
thus, both matching and non-matching are optimal. When
G is placed one more node apart in the second tree (as in
Fig. 5D), the number of nodes on the consensus when G is
synonymized with F (with a tetrachotomy for CDEF) is
lower than the number of nodes when G and F are consid-
ered distinct (with F and G pruned from the input trees,
the two input trees become identical).
To the extent that one has more confidence that all the

species in the two trees are to be matched (i.e. that no spe-
cies is truly unrepresented in one of the trees), the method
of just counting consensus nodes may produce fewer
matches than desired. This can be solved by considering a
penalty, P, for every case of an unmatched taxon. Then,
instead of simply counting the number of consensus nodes
C, the matchings chosen are those that maximize
C � (P 9 n), where n is the number of unmatched taxa.
When P = 1, the synonymy F = G produces a better score
as the non-matching (instead of the same score), for the
comparison between trees A and C, and the same score as
the non-matching (instead of an inferior one) for the com-
parison between trees A and D. When P ≥ 2 (or more),
the best conclusion is always F = G, for each of the tree
comparisons. This allows establishing conclusions when the
two trees cannot be made identical by matching taxa.
The implementation of this criterion in TNT works by

brute force, enumerating all possible matchings (and non-
matchings). Thus, the solution it produces is guaranteed to
optimize the number of consensus nodes, but is slow for
large numbers of unmatched taxa, quickly becoming
impractical beyond 15 unmatched taxa. It serves only as a
proof-of-concept implementation; it is possible that smarter
algorithms can be devised to produce faster exact solutions.

Finding matchings that minimize steps in the MRPs
The second criterion is a heuristic, based on minimizing
the steps of the MRPs, implemented in TNT with a modi-
fication of the taxon-switching algorithm described in the
previous section. The exchanges between terminal taxa
(guided, as before, by the most parsimonious optimization
of the variables representing the groups) are applied only
to taxa of uncertain correspondence, skipping the taxa pre-
sent in both trees. For the taxa present in only one tree, an
initial set of arbitrary correspondences is set (using a ran-
domized list); as these taxa exchange positions, the list of
correspondences is updated. This algorithm is order depen-
dent, and it takes into account ambiguity in the correspon-
dences through repetition with different random seeds. For
the cases of Fig. 4A,B, where there is no ambiguity, the
expected result is produced.

Fig. 5 Two possibly synonymous taxa (F and G), with taxon G
placed at different location of an otherwise similar tree. For the
algorithms described, the cost of synonymizing taxa F (in tree a)
and G increases as G is further away (trees b–d) from the position
of F in tree a. See text for discussion.
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A problem with such simple modification of the taxon-
switching algorithm is that the approach, given N
unmatched terminals in each of the trees, will necessarily
match each of those – the algorithm described in the previ-
ous section does not consider the possibility that the best
conclusion may be that some of the taxa of uncertain cor-
respondence do not match at all. The algorithm is based
on minimizing number of steps (and thus maximizing
retention index, R). The retention index is rescaled
between 0 and 1 (see Farris 1989), but the values are not
comparable for different data sets; a retention index of 1
might be achieved by excluding (i.e. non-matching) almost
all taxa, and this – despite the congruence – is not a very
useful result. The raw number of steps of the MRP matrix
is not useful, either, because a decrease in number of steps
might correspond to a modification of the matrix that elim-
inates informative characters.
Although the number of steps in the MRP does not suf-

fice for deciding whether some taxa are better left
unmatched, adding a step penalty for every pair of taxa left
unmatched will take into account the decrease in steps pro-
duced by the elimination. That decrease cannot exceed one
step per each character representing a group to which the
taxon belongs in one tree (and not in the other). This pro-
vides a natural criterion to decide whether taxa that are

placed far apart in the tree should be matched, illustrated
in Fig. 5 with a single taxon unmatched in each of two
otherwise identical trees (F in the first tree, Fig. 5A, G in
the second, Fig. 5B–D). When the unmatched taxon G is
in exactly the same position in the second tree (Fig. 5B),
the two MRPs require no extra steps in each of the trees
when F and G are considered synonyms; the two taxa are
thus always matched, regardless of penalty. When G is one
node apart in the second tree (Fig. 5C), synonymizing it
with F will incur in two steps for the MRPs, one on tree C
for the character representing group EF from tree A and
the other on tree A for the character representing group
DE in tree C. As G is more nodes apart in the second tree,
synonymizing it requires two additional steps per node;
thus, when G is in the position shown in tree D, two more
steps (in addition to those two just discussed) are required
for the MRPs, one on tree D for the group DEF from tree
A and the other on tree A for the group CDE. When the
user sets a penalty to a value P, for every taxon that is not
matched to some taxon in the other tree, a value P is added
to the number of steps of the MRPs. For the pair of trees
A and C, the synonymy F = G is preferred over a non-
match when P ≥ 1; for the pair A and D, the synonymy is
preferred when P ≥ 2. This properly takes into account the
case where the number of unmatched taxa differs in the

