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Abstract

In contrast to vertebrate immune systems, invertebrates lack an adaptive response and rely

solely on innate immunity in which antimicrobial peptides (AMPs) play an essential role.

Most of them are membrane active molecules that are typically unstructured in solution and

adopt secondary/tertiary structures upon binding to phospholipid bilayers. This work pres-

ents the first characterization of a constitutive AMP from the hemolymph of an Opiliones

order animal: the harvestman Acutisoma longipes. This peptide was named longipin. It pres-

ents 18 aminoacid residues (SGYLPGKEYVYKYKGKVF) and a positive net charge at neu-

tral pH. No similarity with other AMPs was observed. However, high sequence similarity with

heme-lipoproteins from ticks suggested that longipin might be a protein fragment. The syn-

thetic peptide showed enhanced antifungal activity against Candida guilliermondii and C.

tropicalis yeasts (MIC: 3.8–7.5 μM) and did not interfered with VERO cells line viability at

all concentrations tested (200–0.1 μM). This selectivity against microbial cells is related to

the highest affinity of longipin for anionic charged vesicles (POPG:POPC) compared to

zwitterionic ones (POPC), once microbial plasma membrane are generally more negatively

charged compared to mammalian cells membrane. Dye leakage from carboxyfluorescein-

loaded POPG:POPC vesicles suggested that longipin is a membrane active antimicrobial

peptide and FT-IR spectroscopy showed that the peptide chain is mainly unstructured in

solution or in the presence of POPC vesicles. However, upon binding to POPG:POPC vesi-

cles, the FT-IR spectrum showed bands related to β-sheet and amyloid-like fibril conforma-

tions in agreement with thioflavin-T binding assays, indicating that longipin is an amyloid

antimicrobial peptide.
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1 Introduction

The invertebrate immune system lacks a specific response against invading microorganisms

because it is unable to produce antibodies that can specifically recognize these pathogens. Dif-

ferent from the vertebrates, which possess an adaptive response, their defense mechanisms

against invading agents rely solely on the innate immunity [1].

Cellular and humoral reactions are part of invertebrate innate immunity and act in concert

to combat invading agents. Phagocytosis, which is performed by hemocytes, is part of the cel-

lular response and can directly eliminate microorganisms. The clotting cascade and the action

of antimicrobial peptides (AMPs) are part of the humoral response. In addition to avoiding

hemolymph leakage, clotting can physically trap microorganisms, thereby favoring the action

of antimicrobial molecules such as AMPs that are involved in direct microbial killing [2, 3].

Therefore, AMPs play an important role in invertebrate innate immunity.

The expression of AMPs in invertebrates can be either constitutive or induced after micro-

bial challenge [1]. An inducible mechanism is thought to have appeared later in evolution due

to the complexity of the microbial recognition machinery [4]. This observation is in agreement

with several works that have shown the presence of constitutive AMPs in primitive inverte-

brate groups (Mollusca [4], Merostomata [5] Aranae [6–8], Scorpiones [9], and Acari [10])

and inducible AMPs in holometabolous insects [11], which is a higher invertebrate group.

These works also suggest that the constitutive expression of AMPs is a synapormophy of class

Chelicerata, to which order Opiliones belongs. Thus, there is interest in characterizing AMPs

in different invertebrate groups to understand their evolutionary history.

AMPs are amphipathic molecules that generally present a positive net charge at neutral pH

and have sizes ranging from 9 to 100 residues [12, 13] that have been purified from virtually

every form of life [14]. They can be gene-encoded molecules, such as gomesin that is expressed

as a pro-peptide [15], or originate from protein cleavage, such as has been observed in shrimp

[16], ticks [17] and spiders [18]. These peptides can be grouped according to their physico-

chemical and structural characteristics [19] as well as their spectrum of activity.

Most AMPs are unstructured in solution but adopt secondary/tertiary structure elements

when bound to phospholipid membranes. This feature is closely related to their usual mode of

action: most AMPs are membrane active molecules. They can disrupt the phospholipid bilayer

by mechanisms that include the formation of transient pores that can cause the loss of intracel-

lular content and lead to microorganism death [12, 20]. Proposed mechanisms of action of

membrane active AMPs include: (i) formation of a “toroidal” pore, where an aggregate of pep-

tide chains inserts into the membrane and forms a pore with an internal region composed of

phospholipid polar heads and the hydrophilic side chains of the peptide; (ii) a “barrel stave”

pore, where the internal region of the pore is composed only of hydrophilic side chains; (iii)

the carpet mechanism, where a complete disruption of the membrane occurs in a detergent-

like manner [20] and (iv) the “leaky slit” mode, where the peptides are inserted perpendicularly

into the membrane in an amyloid-like fiber conformation with the hydrophobic residues fac-

ing the phospholipid tails and the hydrophilic residues forcing lipids to adopt a positive curva-

ture to form a slit [21].

Recently, the antimicrobial activity of amyloid peptides has been reviewed [22], and the exis-

tence of a new class of membrane active AMPs has been suggested. These peptides can adopt β-

like structures similar to Alzheimer disease’s β-amyloid protein upon biding to membranes.

Jang et al. [23] showed by atomic force microscopy and molecular dynamics simulation that

protegrin-1 (an antimicrobial peptide found in human leukocytes) small oligomers could form

channels in phospholipid membranes that were very similar to Alzheimer’s β-amyloid channels.
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Thus, these works point to the relationship between the pathogenesis of amyloid diseases and

the mode of action of antimicrobial peptides.

The appearance of AMP resistance is considered unlikely due to their mode of action. For

this reason, the development of new AMP-based drugs for the treatment of infectious diseases

has become an area of intense research [24]. However, several microbial strategies related to

AMP resistance have appeared [25] and should be considered for the development of new anti-

microbial drugs.

This is the first report on the purification, characterization and binding to lipid membranes

of an antimicrobial peptide from the hemolymph of an Opiliones order animal: the harvest-

man Acutisoma longipes [26]. We called this peptide longipin. Here, we show that it adopts an

amyloid-like fibril conformation upon binding to anionic vesicles and increases membrane

permeability. In addition to allowing the discovery of new molecules that have an alternative

mode of action compared to conventional antibiotics, the study of AMPs from different

groups of animals contributes to a wider understanding of the immunological system and the

origin of its mechanisms in evolutionary history.

