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ABSTRACT

Aim To develop and implement a method for phylogenetic biogeography that

is both event based and geographically explicit, that is, that uses the geographi-

cal ranges observed in the terminals instead of ‘predefined areas.’

Methods The method, GEM (Geographically explicit Event Model), attributes

vicariance, sympatry (range copying), point sympatry (subset sympatry) or

founder events, to the internal nodes of the tree. The cost of a reconstruction

is calculated as the event cost plus the amount of range changes along a

branch, and the best reconstruction is the combination of the event and range

assignments that minimize the cost.

Results The approach was implemented in a computer program, evs, using a

geographical data model (a raster) in which range changes were measured by

pixel counts. The program can be used in real-sized datasets, using an heuristic

to find reasonable solutions in short times.

Main conclusion GEM provides a method for direct analysis of joint data on

phylogeny and explicit distribution ranges, and proposes both the ancestral

ranges and the biogeographical events connected with cladogenesis.

Keywords

ancestral ranges, dispersal, event-based biogeography, extinction, founder

event, geographical data models, historical biogeography, phylogenetic bio-

geography, sympatry, vicariance

INTRODUCTION

The objective of phylogenetic biogeography (also known as

‘taxon history biogeography’ or ‘lineage geohistory’) is infer-

ring the evolution of the distribution range in a particular

clade given its phylogenetic relationships and geographical

ranges of its terminals (Brundin, 1966; Hennig, 1966; Hoven-

kamp, 1997, 2002; Ronquist, 1997; Ree et al., 2005). A major

breakthrough in the field was the development of event-

based methods, which include dispersal–vicariance analysis

(DIVA, Ronquist, 1997) and the Dispersal-Extinction-Clado-

genesis model (DEC, Ree et al., 2005). The event-based

methods have the advantage that they infer both the ances-

tral range and the biogeographical processes (event scenario)

to be at work during cladogenesis. Range changes along a

branch have either a given cost (DIVA) or probability

(DEC). The optimal reconstruction is found by searching the

ancestral range and cladogenetic event assignments that

minimize the total cost (DIVA) or maximize the likelihood

(DEC).

The simultaneous inference of the event scenario and the

ancestral range made both DIVA and DEC as the preferred

tool in phylogenetic biogeography studies. But these methods

have a critical drawback: they discard the explicit geographi-

cal range of the terminals analysed. Instead, they use a set of

‘areas’ or ‘units’ defined prior to the analysis (in this article I

will use ‘units’ to refer to this predefined areas, and ‘area’ or

‘geographical area’ to indicate a measure of a surface). How

to define these units is often far from clear, hampering test-

ing of alternatives or reuse of data. Because of computational

constraints (Ronquist, 1997; Ree et al., 2005; Ree & Smith,

2008; Ree & Sanmart�ın, 2009), the number of units allowed

by different programs is usually small (e.g. 8–12). As a con-

sequence, many of these units represent large geographical

areas, with the ranges of most terminals matching the units

poorly. This results in many allopatric taxa lumped into a
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single unit, whereas some other taxa, with relatively small

ranges, are scored as ‘widespread.’ As these methods treat

taxa on a single unit and on multiple units differently, the

resulting reconstruction may drastically change when the def-

inition of the units is slightly modified, even if the actual

geographical information (i.e. geographical area covered by a

range, and its location) remains exactly the same (Arias

et al., 2011).

Hovenkamp (1997, 2001, 2002) produced a second break-

through in the field when he proposed the use of explicit

geographical ranges. The first method that uses explicit geo-

graphical data was developed for phylogeography, in which

geographical locations of each haplotype are used as points

(a vector data model), to infer, as a point, the position of

ancestral haplotypes (Lemmon & Lemmon, 2008; Lemey

et al., 2010). This method has been extended to handle spe-

cies by modelling their geographical range as polygons, and

using these either as source for sampling of geographical

points (Nylinder et al., 2014) or directly as geographical

ranges (Quintero et al., 2015), but both methods model

ancestral ranges as a single point. Other methods use an

arbitrary grid (a raster data model) to represent spatial data,

then treating ranges in both terminal and internal nodes as

geographical areas. These methods are the spatial analysis of

vicariance (Arias et al., 2011; a method based on the ideas of

Hovenkamp, 1997, 2001) and the Dispersal-Extinction model

(DE, Landis et al., 2013). In the spatial analysis of vicariance,

the geographical range in an internal node is calculated as

the sum of the ranges of its descendants (OR assignment),

nodes without allopatric descendants have an extra cost and

the distribution of some taxa might be ignored (with a given

extra cost) in attempting to increase the number of nodes

with allopatric descendants. On the other hand, in DE each

descendant inherits a copy of its ancestor range, which is

modified by addition and deletion of individual pixels (grid

cells) along the branch.