Fig. 6 —A. Tree for gophers (modified from Hafner et al. 1994 and Page 1996). —B. Tree for lice (same source as A), with five species
(highlighted in grey) for which the host is assumed to be unknown. —C,D. The taxon-matching algorithm based on maximizing the
number of consensus nodes either matches correctly four pairs of taxa and leaves the fifth with unknown correspondence (C), or correctly
matches all species with their host (D).
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two trees (so that not all of the unmatched taxa can be
simultaneously matched).

Empirical examples
The degree to which two trees allow matching taxa
depends on their similarity. In applied studies, it would be
unrealistic to expect that the two trees have exactly the
same shape (due to either error in the estimation of one or
both phylogenies, or the parasites tracking the host phy-
logeny less than perfectly), so that a compromise solution
will usually be necessary.
Platnick & Shadab (1978), in their revision of the genus

Anapis (Araneae, Anapidae), presented two trees obtained
independently (see their figs. 9–10), one in which species
with unknown males are excluded, and the other where
species with unknown females are excluded. Anapid spiders
are sexually dimorphic and matching males with females
when they have not been collected together may be prob-
lematic. Through a careful consideration of morphology,
Platnick & Shadab (1978) established possible correspon-
dences, with two species known only from males (A. chiri-
boga and A. castilla), and nine known only from females
(A. atuncela, A. circinata, A. choroni, A. digua, A. discoidalis,
A. felidia, A. guasca, A. hetchski and A. meta). If the match-
ing method described in this paper is used to establish pos-
sible correspondences between the two male-only species
with the female-only species (either with the exact proce-
dure maximizing number of strict or semi-strict consensus
nodes, or with the heuristic based on minimizing MRP
steps), the most likely correspondence for the males is
either with no species at all (i.e. Platnick and Shadab’s
hypothesis), or with A. choroni, A. circinata or A. meta.
These matchings generally correspond to Platnick &
Shadab’s (1978) discussion of morphological characters
supporting the different groups in each of the two separate
phylogenetic trees, and are congruent with geographical
distribution (e.g. they do not include A. hetchski, known
from Southern Atlantic instead of Amazonian forest). As
no additional taxonomic work on these spiders has been
published in the ca. 40 years elapsed since Platnick & Sha-
dab’s (1978) work, there is no way to test whether the
male–female matchings implied by the present method are
reasonable.
As a more definitive test of the approach, it seems desir-

able to use a case where the actual matchings are known
with certainty, comparing to the results that would be
obtained if some of the matchings were unknown. An
interesting example is provided by the trees for gophers
and lice used by Page (1996) to illustrate cospeciation. The
lice are highly specific, and the trees contain about as many
species of lice as gophers. In all cases, the associations
between host and parasite are known from actual

observations. For the comparisons below, we have simpli-
fied the example so that the gopher Thomomys bottae, para-
sitized in fact by Geomydoecus actuosi and Thomomydoecus
minor, are parasitized only by the latter; G. actuosi is
removed from the lice tree. Similarly, Thomomys talpoides is
parasitized by two species of lice, Geomydoecus thomoyus and
Thomomydoecus barbarae; the former louse is removed from
the tree, and only T. barbarae is considered to occur on
T. talpoides.
What if some of the associations between lice and

gopher were not known, and the host–parasite correspon-
dence was established on the basis of tree shapes, using the
criterion of maximizing number of consensus nodes
described in the previous section? A possible case is shown
in Fig. 6. The names of the gophers include (in parenthe-
ses) the name of the corresponding louse. In the case of
the lice tree, the name of the gopher in which the species
is known to occur is used instead of the louse name. By
doing this, the degree of congruence when all host and
parasite associations are known can be visualized with a
consensus tree. In Fig. 6B, a tree for lice is shown, but
there are five species (Geomydoecus perotensis, Geomydoecus