2 Material and Methods

2.1 Animal Capture and Hemolymph Extraction

Acutisoma longipes harvestmen of both genders and at different stages of development were

collected in grottoes near “Pedra Gande” in Atibaia city (São Paulo, Brazil, 23˚10010.8@S 46˚

31040.0@W) under an IBAMA license (n˚ 11024–3). The animals were kept under aseptic con-

ditions for at least 10 days prior to hemolymph extraction.

Hemolymph was extracted from pre-chilled animals (-20˚C for 3 min) by puncturing the

fourth leg via coxae-trocanter articulation with an apyrogenic syringe. To avoid hemolymph

coagulation, the extraction was performed in the presence of sodium citrate buffer (0.45 M

NaCl, 0.1 M glucose, 30 mM trisodium citrate, 26 mM citric acid, and 10 mM EDTA; pH 4.2)

[6]. The total volume of hemolymph used in this work (1.5 ml) was extracted from approxi-

mately 150 animals.

2.2 Hemolymph Fractionation

Hemolymph extracted from unchallenged harvestmen in the presence of sodium citrate buffer

was centrifuged (800 × g for 10 min, 4˚C) and divided into its two major components: cell-free

plasma and hemocytes.

Plasma was resuspended in 15 ml of 0.05% trifluoroacetic acid (TFA), stirred on ice for

30 min, and centrifuged (16,000 × g for 30 min, 4˚C). The supernatant was concentrated in a

vacuum centrifuge and resuspended in 5 ml of 0.05% TFA. This plasma extract was directly

applied into three Sep-Pak1 Plus tC18 cartridges (Waters, USA) equilibrated with 0.05% TFA.

Three stepwise elutions with 5%, 40% and 80% ACN in 0.05% TFA were performed to frac-

tionate the plasma.

The material eluted with 40% ACN from the Sep-Pak was concentrated in a vacuum centri-

fuge, resuspended in 1 ml of 0.05% TFA and subjected to the first purification step by RP-HPLC

with a semi-preparative Vydac1 (Grace, USA) C18 column (5 μm, 250 × 10 mm). The elution

was performed in a 2–60% gradient of ACN/0.05% TFA in H2O/0.05% TFA over 120 min with a

1.5 ml/min flow rate. The absorbance was monitored at 225 nm on a UFLC Prominence device

(Shimadzu, Japan). The resultant fractions were collected manually and used in the antimicrobial

activity assay.

Active fractions from the first step were subjected to a second purification step by RP-

HPLC with a Vydac1 C18 (5 μm, 250 × 4.6 mm) analytical column. Optimized ACN/0.05%
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TFA gradients in H2O/0.05% TFA were used over 60 min with a 1 ml/min flow rate. All frac-

tions were collected manually and evaluated in the microbial growth inhibition assay.

2.3 Microorganisms

Escherichia coli SBS 363 and Micrococcus luteus A270 were obtained from the Pasteur Institute

collection [6]. The Candida albicans MDM8 strain was donated by Instituto de Ciências Bio-

médicas from Universidade de São Paulo. The E. coli D31 and Enterobacter cloacae β12 strains

were kindly donated by Dr. Hans G. Boman group from University of Stockholm. The M.

luteus BR2 strain was donated by Faculdade de Ciências Farmacêuticas from Universidade de

São Paulo. The yeast strains from clinical isolates deposited in the Oswald Cruz Institute col-

lection were kindly provided by Prof. Mirian Hayashi (Pharmacology Department–Federal

University of São Paulo): Candida albicans IOC4558, Candida tropicalis IOC4560 and Candida
guilliermondii IOC4557. Staphylococcus aureus ATCC29213, Staphylococcus epidermidis
ATCC12228, Pseudomonas aeruginosa ATCC27853, Serratia marcescens ATCC4112 and Cla-
dosporium herbarum ATCC 26362 were acquired from the American Type Culture Collection

(http://www.atcc.org). Aspergillus niger was isolated from bread. Paecilomyces farinosus
IBCB251 is an entomopathogenic filamentous fungus obtained from the “Oldemar Cardim

Abreu” collection of the Instituto Biológico (IB-CB).

2.4 Bioassays

2.4.1 Microbial growth inhibition assays. HPLC fractions were concentrated under a

vacuum centrifuge and resuspended in 50–100 μL of deionized water. Antimicrobial activity

from the HPLC fractions was evaluated against M. luteus A270 in a liquid growth inhibition

assay previously described by Bulet et al. [27] in 96-well plates. Briefly, 10 μL of the sample was

added to 90 μL of bacteria in poor peptone broth (PB: peptone 1% and NaCl 86 mM, pH 7.4)

in mid-log phase (OD600nm� 0.6). To evaluate microbial growth, the OD595nm was measured

on a Victor 3 (Applied Biosystems, USA) microplate reader after 18 hours under shaking at

30˚C.

Minimal inhibitory concentration (MIC) of the synthetic peptide was evaluated under poor

broth conditions using PB or Poor Dextrose Broth (PDB: 1.2% potato dextrose, pH 5) for bac-

teria or fungi, respectively. Briefly, the bacteria (~105 CFU/ml) and the yeasts or filamentous

fungi (~103 CFU/ml) were inoculated in 90 μl of broth with 10 μl of water (negative control)

or a stock solution of the synthetic peptide in serial two-fold dilutions starting from 120 μM as

the highest final concentration. To evaluate microbial growth, bacteria or fungi plates were

incubated at 30˚C for 18 or 48 hours, respectively. MICs values are expressed as a range [A]–

[B], where B was the highest peptide concentration at which microbial growth was similar to

negative controls and A was the lowest concentration that visually inhibited the growth. MICs

values of streptomycin, a conventional antimycobacterial drug, were also obtained in a serial

two-fold dilutions method starting from 2000 μg/ml concentration or used at 2000 μg/ml con-

centration as a positive control for inhibition of microbial growth.

2.4.2 MTT cytotoxicity assay. Vero cells were cultured on L-15 medium, supplemented

with 10% Fetal Bovine Serum (FBS) at 37˚C in a humidified atmosphere containing 5% CO2.

The cells were cultured in T-25 flask had a 25 cm2 growth area.