With current methods, the cost to be paid for using expli-

cit geography is to discard multiple biogeographical events:

in phylogeographic methods and DE, only sympatry is

allowed at each internal node, whereas in the spatial analysis

of vicariance, nodes that cannot be interpreted as allopatric

are left unassigned (i.e. not associated with specific events)

and have an extra cost. While both Arias et al. (2011, p.

625) and Landis et al. (2013, p. 803) acknowledge that a

multiple event-based approach is desirable, they do not

attempt any solution.

Here I describe GEM (Geographically explicit Event

Model) that can be seen as an attempt to merge the ideas of

Hovenkamp (1997, 2001) and Ronquist (1997), as it is a

multiple event method that uses explicit geographical ranges.

THE GEOGRAPHICALLY EXPLICIT EVENT MODEL

As in other event-based methods, there are two different

kinds of processes modelled. First, how ranges are inherited

by descendants at the cladogenetic event, and second what

happened to a range along a lineage (Ronquist, 1997; Ree

et al., 2005).

In contrast with methods based on predefined areas, instead

of evaluating events on the basis of the number of units in the

ancestral range (Ronquist, 1997; Ree et al., 2005), in GEM any

event can be assigned to an internal node, without assuming a

particular size of the range assigned to the node. How each

descendant inherits a part of the geographical range is deter-

mined by the type of event assigned to the node. In the first

event, vicariance, each descendant inherits a mutually exclusive

part of the ancestor’s range (the only event considered in the

spatial analysis of vicariance, Arias et al., 2011) (Fig. 1a). In the

second event, sympatry (or range copying, Matzke, 2014), each

descendant inherits an identical copy of the ancestor’s range

(the only event considered in DE) (Fig. 1b). If one of the

descendants has a small subset of its ancestor’s range, the

assignment of sympatry will require an extensive extinction on

that descendant; in such cases it is better to model sympatry as

an event in which one descendant inherits a point inside the

ancestor’s range, whereas the other inherits the full ancestral

range; this event is called here point sympatry (called subset

sympatry by Matzke, 2014; used in predefined units in DEC)

(Fig. 1c). In the fourth event, founder event, one descendant

inherits the whole ancestor’s range, and the other descendant

starts as a founder population outside the ancestral range (used

in predefined units by Matzke, 2014) (Fig. 1d). Ideally, the cost

of each event is inversely related to the likelihood of that event.

Once an event and ancestral range are assigned to a tree

node, the range change along the lineage (i.e. the amount of

area gained or lost) is used as an extra cost. Different combi-

nations of events and ancestral ranges at each node will pro-

duce reconstructions with different costs; those combinations

with minimum cost are considered to be the best reconstruc-

tions. If event costs are assigned appropriately, this is also

the most likely explanation of the data.

GEM IMPLEMENTATION

Geographical data model

The geographical data model used to represent both terminal

and internal node ranges is a boolean raster grid in which a

pixel is assigned to a set (a range) if there is a presence in

the area covered by that pixel. The selection of the geogra-

phical data model is a matter of convenience: most opera-

tions just require simple pixel counts, unions and

intersections. Although the method could be implemented

with a vector data model using polygons or prim networks

to represent ranges, calculations of surface overlap, or other

geographical operations, should produce similar results but

with more complex calculations.

Incomplete ranges

Unless distribution range maps are used, ranges are expected

to be derived from point locations (i.e. georeferenced
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specimens). This means that most ranges are only partially

known, and increasing the raster resolution will increase the

gaps among observations. To take this problem into account

two pixel sets (rasters) are used for each node (either termi-

nal or internal): the first containing only pixels with

recorded observations, and the second using a simple filling

(or buffering) algorithm: a given number of pixels around

each pixel with an observation are set as filled. Note that if

the filling is set as zero (e.g. when using range maps), both

pixel sets will be identical. The main advantage of using a

filling is that it allows the use of small pixels without intro-

ducing extensive gaps, as well as removing the sensitivity of

point of origin of the raster (e.g. Aagesen et al., 2009).