Table 1 Results of applying the taxon-matching algorithm based
on maximizing consensus nodes to the trees for gopher and lice,
for different numbers of unmatched taxa in each of the trees (‘n’
column). The ‘wrong’ column indicates the proportion of cases
where a taxon could be paired only with the wrong taxon (or taxa);
this does not include the cases where a taxon could be either
paired with the wrong taxon (or taxa) or left unmatched (which are
simply ambiguous). The ‘perfect’ column indicates the proportion
of cases where the pairing of a gopher was done only with the cor-
rect louse; columns ‘1/2’, ‘1/3’ and ‘1/>3’ indicate the cases where
the correct pairing was as optimal as other (1, 2 or more) possible
pairings (including non-matching at all), thus indicating ambiguity
but with the correct results among other possibilities. The number
of possible n unknown associations is fixed; the results reported are
exact, based on exhaustive enumeration of all combinations; the
numbers of possible combinations of unknown associations are 105
(for n = 2), 455 (n = 3), 1365 (n = 4), 3003 (n = 5), 5005 (n = 6)
and 6435 (n = 7).

Penalty n Wrong Perfect 1/2 1/3 1/>3

0 2 0.004762 0.552381 0.342857 0.085714 0
0 3 0.013919 0.506227 0.306227 0.134799 0.015385
0 4 0.026557 0.461905 0.285897 0.156410 0.040842
0 5 0.042158 0.419647 0.277323 0.159307 0.071595
0 6 0.060440 0.379620 0.276257 0.150916 0.103796
0 7 0.081185 0.342369 0.278788 0.137329 0.134221
2 2 0 0.89524 0.10476 0 0
2 3 0 0.79927 0.19194 0.00879 0
2 4 0.00073 0.71117 0.26172 0.02381 0.00256
2 5 0.00293 0.63017 0.31442 0.04249 0.00999
2 6 0.00733 0.55558 0.35058 0.06234 0.02418
2 7 0.01465 0.48678 0.37110 0.08099 0.04649
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chapini, Geomydoecus costarricensis, Geomydoecus setzeri and
Geomydoecus oklahomensis) for which the host is not known; this
also leaves five species of gophers (Cratogeomys merriami,
Orthogeomys hispidus, Orthogeomys heterodus, Geomys busarius
and Orthogeomys underwoodi) with no known parasite. Applying
the taxon-matching algorithm described in the previous sec-
tion, two labellings are found to be optimal (Fig. 6C–D), one
which correctly matches all five species of lice and gopher, and
another which correctly matches four pairs of species but pro-
vides no answer for the remaining one (the lice G. perotensis
and the gopher C. merriami).
The number of possible scenarios of unknown associa-

tions is finite; with 15 taxa in each tree, there are (15n ) possi-
ble combinations of n unknown associations. All possible
combinations of unknown associations from n = 2 to n = 7
were enumerated, finding the matchings that maximize the
number of consensus nodes. The results are shown in
Table 1; very few combinations of unknown associations
result in an erroneous matching, especially when a penalty
for non-matching is used. Even in the case of seven
unknown associations, the matchings with a penalty where
the correct association is either the only optimal one, to
one of three possible matchings, sum up to 0.939. A very
low proportion of cases indicates incorrect associations as
optimal. The method is often ambiguous regarding the
associations, but rarely misleading.

Conclusions
This paper shows that the shape of trees, so far considered
only in the realm of testing evolutionary models, may also
help solve some problems that are more specific to taxonomy
and systematics. The degree of balance in the trees, often
used to test different models of speciation and extinction, is
insufficient for comparing tree shapes in wider contexts.
Some algorithmic methods to deal with the problem of com-
paring shapes (crude and primitive, but better than nothing
at all) are presented here and implemented in recent versions
of the computer program TNT (Goloboff & Catalano
2016). Areas of further inquiry are, obviously, in the develop-
ment of faster algorithms to find optimal labellings and opti-
mal correspondences. Another standing problem is that
relabelling tree shapes always produces trees with a high
degree of similarity (as measured by the statistics normally
used to compare phylogenetic trees) and a proper rescaling
might help produce values that can be more easily intuited.
Comparing shapes may be used to gain some insight on

whether two phylogenies are likely to correspond to taxa
with a strong association, in the absence of observations
other than the shape of the phylogeny. The example of
gophers and lice analysed here, although slightly modified,
suggests that (for discordances between taxa and differences
in tree shape taken from a real example) the associations,

when inferred from the comparison of tree shapes, may be
quite reliable.
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