Vero cells were seeded in 96-well F-bottom plates at a density of 6 x 10 cells/well. After con-

fluent growth by 70–80% of the cell carpet, the culture medium was removed and the treat-

ments began with the sample. The control wells received 100 μl of culture medium with 0% or

10% FBS. For the treated wells, 20 μl of longipin 2 mM solution was diluted in 180 μl of L-15

medium and a serial two-fold dilution was conducted to give a final volume of 100 μl per well
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at a highest longipin final concentration of 200 μM. After 24 hours of treatment, the supernatant

was carefully removed and added 20 μl of MTT (5 mg/ml on L-15 medium) to each well and

incubated 3 hours at 37˚C. The formazan crystals were solubilized by the addition of 100 μl per

well of DMSO and the absorbance was measured at a 540 nm wavelength. The average reading of

control was regarded as 100% cell viability being compared with the average for each treatment.

2.5 Mass spectrometry

Matrix-assisted laser desorption ionization mass spectrometry (MALDI-ToF-MS) was per-

formed in an Ettan MALDI-ToF/Pro spectrometer (Amersham Biosciences) operating in

reflectron mode. A total of 0.35 μL of the sample was mixed with the same volume of the

matrix (saturated solution of α-cyan-hydroxycinnamic acid in ACN/H2O in a 1:1 ratio) and

allowed to dry prior to the analysis.

Electrospray ionization mass spectrometry (ESI-MS) was performed on a Surveyor MSQ

Plus (Thermo Fisher Scientific) spectrometer coupled to a Surveyor HPLC. The system was

previously equilibrated with ACN/H2O (1:1) and 0.1% formic acid at a 0.5 ml/min flow rate

prior to sample injection (10 μL). The electrospray temperature was set to 350˚C and the cone

voltage to 3 kV. Scans were recorded at a 2 s-1 rate. The final spectrum was obtained using the

Xcalibur 2.0.7 software (Thermo Fisher Scientific), and m/z value deconvolution was per-

formed with the MagTran 1.02 software [28].

LC-Q-ToF-MS/MS was performed with a Q-ToF Ultima™ API (Micromass) spectrometer

coupled to a nanoAcquity UPLC (Waters) system. Samples (4.5 μL) loaded into the HSS T3

(1.8 μm, 150 μm × 100 mm) column (Waters) were eluted in a 5–80% gradient of ACN/0.1%

formic acid for 30 min with a 1.1 μL/min flow rate. The source temperature was set to 70˚C

and the cone voltage to 50 eV. During MS scan acquisition, the collision energy (CE) was set

to 10; for ion fragmentation, the CE were based on a previous work from Mouls et al. [29].

2.6 Peptide Sequencing

2.6.1 Reduction and alkylation. An 8 μL aliquot of the native peptide from the HPLC frac-

tion was dried under a vacuum centrifuge and resuspended in 20 μL of 400 mM NH4HCO3 and

8 M urea. A total of 5 μL of 45 mM DTT was added prior to incubation at 50˚C for 15 min.

After chilling, 5 μL of 100 mM iodoacetamide was added, and the solution was kept for 15 min

at room temperature protected from light. The product was subjected to desalting using Zip

Tip1 C18 (Applied Biosystems, USA) columns prior to MALDI-ToF-MS analysis.

2.6.2 Acetylation. Chemical modification of the Lys side chain was performed with an

acetylation protocol [30] to differentiate Lys residues (128.09 Da) from Gln residues (128.03

Da) in the CID spectra. Briefly, 5 μL of the native peptide from the HPLC fraction was dried

under a vacuum centrifuge and resuspended in 20 μL of 50 mM NH4HCO3 and 50 μL acetic

anhydride/methanol (1:3). This solution was incubated for one hour at room temperature

prior to enzymatic digestion.

2.6.3 Enzymatic digestion. An 8 μL aliquot of the peptide from analytical HPLC or the

sample subjected to the acetylation protocol (section 2.6.2) was lyophilized and resuspended in

100 μL of 100 mM NH4HCO3 (pH 7.8). A total of 50 ng of the endoprotease Glu-C V8 (Sigma-

Aldrich) was added, and the solution was kept for 8 h at 37˚C prior to the addition of 100 μL

of 0.01% TFA to stop the reaction. The samples were lyophilized, resuspended in 40 μL of

0.05% TFA and subjected to desalting using Zip Tip1 C18 columns prior to LC-Q-ToF-MS/

MS analysis.

2.6.4 ‘De novo’ peptide sequencing. Collision-induced dissociation (CID) spectra from

peptides obtained by LC-Q-ToF-MS/MS were processed using the MaxEnt3 tool (MassLynx

Amyloid Antimicrobial Peptide and Vesicles Binding
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4.1 software, Waters). The -y and -b ions series [31] were manually interpreted and marked in

the spectra.

2.6.5 N-terminal sequencing. To differentiate the Ile/Leu residues, the peptide (5 μL from

the HPLC peptide fraction) was subjected to Edman degradation using a PPSq 21 Automated

Protein Sequencer (Shimadzu Co, Japan).

2.7 Peptide synthesis

The peptide was manually synthesized by standard Fmoc solid phase peptide synthesis (SPPS)

technology [32] using 50 mg of Fmoc-Phe-TGA resin (Novabiochem Inc.) with a 0.24 mmol/g

substitution rate.

Fmoc deprotections were performed with a dimethylformamide (DMF)/morfolin/1,8-dia-

zabicycloundec-7-ene (DBU) (49:49:2) solution (2 × 7 min). Fmoc-amino acids (5 equivalents

with respect to the peptide-resin) were coupled to the growing sequence in 460 μL of DMF/N-

methylformamide (NMF) (67:13) with TBTU (40 mg) solution for 1.5 hours. The couplings

were evaluated by the Kaiser test [33] and/or MALDI-ToF-MS analysis.

Cleavage from the resin and the removal of side chain-protecting groups were simulta-

neously performed with 1 ml of TFA/phenol/H2O/ethanedithiol (EDT) (82.5:5:5:5:2.5) for

12 hours; then, the sample was dried under an N2 steam. Crude peptides were precipitated in

chilled diethyl ether, resuspended in DMF and purified by preparative RP-HPLC with a Shim-

pack PREP-ODS column (5 μm, 20 × 250 mm). The resultant fractions were analyzed by

MALDI-ToF-MS to evaluate their homogeneity.