Cost assignment functions

As the cost of a reconstruction along a lineage is the range

change, using a raster data model, this cost is expressed

using the number of pixel changes (i.e. pixels as units of

area). The main problem with any event-based method using

a high-resolution raster is the large size of the data. A

Sankoff-like optimization (Sankoff, 1975) would require a

three-dimensional cost matrix (Ronquist, 1997) as some

events, such as vicariance, depend on the range assignments

in both descendant nodes. Fortunately, an optimal ancestral

range is constrained by two rules (modified from Ronquist,

1997): (1) if an ancestor range includes a pixel, this pixel

should be included in at least one of the descendants; and

(2) if a pixel is shared by two descendants, this pixel should

be present in the ancestor’s range. Given these constraints,

each event assignment can be calculated directly with the

cost equations discussed below.

For notation, let Di be the pixel set of the range assigned

to node i, Df(i) be the filled pixel set of i, and |Di| and |Df(i)|
the number of pixels in each set, respectively, a be the ances-

tral node and b and c the descendant nodes.

Vicariance

The cost of vicariance assignment is given by the sum of the

overlap of each descendant against the other, plus the cost of

a vicariance event (V):

C ¼ jDb \ Df ðcÞj þ jDc \ Df ðbÞj þ V

(a) (b)

(c) (d)

Figure 1 A graphical cartoon of the events

implemented in GEM: (a) vicariance (the
pixel in dark grey has an extra cost: it is an

overlap); (b) sympatry (pixels in dark grey
have an extra cost: they are absent in one of

the descendants); (c) point sympatry and
(d) founder event. Symbols for events were

adapted from Page (1994) and Ronquist
(2003).

Journal of Biogeography
ª 2017 John Wiley & Sons Ltd

3

A geographically explicit event model



This function strongly penalizes the overlap because it

indicates that at least one descendant crossing a difficult to

cross barrier.

Sympatry

The cost of assigning sympatry is just the cost of gained and

lost pixels for each descendant relative to the ancestral distri-

bution, plus the cost of a sympatry event (S):

Cb ¼ ðjDbj � jDb \ Df ðaÞj
�þ ðjDaj � jDa \ Df ðbÞj

�

Cc ¼ ðjDcj � jDc \ Df ðaÞj
�þ ðjDaj � jDa \ Df ðcÞj

�

C ¼ Cb þ Cc þ S

Point sympatry

In point sympatry, the cost of the assignment is given by the

size of the range on the point descendant minus one (so one

pixel ranges will have no cost), plus the cost of point

sympatry event (P). If the point descendant is c, the cost is

as follows:

C ¼ ðjDcj þ jDcj � jDc \ Df ðaÞjÞ � 1Þ þ P
�

Also, in this function, the number of pixels outside the

ancestral range is added as extra cost. This allows a differen-

tial cost with a founder event (see below).

Founder event

In a founder event the cost of the assignment is given by the

size of the range of the founder descendant minus one (so

one pixel ranges will have no cost), plus the cost of a foun-

der event (J). If the founder descendant is c, the cost is as

follows:

C ¼ ðjDcj þ jDc \ Df ðaÞj
�� 1Þ þ J

Also, in this function, the cost of the pixels in overlap

with the ancestral range is added as extra cost because they

imply a backwards crossing over a barrier from the founder

to the main stock. This also allows a cost differentiation with

respect of point sympatry (see above).

Completing the model

Widespread ancestors

One of the most commonly observed problems with event-

based methods is their tendency to produce widespread ances-

tors (e.g. Ronquist, 1997; Ree et al., 2005). Proposed solutions

include limiting the size of the ancestral area (Ronquist, 1997;

Ree et al., 2005), or suggesting events that reduce the ancestral

range (e.g. Matzke, 2014). Instead of limiting the number of

units (as used by DIVA and DEC), the approach taken here is

to assign an additional cost based on size of the range assigned

to the node minus one (so a single pixel range will be zero),

modified by a weighting factor, Z. The extra cost for the range

size of a node n is as follows:

C ¼ ð Dnjj � 1Þ=Z
The user can decide the value of factor Z, the greater the

factor, the less influential the range size.

Event costs

As in GEM each event has a particular cost, this can be

used to emulate previously proposed methods. For example,

GEM-DE model (V=P=J=∞) emulates Landis et al.’s

(2013) approach, and GEM-VIP (P=J=∞, V=S) emulates

Arias et al.’s (2011). If a method limits a particular event

to a single unit event, then that event is taken as not mod-

elled geographically by the method, as it is dependent on

the scale. For example, GEM-DEC only allows point sympa-

try (V=S=J=∞) because DEC only accepts vicariance for a

single area, and GEM-DIVA only allows vicariance

(S=P=J=∞) because DIVA only accepts sympatry for a sin-

gle area.

In the computer implementation of GEM (see below), by

default all events have the same cost, that is, they are consid-

ered equally likely. Under that weighting schema, reconstruc-

tions are discriminated only by the amount of added or

deleted pixels in each lineage, that is, by the number of pix-

els that contradicts the event assignation. Of course, this cost

can be changed by the user of the program.

Searching for optimal reconstructions

Although the use of cost assignment functions solves the

problem of defining a three-dimensional cost matrix, it does

not solve the problem of the ambiguity of assignments.

Ambiguity consumes large amounts of computing resources

(both time and memory) in nearly equivalent reconstruc-

tions, with small changes in ancestral ranges, and no changes

at all in the events assigned to nodes. For example, suppose

that two descendants share 90 pixels and each one has 10

exclusive pixels. If sympatry is assigned, a lot of different

pixel assignments will be stored in memory, with the same

cost, that just differ in how the 20 extra pixels are assigned

to the ancestor (from 10 pixel extinctions to 10 pixel disper-

sals in each descendant).

Here I propose a heuristic approach that gives priority to

event assignments, with conservative assignments of ancestral

ranges. This approach is akin to the ‘fixed state optimization’

used in sequence data (Wheeler, 1999). Instead of lots of

range assignments in ancestors, just three choices are

attempted: the union of both descendant ranges (in vicari-

ance and sympatry), or the range of one of the descendants

(in sympatry, point sympatry, and founder event). That is,

for each node, just eight different combinations of an ances-

tral range plus event will be evaluated.
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Even with this simplification, searching for an exact solu-

tion is almost impossible, as eight alternative assignments

per node imply 8t�1 possible reconstructions for a tree with

t terminals. Therefore, I use the ‘flip algorithm,’ derived

from Page’s algorithm (Page, 1994), and previously imple-

mented in vip (Arias et al., 2011). This heuristic changes

the ancestral range plus event assignment a single node at

time and keeps those changes that reduce the cost, until no

modification can improve the cost of the reconstruction

(Table 1).

Although the method could be modified to include poly-

tomous nodes, that is not attempted here. Instead, when a

tree has a polytomous node, a conservative solution is used:

the union of all descendants is assigned, and neither an extra

cost, nor an event, is given to that node.

Computer implementation

The method presented here was implemented as a computer

program evs, written in go (http://www.golang.org) as a com-

mand line application. To aid visualization of results a simple

viewer was written in C using the gtk-2 library (http://www.

gtk.org). The source of evs and its viewer is available at http://

github.com/js-arias, and binaries for Linux and Windows are

available at http://www.lillo.org/phylogeny/GEM.

AN EMPIRICAL EXAMPLE

I apply the method proposed here to the ‘Euvireya’ clade of

the plant genus Rhododendron L. This group is distributed in

the Malesian archipelago, and their phylogenetic relation-

ships, distribution and biogeography have recently received

significant attention. Heads (2003) studied the group from a

panbiogeographical perspective. Brown et al. (2006) provide

explicit geographical data but, just like subsequent workers

(Webb & Ree, 2012; Landis et al., 2013), used predefined

units instead of the compiled geographical data.

Materials and methods

I use the phylogeny reported by Webb & Ree (2012) with

geographical data taken, by hand, from Brown et al.’s (2006)

maps with explicit sampling points for 62 species included in

the phylogeny. Data from R. sarcodes (geographical data not

given by Brown et al.) was taken from a range map in Heads

(2003; which is compatible with the predefined unit used by

Brown et al.). As Brown et al. do not report geographical

ranges of the outgroups, records from R. maddenii were

taken from GBIF (http://www.gbif.org) and R. lindleyi was

removed from the analysis as no records were available in

that database (so the tree used here has 64 terminals instead

of 65).

I ran the data with GEM as implemented in evs, using a

raster grid with pixels of 1°91° degrees, with a filling of 1.

The cost of the four cladogenetic events is set to one. To

penalize large ancestral ranges I use a Z = 10. The search

was made with the flipping algorithm applying 10 indepen-

dent runs each with 10,000 flip replicates (for a grand total

of 105 flip replicates). For comparison, a search using the

same parameters was performed without using the Z modifi-

cation (so ancestral ranges are not penalized by their size).