Final peptide homogeneity/purity was determined by RP-HPLC using a Shim-pack

VP-ODS column (5 μm, 4.6 × 250 mm) and by ESI-MS. The CID spectra of synthetic and

native peptides were compared using the mMass 3.9 software [34].

2.8 Large unilamellar vesicle preparation

Large unilamellar vesicles (LUVs) were prepared with 1-palmitoyl-2-oleoyl-sn-glycero-

3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) or

POPG:POPC (1:1 molar ratio) phospholipids purchased from Avanti1 Polar Lipids (Alabas-

ter, USA). Lipids were dissolved in chloroform/methanol (2:1, v/v), dried under N2 steam and

kept overnight under vacuum. Then, the samples were resuspended in H2O with the desired

NaCl concentration. LUVs were prepared by five freeze-thaw cycles (liquid nitrogen and

40˚C) and extruded through 100 nm pore polycarbonate filters [35] with an extrusion device

from Avestin (Ottawa, Canada).

To prepare LUVs for thioflavin-T binding assay, lipids were dissolved in chloroform, dried

under N2 steam and kept for 2 h under vacuum. Lipids were then resuspended in 30 mM

HEPES buffer pH 7.4 and extruded at least 11 times through 100 nm pore polycarbonate filters

with an extrusion device from Avanti1 Polar Lipids.

2.9 Filtration binding assay

Samples containing the peptide and peptide-LUV in a 1:50 peptide/lipid (P/L) molar ratio in

10 mM NaCl were incubated for 30 min at room temperature and loaded into the upper cham-

ber of 100 kDa Amicon Ultra 0.5 ml centrifugal devices (Millipore, EUA). Centrifugation was

performed at 4000 × g for 10 min at room temperature, and the peptide was detected by Tyr

fluorescence (λEX = 275 nm / λEM = 302 nm) in the filtered solution in a SLM Aminco 4800C

(Jovin Yvon Horiba, Japan) fluorometer.
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2.10 Titration assay

Titrations of 20 μM peptide solutions in four different NaCl concentrations (1, 10, 50 and

200 mM) with LUVs were conducted under increased P/L molar ratios (1:0, 1:1, 1:5, 1:10, 1:20,

1:50 and 1:100) by monitoring the fluorescence of the peptide (λEX = 275 nm / λEM = 302 nm).

The results were expressed by the F/F0 ratio, where F and F0 are arbitrary values of fluores-

cence in the presence or absence of vesicles, respectively. Exponential adjustment of the data

was used to evaluate the apparent dissociation constant (Kd) of the peptide-vesicle binding

equilibrium.

2.11 Dye leakage assay

Carboxyfluorescein (CF)-loaded vesicles were extruded in 80 mM CF and then subjected to

size exclusion filtration to eliminate free carboxyfluorescein molecules in a manually packed

Sephadex G-75 resin column equilibrated with 80 mM NaCl. The bee venom antimicrobial

peptide melittin (Sigma-Aldrich) was used as a positive control of a membrane active peptide.

The fluorescence CF-loaded vesicles samples (160 μl) were monitored (λEX = 474 nm / λEM =

518 nm) in a SLM Aminco 4800C (Jovin Yvon Horiba, Japan) fluorometer during 3000 s. After

200 s, 40 μl of longipin or melittin solution were added to achieve a 20 μM peptide concentra-

tion in the sample. The same volume of buffer was added for a negative control assay. Triton

X-100 was added at a 0.1% (v/v) final concentration after 2500 s to achieve the maximum fluo-

rescence intensity.

2.12 FT-IR spectroscopy

Fourier-transformed infrared spectra (FT-IR) were acquired in a Nicolet Nexus (Thermo,

USA) spectrometer equipped with a holder for liquid samples in CaF2 windows and 75 μm

spacers. The spectrometer was purged with dried N2 for 1 h prior to spectra acquisition, and

the sample holder temperature was kept at 25˚C.

Samples were prepared with 0.6 mg of peptide resuspended in 70 μl of 10 mM NaCl in deu-

terium oxide (D2O). For FT-IR spectroscopy, we used multilamellar vesicles. Lipids were dried

from chloroform/methanol (2:1) and resuspended with a solution containing the peptide and

10 mM NaCl in D2O. A total of 100 scans were collected and averaged from the samples and

backgrounds. The resolution was 2 cm-1. The spectra of pure buffer were subtracted from the

samples. The resulting spectra were Fourier self-deconvolved using a bandwidth of 18 cm-1

and a narrowing factor k = 2. The position of the component bands was obtained by the sec-

ond derivative of the deconvoluted spectra. The proportion of the component bands was

obtained by fitting to the original (not deconvoluted) spectra according to the procedures

described by Arrond and Goòi [36] and Nolan et al. [37]. Assignment of secondary structures

was performed according to Byler and Susi [38] and Chiti et al. [39].

2.13 Thioflavin-T binding assay

To monitor thioflavin-T (ThT) fluorescence intensity change, a emission spectra (λEX = 440 nm)

of a 10 μM ThT solution in 30 mM HEPES buffer (pH 7) was initially acquired. Then, a stock

solution of peptide (600 μM) and/or POPG:POPC (1:1 molar ratio) or POPC LUVs (3 mM lipid)

was added to a final concentration of 4 and 80 μM, respectively, to obtain a final 1:20 peptide:

lipid molar ratio. Emission spectra were then acquired after incubation for 1, 2, 3, 4, 5, 7, 10, 15,

20 and 30 min at room temperature. ThT fluorescence was normalized at the maximum emission

intensity (486 nm) over initial values.
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3 Results

3.1 Peptide purification

The material from the plasma extract eluted with 40% ACN in the Sep-Pak cartridge was sub-

jected to RP-HPLC on a semi-preparative column (Fig 1). All fractions were dried, resus-

pended in water and used in the antimicrobial growth inhibition assay (section 2.4) against the

Gram-positive bacteria M. luteus A270. Seven of these fractions showed anti-M. luteus activity

(P1-P7; Fig 1).