Several independent runs were also made, using the same

raster and search parameters, in which one or more kind of

events were not allowed.

For comparison I also ran the spatial analysis of vicariance

(Arias et al., 2011) with vip (available at: http://www.lillo.

org.ar/phylogeny/VIP), using the same raster parameters,

accepting an overlap up to 25%, using real values to measure

overlap, an elimination cost of 2 and 0 (i.e. maximizing dis-

junctions), and a search with 10,000 flip iterations. I also ran

the bayarea (available as source code at: http://github.com/

mlandis/bayarea), the Bayesian implementation of the DE

model (Landis et al., 2013) using the geographical coordi-

nates of the centre of each observed pixel. I made six inde-

pendent runs using the m3 model (which takes into account

the current distance between pixels), each using 1.6 9 108

generations, sampling parameters and histories every 1000

generations (default), and discarding the first 107 samples as

burn-in. Convergence of MCMC was verified with the Gel-

man diagnostic (Gelman & Rubin, 1992) as implemented in

the R package ‘coda’ (Plummer et al., 2006). Ancestral

ranges were taken from a single run (run 2, picked at

Table 1 The flipping algorithm. In this algorithm the initial

value of bestCost is calculated beforehand (e.g. with all nodes
vicariant). The eventsAssignment list contains the eight valid

event Assignments (see text). The method SetEvent changes the
event assigned to a node and returns the new cost of that

assignment.

Line Instruction

1 repeat := true

2 while repeat {
3 repeat = false

4 Randomize(nodeList)

5 for n := range nodeList {
6 Randomize(eventAssignment)

7 ce = n.event

8 for e := range eventAssignment {
9 if ce == e {
10 continue

11 }
12 cost := n.SetEvent(e)

13 if cost < bestCost {
14 bestCost = cost

15 repeat = true

16 break

17 }
18 }
19 if repeat {
20 break

21 }
22 n.SetEvent(ce)

23 }
24 }
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random), and only pixels with a posterior probability > 0.5

taken into account.

Datasets, batch files used for runs, logs and output of the

programs are available in Appendix S1 in Supporting

Information.

Results

The search with GEM found two different reconstructions

with a cost of 293.80. The reconstructions have the same event

assignment in all nodes. Overall numbers of events are 11

vicariance events, 22 sympatry events, six point sympatry

events, and 24 founder events (Table 2; Fig. 2). All ancestral

areas assignments are available in the Fig. S2.1 in Appendix S2.

The ancestor of the ‘Euvireya’ clade (see Fig. 2a;

Appendix S2) was reconstructed as widespread, present in

Southern Malay Peninsula, Borneo, Sulawesi and Seram, with

a founder event in one of its descendants to Sumatra and

Java. If this reconstruction is correct, then Euvireya never

‘crosses’ the Wallace line (contra Webb & Ree, 2012; Landis

et al., 2013), as the group is already present in both parts of

the Wallace line at the beginning of its history. Webb & Ree

(2012) estimated the age of the group as c. 55–45 Ma, so this

reconstruction is consistent with West Sulawesi attached to

Borneo at the beginning of the Cenozoic (Hall, 1996;

Lohman et al., 2011; Zahirovic et al., 2014). However, some

specific clades within the group have crossed the line at later

times. For the origin of Eastern Malesia clade, the recon-

struction found a founder event (Fig. 2c,d; see Appendix S2)

from Western and Middle Malesia (i.e. a crossing of the

Lydekker’s line), although this reconstruction is sensitive to

Z (the ancestral area size penalization; results not shown).

Comparisons

For this dataset, the search without penalizing the size of the

ancestral range produces more ambiguous results and larger

ancestral areas. When comparing ancestral ranges, the most

notable difference is that in some reconstructions, New Gui-

nea forms part of the ancestral range of Euvireya.

Using different combinations of event costs it is possible

to compare the full model to other models that have more

restricted sets of events (Table 2). All combinations that pro-

hibit one or more events are at least 5% more costly than

the reconstructions using all events. This is expected, given

the complex history of the region: all four events need to be

invoked at some part of the tree to obtain the best account

of current ranges.

When looking at the results of bayarea, when an ancestor

is ‘widespread’, it contains few, but widespread, pixels. For

example, the reconstruction of Euvireya has only five pixels:

one in Sumatra, one in Borneo, two in Java and one in New

Guinea. In cases in which two descendants are allopatric,

most of the times the reconstruction is a single pixel in the

middle of both descendant ranges, or one or two pixels in

one of each descendant ranges, or an ancestral range without

a pixel with a posterior larger than 0.5. When derived nodes

in GEM are inferred as sympatric, both evs and bayarea

produce nearly identical results. Most significant are the dif-

ferences in computing time: whereas all evs analyses with all

models took about 40–50 min, every single run of bayarea

takes about 40 h in the same machine.

In contrast, vip produces more widespread ancestral ranges

than evs. But as the main objective of vip is to find disjunc-

tions, it is worth to notice that most disjunctions are shared

between both results. In fact, in different evs results, most dis-

junctions (regardless of whether they are vicariance or founder

event) remain the same (Table 2), which implies that disjunc-

tions are a more stable result than ancestral ranges.

DISCUSSION

Predefined areas versus explicit geography

The event-based method presented here departs from previ-

ous methods such as DIVA or DEC in that it uses an explicit

Table 2 Results of GEM under different event and parameter

combinations, for the geographical dataset of Brown et al.
(2006) and the phylogeny of Webb & Ree (2012). The model

names reflect their most similar found in literature (see text).
Found indicates the number of found reconstructions. Columns

V, S, P and J indicates the number of events found of
vicariance, sympatry, point sympatry and founder event,

respectively, using a n-dash to indicate events prohibited under
that model. The cost column indicates the cost of the

reconstruction(s). All models, except for GEM-noZ, use a range
weight of 1/10 for the range size of each node, so GEM-noZ is

the only cost value not comparable with other cost values. The
ratio of the best solution against each model is indicated for

quick comparison of the effect of prohibiting one or more
events relatively to the full events used in GEM. Models are

sorted by its cost.

Model Found V S P J Cost Ratio

GEM-noZ 91 8–13 19–23 7–13 18–24 206.00 –
GEM 2 11 22 6 24 293.80 –
GEM-

VIP+J
1 12 24 – 27 311.88 0.942

GEM-No

vicariance

2 – 22–23 6–7 34 323.20 0.909

GEM-DE+J 1 – 26 – 37 337.80 0.870

GEM-No

founder

3 24–25 26–28 11–12 – 342.00 0.859

GEM-VIP 1 32 31 – – 366.00 0.803

GEM-No

sympatry

2 4 – 12 47 421.90 0.696

GEM-

DEC+J
5 – – 9–14 49–54 437.90 0.671

GEM-

DIVA+J
24 5 – – 58 455.70 0.645

GEM-DE 20 – 63 – – 481.70 0.610

GEM-DEC 48 – – 63 – 630.50 0.466

GEM-

DIVA

1 63 – – – 1111.70 0.264
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(a)

(d)

(e)

(f)

(b) (c)

Figure 2 The optimal reconstructions found for the geographical data, the distribution of Rhododendron from Brown et al. (2006) and

the phylogenetic tree of Webb & Ree (2012). Symbols for reconstruction are the same as used in the Fig. 1. (a–f) Maps with the
ancestral range reconstructions for the nodes indicated in the reconstruction. In maps with sympatry (b, d), point sympatry (f) and

founder event (a, c), the ancestral range is drawn in green (web version), whereas in vicariance (e) the ancestral range is the union of
descendant ranges the different colours provide a graphical aid to indicate the disjunction. In founder event (a, c) and point sympatry

(f), ‘founder’ and ‘point’ descendant are drawn in white squares. For all ancestral node reconstructions see the Appendix S2.
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representation of the geography of the terminals analysed

(i.e. a geographical data model). In this section I want to

expand some particular aspects of the method with an

emphasis on the geographical nature of the data.

Most recent discussion on phylogenetic biogeography is

centred around the development of statistical-based methods

(e.g. Lamm & Redelings, 2009; Ree & Sanmart�ın, 2009; Ron-

quist & Sanmart�ın, 2011; Wen et al., 2013). Whereas this

discussion is welcome, much of that discussion has the prob-

lem that the geographical context of the data is replaced by a

‘dispersal matrix’ (e.g. Ree et al., 2005; Ree & Sanmart�ın,

2009). As a result, the development of such methods usually

sacrifices geographical resolution (i.e. it requires fewer input

units) in favour of model parametrization, for example,

GeoSSE (Goldberg et al., 2011) and Shiba (Webb & Ree,

2012) have complex and detailed process models but allow

only a handful of units. Decreasing resolution has been justi-

fied both on computational grounds (Ree et al., 2005; Ree &

Smith, 2008; Ree & Sanmart�ın, 2009), but also with the argu-

ment that higher resolution reduces ‘information content’

(Ree & Sanmart�ın, 2009) by producing more gaps in the

dataset. But, instead of using predefined units for this second

case, a more fruitful approach is to use geographical methods

to reduce those sampling gaps. For example, Aagesen et al.