All active fractions obtained from plasma were subjected to a second purification step by

RP-HPLC under optimized ACN gradients. The fractions with antimicrobial activity were

revaluated against M. luteus. Each chromatography resulted in at least one active fraction, and

most of them presented MALDI-ToF/MS spectra with m/z values between 1,000 and 10,000

Da (data not shown).

Among these fractions, P5a (Fig 2A), obtained after a second purification step of P5, was

the only fraction that presented a single peptide (2.1 kDa) by MS analysis. Therefore, we

assumed that this peptide was responsible for the anti-M. luteus activity and aimed to elucidate

its primary structure. The MALDI-ToF spectrum showed two m/z values with mono-charged

isotopic patterns (Fig 2B inserted) that differed by 22 Da, which indicated the presence of a

2124.9 Da protonated peptide ([M+H]+ = 2125.9 Da) and its sodium adduct charged form

([M+Na]+ = 2147.9 Da).

3.2 “De novo” sequencing

After reduction and alkylation P5a fraction peptide, no mass increment was observed in the

2.1 kDa peptide (data not shown), suggesting the absence of Cys residues.

The primary structure of this peptide was deduced from the processed CID spectrum of the

4+ ion ([M+4H]4+, m/z 532.27) (Fig 3). All of the -y (blue) and seven -b (red) fragments were

marked on the top of the spectrum, revealing a peptide composed of 18 amino acid residues

(SGYI/LPGK/QEYVYK/QYK/QGK/QVF). The differentiation of the isobaric residues Ile and

Fig 1. First HPLC step purification of harvestmen plasma. Antimicrobial fractions obtained from first step

purification by RP-HPLC of the fraction from harvestmen plasma eluted with 40% ACN from a Sep-Pak

cartridge. The chromatography was performed in a semi-preparative Vydac C18 (5 μm, 250 × 10 mm) column

with a linear gradient from 20% to 80% of ACN/0.05% TFA in H2O/0.05% TFA for 120 min at a 1.5 ml/min flow

rate. Arrows indicate the fractions that showed anti-M. luteus activity. Abs was monitored at 225 nm.

doi:10.1371/journal.pone.0167953.g001
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Leu and between residues with similar masses (Lys and Gln) could not be achieved by this

methodology. The presence of Ser, Pro, Val, Ile/Leu, Phe and Tyr immonium ions and Lys/

Gln related ions (data not shown) [40] was in agreement with the deduced sequence. In the

CID spectra, we could also observe several internal ion fragments (
p

), most of which had an

N-terminal Pro residue because their N-terminal peptide bonds has a high tendency to break

upon CID mass spectrometry analysis [41].

Differentiation between Lys and Gln residues was achieved after chemical modification of

the peptide by an acetylation protocol (42 Da mass increment in the Lys side chain amino

group and its free N-terminus), followed by enzymatic cleavage with the endoprotease Glu-C.

Due to the presence of one Glu residue in the primary sequence, two digestion fragments with

933.18 Da and 1419.6 Da were observed by ESI-MS (Figure A in S1 File). MS/MS “de novo”

sequencing of the 933 Da fragment (Figure B in S1 File) revealed that this was the N-terminal

fragment modified by two acetyl groups (849+2×42 = 933 Da): the N-terminal Ser and the Lys

Fig 2. Second step purification and MALDI-ToF analysis of the P5 fraction. (A) RP-HPLC was

performed with an analytical Vydac C18 (5 μm, 250 × 4.6 mm) column with an optimized linear gradient from

18% to 28% ACN/TFA 0.05% in H2O/TFA 0.05% for 60 min at a 1.0 ml/min flow rate. Fraction P5a showed

anti-M. luteus activity. (B) MALDI-ToF spectrum of fraction P5a showing its homogeneity. The single detected

peptide was charged with a proton ([M+H]+) at m/z 2124.9 and with a sodium adduct ([M+Na]+) at m/z 2147.9.

The inset presents the details of the isotopic patterns of these m/z values.

doi:10.1371/journal.pone.0167953.g002
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side chain amino group (ACSGYI/LPGKACE). The 1419 Da fragment contained the C-terminus

of the peptide with three acetyl modifications (1293+3×42 = 1419 Da) in Lys residues (YVYKAC

YKACGKACVF) (Figure B in S1 File). An ammonia neutral loss from the acetyl-lysine immonium

ion (KAC-NH3) was detected at m/z 126 [42] in the low mass regions of both spectra (Figure B

in S1 File). These results showed the presence of four Lys and no Gln residues in the primary

sequence of this peptide.

The partial primary sequence determined by Edman degradation (SGYLPGK) was in agree-

ment with the sequence deduced from the MS/MS spectra. Moreover, it showed a Leu residue

at the fourth position.

This peptide, composed of 18 residues (SGYLPGKEYVYKYKGKVF), was named longipin. It

is positively charged (+3) at neutral pH and presented high pI value (9.52). Longipin primary

sequence showed no similarity with other AMPs. However, the first 15 residues showed high simi-

larity with heme-lipoproteins from Dermacentor variabilis and Amblyomma americanum ticks

(Fig 4).

Fig 3. “De novo” sequencing by Q-ToF-MS/MS of the peptide from the P5a fraction. The CID spectrum

from the 4+ ion ([M+4H]4+, m/z 532.27) was acquired under a 20 V potential in the collision cell. The original

spectrum was processed with the MaxEnt3 tool (MassLynx 4.1) to convert the multi-charged ions into mono-

charged ions. The -y and -b fragments are marked on top of the figure in red and blue, respectively. Several

internal fragments and their sequences (⋆) are also marked on the spectrum. Lys and Gln differentiation was

not achieved because the equipment mass accuracy (±0.03 Da) was in the same range of the mass

difference (�0.03 Da) of these residues. Differentiation between Leu and Ile is not possible through this

methodology because they are isobaric residues (113.08 Da).

doi:10.1371/journal.pone.0167953.g003

Fig 4. Sequence similarities between longipin and heme-lipoproteins from the ticks Amblyomma americanum (GenBank: ABK40086.2)

and Dermacentor variabilis (GenBank: ABD83654.1).

doi:10.1371/journal.pone.0167953.g004
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3.3 Synthetic longipin

Homogeneity of synthetic longipin was determined by relative peak area obtained after an analyt-

ical chromatography. The major peak was collected and analyzed by ESI-MS. Deconvolution of

the m/z values from the spectrum showed the expected average mass of longipin (2127.5 Da).