(2009) propose the use of buffering, which produces a filling

around an observed pixel (implemented here), and Landis

et al. (2013) propose the use of predictive niche models.

There is no clear definition of what a predefined unit is.

They are justified on several grounds, such as areas of ende-

mism (e.g. Nelson & Platnick, 1981; Parenti & Ebach, 2009;

Wiley & Lieberman, 2011), geological areas (e.g. Wiley &

Lieberman, 2011), hypothesis of ‘spatial homology’ (Mor-

rone, 2001), biotic elements (e.g. Hausdorf, 2002) or ‘by the

question being asked’ (Ree et al., 2005; Ree & Sanmart�ın,

2009; Ronquist & Sanmart�ın, 2011). Whatever the definition,

some methods make a distinction between ancestral ranges

with a single unit and ancestral ranges with multiple units,

without considering the geographical area, for example, in

original DIVA description (Ronquist, 1997) sympatry in

multiple areas is prohibited, and in original DEC description

both vicariance and sympatry in multiple areas is prohibited

(Ree et al., 2005). When such restriction is enforced, results

may depend more on the prior geographical partition than

on actual distribution data. For example, suppose a tree with

four terminals, all occupying the same area, a square of

100 km2, that is labelled A, so the input tree on DIVA will

be (A,(A,(A,A))) and the result will be sympatry on every

node, with A as ancestral range, and no dispersal. If you split

unit A in two units of equal size (say A1, and A2), the geo-

graphical content of the data does not change (it covers the

same geographical area: each terminal has a geographical

area of 100 km2, in the same spatial location), but the recon-

struction is different both in terms of the events (either

vicariance or sympatry, dispersals in most terminals) and in

terms of the ranges (in each node all possible ancestral range

combinations are possible).

There are several advantages to using explicit geographical

information. For example, it usually requires primary data.

As a consequence testing or reproducing results, and sharing,

curating, verifying and expanding the dataset, or even using

it for any other kind of analysis, will be easier and more

transparent: instead of a collection of terminals assigned to a

poorly defined units on nebulous grounds, the dataset will

be a list of actual sampling points (which might include

specimen locality data and museum catalogue numbers, as in

standard taxonomy revisions) or explicit range maps.

The use of explicit geographical ranges also removes some

problems that are a consequence of predefined areas rather

than a consequence of biogeographical methodology (Hoven-

kamp, 1997, 2002). Two clear cases are the ‘biogeographical

assumptions’ on widespread taxa (Nelson & Platnick, 1981),

of how to deal with overlapped terminal ranges (Axelius,

1991).

Disjunctions

The method presented here is a development of the spatial

analysis of vicariance (Arias et al., 2011). Although both

methods have somewhat different objectives (inference of

disjunctions vs. inference of events and ancestral ranges),

they use the same algorithmic mechanics. Their main differ-

ence is in how they score the range assignment to internal

nodes, which in turn may (obviously) change the optimal

assignment of each ancestor. As assignments in GEM take

more possible events into account, GEM allows a more

detailed explanation of the nature of the disjunction (vicari-

ance vs. founder event). Also, instead of ad hoc elimination

of some node ranges to increase the number of disjunctions,

explicit event and cost assignments in GEM allow an expla-

nation of observed ranges with a strong biogeographical

component. So, the method is, as defined by Hovenkamp

(1997, 2002), a full taxon history method.

Some authors (e.g. Ree et al., 2005; Lamm & Redelings,

2009; Kodandaramaiah, 2010) have argued that methods

based on disjunctions, such as DIVA (Ronquist, 1997) or the

spatial analysis of vicariance (Arias et al., 2011), favour or

overweight vicariance. At least for the dataset analysed here,

this criticism does not hold, as results of GEM (which does

not favour any event over others) are highly similar to those

using GEM-VIP (which only allows vicariance and dispersal),

at least in terms of disjunctions. Then both objectives, the

detection of disjunction and the assignment of ancestral

ranges, are better seen as two sides of the same coin: improv-

ing one will help improve the other (Hovenkamp, 2002).