Ions from the K+ adduct (2166.6 Da) were also detected. The synthetic peptide purity was around

90% (Figure C in S1 File).

The similarity between the synthetic (green) and native (blue) longipin CID spectra (Figure D

in S1 File), with the exception of the intensity of the ions at m/z 1593.8 and the immonium ions

in the low m/z region, confirmed the deduced sequence from MS/MS spectrum.

3.4 Longipin activity spectrum

Synthetic longipin presented antimicrobial activity against Gram-positive (M. luteus) and

Gram-negative (Pseudomonas aeruginosa and Serratia marcescens) bacteria and Candida sp.

yeasts (C. albicans, C. tropicalis and C. guilliermondii) (Table 1). The peptide did not show

activity against the filamentous fungi evaluated. All minimal inhibitory concentration (MIC)

intervals were in the μM range and increased activity was obtained against C. tropicalis and C.

guilliermondii yeasts (MIC: 3.8–7.5 μM). Streptomycin at 2000 μg/ml, used as a positive con-

trol, completely inhibited the growth of all microorganisms. MIC ranges for this antimycobac-

terial drug were also determined (Table A in S1 File).

Mammalian cells viability was evaluated by MTT assay. Longipin did not interfered with

VERO cells viability after 24 h treatment at different peptide concentrations (200–0.1 μM

range) (Figure E in S1 File).

Table 1. Spectrum of activity and MIC values of synthetic longipin.

Microorganisms MIC (μM)

- Gram-positive bacteria

Staphylococcus aureus ATCC29213 ND

Staphylococcus epidermidis ATCC12228 ND

Micrococcus luteus BR2 ND

Micrococcus luteus A270 60–120 (126–252 μg/ml)

- Gram-negative bacteria

Pseudomonas aeruginosa ATCC27853 60–120 (126–252 μg/ml)

Escherichia coli D31 ND

Escherichia coli SBS363 ND

Serratia marcescens ATCC4112 60–120 (126–252 μg/ml)

Enterobacter cloacae β12 ND

- yeasts

Candida albicans MDM8 15–30 (31.5–63 μg/ml)

Candida albicans IOC4558 7.5–15 (15.8–31.5 μg/ml)

Candida tropicalis IOC4560 3.8–7.5 (7.9–15.8 μg/ml)

Candida guilliermondii IOC4557 3.8–7.5 (7.9–15.8 μg/ml)

- filamentous fungi

Aspergillus niger ND

Cladosporium herbarum ATCC26362 ND

Paecilomyces farinosus IBCB251 ND

ND- not detected at the highest concentration tested (120 μM).

doi:10.1371/journal.pone.0167953.t001
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3.5 Interaction with phospholipid vesicles

The interaction of longipin with LUVs was initially evaluated with the filtration binding assay.

This assay showed preferential binding to anionic POPG vesicles (Fig 5A), indicating that elec-

trostatic forces between the peptide and negatively charged vesicles might drive this interac-

tion. In agreement with this result, titration experiments showed that the intrinsic

fluorescence of longipin increased only upon the addition of negatively charged LUVs (POPG

or POPG:POPC; Fig 5B). The electrostatic binding force dependence was also verified through

titration with POPG:POPC vesicles in solutions with different NaCl concentrations (Fig 5C).

Dissociation constants (Kd) increased with the ionic strength, showing that the peptide-LUV

affinity decreased with the shielding of charges by Na+ and Cl- ions in solution.

FT-IR spectroscopy was used to evaluate structural changes in longipin upon binding to

multilamelar vesicles (MLVs). The amide I’ region (1600–1700 cm-1) reports the stretching fre-

quencies of carbonyl groups, which are mainly associated with backbone conformations [38].

Longipin chain was mainly disordered in solution or in the presence of zwitterionic POPC

vesicles (Fig 6; D2O and POPC) according to the observed maximum at 1643 cm-1 in the

amide I’ region of the FT-IR spectra. However, in the presence of anionic mixed POPG:POPC

(1:1 molar ratio) vesicles, the spectrum showed a maximum centered at 1613 cm-1 and an

increased contribution of 1683 cm-1 band (Fig 6; POPG:POPC). This spectrum is characteris-

tic of intermolecular aggregates in amyloid fibrils, which are structured in a β-sheet-like con-

formation called cross-β [39, 43].

Peaks assigned in the deconvoluted spectra (Figure F in S1 File) were used to estimate the

secondary structure contents under each condition (in solution or in the presence of MLVs)

after fitting the original FT-IR spectra [36]. The fitted spectra (Fig 6) confirmed that longipin

was mainly disordered in solution (73%) and in the presence of POPC MLVs (79%), but

Fig 5. Binding of longipin to lipid membranes. (A) Filtration binding assay of longipin binding to LUVs

composed of POPC or POPG. The peptide was detected in the filtrate by monitoring the fluorescence of Tyr

residues (λEX = 275 nm / λEM = 302 nm). (B) Titration of 20 μM longipin with LUVs composed of POPG, POPC

and POPG:POPC (1:1 molar ratio). (C) Titrations at different NaCl concentrations in the 20 μM longipin

solution with POPG:POPC LUVs. Dissociation constants (Kd) were determined for each condition.

doi:10.1371/journal.pone.0167953.g005
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considerable β-turn contents and smaller contributions of β-sheet and amyloid aggregates

were also present under these conditions (Table 2), indicating the presence of structured

regions of the peptide.

Longipin became structured upon binding to anionic POPG:POPC MLVs, where amide I’

bands characteristic of conformational disorder (1642–1646 cm-1) were absent. Higher con-

tents of β-turn (30%), β-sheet (50%) and amyloid aggregates (20%) compared to D2O

(Table 2) showed that longipin binding to anionic vesicles was mediated by a disorder-to-

order transition of the peptide chain.

ThT is a potent fluorescent marker of amyloid fibrils that preferentially binds to side chain

channels formed along the principal axis of fibrils [44]. Upon fibrils binding. ThT fluorescence

is enhanced and thus it became an important dye for the detection of amyloid and amyloid-

like structures.

Fluorescence intensity of ThT at 486 nm of longipin in solution (blue-dotted line; Fig 7) or

in the presence of zwitterionic POPC vesicles (red-dotted line; Fig 7) did not significantly

increase over time. However, an evident ThT fluorescence enhancement was observed when

longipin was bounded to negatively charged POPG:POPC (1:1 molar ratio) vesicles, reaching

equilibrium values after ~15 min (black-dotted line; Fig 7) and indicating that longipin bind-

ing to negatively charged vesicles in accompanied by peptide chains folding into amyloid-like

conformations. A modest raise in ThT fluorescence intensity was also observed in a solution of

Fig 6. Peak fitting of amide I’ region FT-IR spectra of longipin. Amide I’ band of original (not deconvoluted) FT-IR

spectra (continuous lines) and their fitted bands (dashed lines) of longipin in solution (D2O) and in the presence of MLVs

composed of POPC or POPG:POPC (1:1 molar ratio).

doi:10.1371/journal.pone.0167953.g006

Table 2. Secondary structure contents in the amide I’ region of longipin in solution (D2O) and in POPC or POPG:POPC multilamelar vesicles. Num-

bers in parenthesis indicate the contribution of fitted Gaussians to the original spectra.

Assigned frequencies in amide I’ region (cm-1)

α-helix a β-turn a β-sheet a Amyloid aggregates b disordered a

D2O --- 1661 (30%) 1621,1676 (8%) 1613 (2%) 1641 (60%)

POPC --- 1662 (19%) 1619, 1674 (6%) 1613 (2%) 1643 (73%)

POPG:POPC --- 1658 (30%) 1620, 1637, 1675 (50%) 1612, 1683 (20%) ---

a- according to Byler and Susi (1986)

b- according to Chiti et al. (1999)

doi:10.1371/journal.pone.0167953.t002
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POPG:POPC vesicles (green-dotted line; Fig 7), indicating that part of the ThT fluorescence

gain after longipin binding to POPG:POPC vesicles might occur due to partitioning of the dye

to the phospholipid bilayer. Thus, ThT assay was in agreement with FTIR spectroscopy that

showed an increased content of amyloid-like structures in longipin bounded to negatively

charged vesicles (POPG:POPC) when compared to the peptide free in solution or in the pres-

ence of zwitterionic vesicles (POPC).

To investigate the influence of longipin binding in the bilayer permeability, the peptide was

added to a solution of POPG:POPC CF-loaded vesicles. This assay explores the self-quenching

effect between CF molecules at high concentrations (80 mM) trapped inside vesicles. When

membrane permeability increases, trapped CF molecules can diffuse into the solution, thereby

decreasing the self-quenching effect and consequently increasing its fluorescence. This phe-

nomenon was observed after the addition of longipin to a solution of CF-loaded vesicles (Fig

8), suggesting that the phospholipid membrane permeability was increased. In this experi-

ment, melittin was used as a positive control of a membrane active AMP that forms pores in

artificial phospholipid membranes [45]. Longipin also showed a dose-dependent effect on dye

leakage of negatively charged vesicles when increasing concentrations of peptide (1, 5, 10 and

20 μM) were used to evaluate CF release from POPG:POPC vesicle (Figure G in S1 File).

4 Discussion

In this work, we presented the purification, characterization, spectrum of biological activity

and vesicle interaction studies of a new antimicrobial peptide isolated from the hemolymph of

the harvestman Acutisoma longipes.

Fig 7. Longipin amyloid-like structures formation evaluated by thioflavin-T fluorescence assay.

Fluorescence intensity of ThT 10 μM solution in HEPES buffer (30 mM; pH 7.4) was monitored (λEX = 440 nm /

λEM = 486 nm) in the presence of longipin 4 μM (blue-dotted line), longipin and POPG:POPC (black-dotted line)

or POPC (red-dotted line) vesicles in a 1:20 peptide:lipid molar ratio. The inlet shows representative emission

spectra of longipin and POPG:POPC or POPC vesicles incubated for 1, 5 and 30 min.

doi:10.1371/journal.pone.0167953.g007
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Several fractions with antimicrobial activity were obtained from the hemolymph of unchal-

lenged harvestmen that had been kept under aseptic conditions for 10 days prior to hemo-

lymph extraction. This fact indicates the constitutive expression of AMPs in the immune

system of Opiliones, which is similar to several Chelicerata orders (e.g., Aranae [6–8, 15, 46],

Scorpiones [9] and Xiphosura (horseshoe crabs) [3, 5]). Furthermore, it is also in agreement

with the assumption that the constitutive expression of AMPs is a characteristic present in all

lower invertebrate groups compared to the immune system complexity of higher insects,

which trigger the expression of AMPs after microbial infection [4].

After two reverse-phase chromatography of the plasma acid extract, we obtained a homoge-

neous fraction that presented a single peptide with 2.1 kDa. Its aminoacid sequence was elucidated

by MS/MS spectrum analysis and N-terminal sequencing by Edman degradation methodology.

Due to the spectrometer m/z resolution window, differentiation between Lys and Gln residues

was only achieved after peptide acetylation and enzymatic cleavage (Figures A and B in S1 File).

Longipin presented physicochemical proprieties of a cationic antimicrobial peptide, includ-

ing a positive net charge (+3) and high pI value (9.52). The synthetic and native longipin CID

spectra were in agreement (Figure D in S1 File), supporting the deduced primary structure.

Sequence similarities were observed between longipin and heme-lipoproteins (HeLp) from

two tick species (Fig 4). HeLp is the major constituent of Rhipicephalus (Boophilus) microplus
hemolymph and has an important role in heme (obtained from blood feeding) binding and

transport to other tissues [47] because the heme biosynthetic pathway is absent in these arach-

nids [48]. This sequence identity suggests that longipin might be generated from a precursor

protein similarly to observed in the tarantula Acanthoscurria rondoniae [18] and Penaeus sp.

shrimp [16], where cleavage of the hemocyanin C-terminal region originate peptides with

Fig 8. Dye leakage induced by longipin. Dye leakage assay from CF-loaded POPG:POPC vesicles in 80

mM NaCl. Longipin (traced line), melittin (dotted line) or buffer (continuous line) were added at ~ 200 s to a

final concentration of 20 μM. CF fluorescence was monitored (λEX = 474 nm / λEM = 518 nm), and Triton X-100

was added to a final 0.1% concentration to achieve the maximum fluorescence intensity.

doi:10.1371/journal.pone.0167953.g008
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antimicrobial activity. However, further investigations should be conducted to evaluate this

hypothesis.