Hovenkamp (1997, 2001, 2002) argued that instead of pre-

defined areas, it is better to use explicit ranges and focus on

disjunctions. This work (as Arias et al., 2011) is based on

Hovenkamp’s ideas, and shows that they can be imple-

mented in a formal way. Although it does not provide a

complete computational implementation of the Hovenkamp

analysis, it can be used as a starting point (see, e.g. Dom�ın-

guez et al., 2016).
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Ancestral range assignments

For the present implementation I made a very simplistic

assignment of ancestral ranges. This has the heuristic value

of speeding up reconstruction when the data are slightly

ambiguous. Such ambiguity is surely the most common situ-

ation in biogeography, in which even two species with very

similar ranges can somewhat differ, then the inference

machinery without such heuristics would easily stall in a

large number of almost identical solutions with the same

cost. I hope that future research will find algorithms that

allow faster examination of some configurations (maybe as a

refinement after an initial search using the algorithm pro-

posed here) that can increase the goodness of a particular set

of event assignments.

Despite its simplicity, the cost function (i.e. the optimality

criterion) does not depend on how the ancestral range is

assigned, so even if a better algorithm for assigning ancestral

ranges is eventually developed, it would be possible to make

the comparison between the results of the new algorithm

with respect to the ones found with the current heuristics.

Limitations of the method

Although the method presented here has the advantage of

being fully event based and geographically explicit, it has

some limitations that cannot yet be solved. When possible, I

will try to point to some potential solution, or how the

research might be directed to solve these open problems.

The method has the flexibility of any event cost schema,

but this leaves open the question of how to calculate these

costs. One of the advantages of the explicitly probabilistic

methods is that they provide a direct way to numerically

compare several cost schemas. In GEM such comparison can

only be done when comparing models in which one or more

events are prohibited and all other events have the same cost

(as is done in the empirical example). Fortunately, this is the

most usual test done in probability-based studies (e.g.

Matzke, 2014). As in general it seems preferable to take into

account all the events (instead of prohibiting them), it is

worth to note that a more critical test in the context of pre-

defined units should be a comparison of alternative unit

assignments (as suggested by Landis et al., 2013).

Other tests to estimate the effect of the event costs can be

performed, for example, using a range permutation (Page,

1994; Siddall, 2001; Ronquist, 2003): ranges in terminals are

permuted at random, and an analysis is done, and then com-

paring the score of the original data against the permuted

data. This is repeated several times, and cost schemas that

produce the most significant results will be preferred. In this

kind of study we are choosing the parameters that maximize

our chances of detecting historical signal in the data (Ron-

quist, 2003). As evs is relatively quick, this kind of tests (ei-

ther prohibiting events or a permutation test) can be easily

implemented. In fact procedures developed for DIVA (e.g.

Bayes-DIVA, Nylander et al., 2008), can be implemented in a

straightforward fashion to evs.

Another limitation of the method is that it does not

include branch length information. Although a simple imple-

mentation is added to the model in evs (in which branch

lengths are used to down weight the cost of dispersal and

extinction, and to up weight ancestral range size costs), this

tentative solution has a problem: it will penalize vicariance,

as this is the only event that adds a significant amount of

pixels to an ancestral distribution, without the benefit of

down weighting those pixels. Until a more appropriate pro-

posal of how branch lengths can be used in the context of

parsimony, it may be best that these data remain ignored. It

can be argued that while anagenetic dispersal and extinction

are not modelled with branch lengths, the most important

impact on distributions happens at speciation events (e.g.

vicariance, founder events), which is the main reason to look

for an event-based approach.

The current GEM definition does not include distances

(i.e. a factor for the length of dispersal). While this is an

important subject, and I am working on several potential

alternatives, I am not able to provide a solution in this

moment. If a researcher believes that an analysis with branch

lengths and/or distances is required she should consider

using a method such as DE (Landis et al., 2013), at the cost

of not using event assignments at nodes.

CONCLUDING REMARKS

GEM provides a tool for reconstruction of ancestral ranges

in a clade using explicit geographical ranges and a cost

schema for biogeographical events. GEM can be seen as a

part of a trend, started by Hovenkamp, of developing meth-

ods which explicitly incorporate the geographical informa-

tion of distribution ranges. While the mechanics of the

inference is important, so is the way in which the spatial

data is represented. I hope that the framework presented

here helps move the discussion of biogeographical methods

towards its geographical aspect.
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online version of this article:

Appendix S1 Input data and output logs for Rhodonden-

dron dataset.

Appendix S2 Optimal reconstructions for Rhodondendron

dataset.
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