Selectivity of AMPs that are only active against microorganisms is related to differences

between the net charge of microbial (negatively charged) and mammalian (zwitterionic) cell

membrane surfaces [49]. Therefore, preferential binding of longipin to negatively charged

POPG:POPC vesicles is in agreement with the absence of activity against mammalian VERO

cells line verified by MTT viability assay and points to its selectivity against microbial cells.

This selectivity is important for the development of AMP-based antibiotics [50–52].

FTIR spectroscopy and thioflavin-T fluorescence assay indicated that longipin adopted

amyloid-like fibrils conformation, similarly to other amyloid antimicrobial peptides [23, 53,

54], upon binding to anionic vesicles. This result reinforces the link between the mode of

action of amyloid antimicrobial peptides and amyloid-related pathogenesis [22], where amy-

loid aggregates are thought to interfere with the plasma membrane permeability. Wu et al

showed by molecular dynamics simulations that thioflavin-T preferentially binds to a Tyr-Leu

groove parallel the principal axis of a peptide self-assembly mimic of amyloid fibers [55]. Inter-

estingly, the same Tyr-Leu motif is present in the primary sequence of longipin (SGYLPG. . .),

indicating a probable binding site for ThT.

The presence of the band centered at 1614 cm-1 together with a high contribution of disor-

dered peak (1643 cm-1) in the FT-IR spectrum of longipin in vesicles-free medium or in POPC

might suggest the existence of a low population of peptide molecules in amyloid aggregate con-

formation. This hypothesis is in agreement with the considerable amount of β-turn and β-

sheet–that could be part of amyloid structures–also observed under these conditions. There-

fore, addition of anionic vesicles would shift the equilibrium between disordered and amyloid

structures of longipin in solution, increasing the population of amyloid aggregates. In this

sense, it would be interesting to verify the influence of anionic vesicles addition in amyloid-

like aggregates folding kinetics.

We also showed that the longipin chain in solution or in the presence of POPC was mainly

disordered but also presented a high β-turn content, which is in agreement with the presence of

Pro-Gly motif in the primary structure, that would favor formation of a type II β-turn. More-

over, prediction by NetTurnP method [56] pointed to the presence of a β-turn in the segment

Leu4-Pro5-Gly6-Lys7, which corresponds to 22% of the peptide chain. In quantitative agreement

with this result, FT-IR spectrum of longipin in solution or POPC respectively presented 30%

and 19% of β-turn content (Table 2).

Dye leakage from CF-loaded vesicles suggests that the permeability of the vesicles were

increased after longipin binding. This result suggests that longipin is a membrane active AMP

that targets the plasmatic membrane of microorganisms.

Lüders et al. [57] showed that the proline isomerization state (cis or trans) at the N-terminal

peptide bond influenced the activity of a proline-rich antimicrobial peptide. The authors could

only observe antimicrobial activity in the synthetic peptide after incubation with the peptidyl-

proline cis-trans-isomerase. Longipin MIC in the high μM range compared to other AMPs,

suggests that further experiments could be conducted to verify the influence of the Pro N-ter-

minal peptide bond conformation on its activity.

5 Conclusions

Longipin is the first antimicrobial peptide isolated from an Opiliones order animal. It is

constitutively expressed in the hemolymph, as observed for several other AMPs from arach-

nids, contributing to a wider understanding of the immunological system from different

groups of animals.
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Due to the appearance of pathogenic microorganisms resistant to modern antibiotics, the

development of new antimicrobial drugs has become important. In this sense, the selectivity of

longipin against microbial cells (yeast and bacteria) could be further explored to evaluate its

molecular mechanisms and improve its antimicrobial activity.

This work also contributes to the characterization of a novel amyloid antimicrobial peptide

and reinforces the relationship between amyloid pathogenesis and the mode of action of mem-

brane active antimicrobial peptides.

Supporting Information

S1 File. LC-ESI-MS analysis of the fragments obtained after acetylation and enzymatic

digestion (endoprotease Glu-C) of the peptide from the P5a fraction. (a) Ion chromatogram

of the analysis, where most intense peaks are marked in blue (35 min) and green (40 min)

traces. The digestion fragments ions eluted in the blue and green interval of time are shown in

the panel b and c, respectively (Figure A). “De novo” sequencing of longipin fragments

obtained after the acetylation and enzymatic digestion (endoprotease Glu-C) of the P5a

fraction. The CID spectra from (a) N-terminal fragment 2+ ion ([M+2H]2+, m/z 467.59) and

(b) C-terminal fragment 2+ ion ([M+2H]2+, m/z 710.8) acquired under a 15 V potential in the

collision cell. The -y and -b fragments are marked on the top of the figure in red and blue,

respectively. Acetylated lysine residues (KAC) identified in the primary sequence allowed the

differentiation between Lys and Gln. The presence of immonium ion from KAC with ammonia

neutral loss (KAC-NH3) in the low range m/z (126) confirmed the chemical modification of

this residue (Figure B). Evaluation of synthetic longipin homogeneity. (a) RP-HPLC profile

of the purified synthetic longipin obtained with an analytical column Shim-pak VP-ODS

(5 μM, 4.6 × 250 mm) in a linear gradient from 15% to 40% of ACN/TFA 0.05% in H2O/TFA

0.05% during 28 min at 1.0 ml/min flow rate. The base line of the profile was set in 0 mAbs for

integration of peaks. (b) ESI-MS analysis of the major peak (area = 132) showing expected

average mass of synthetic longipin (2127.5 Da) after m/z values deconvolution. Ions related to

peptide charged with K+ adduct (2166.6 Da) were also detected in the spectrum (Figure C).

Comparison between native (blue) and synthetic (green) longipin CID spectra (Figure D).

Effect of longipin on the viability of VERO cells. After 24 h treatment with longipin at differ-

ent concentrations, cells viability was evaluated by MTT method (Figure E). Amide I’ band

from deconvoluted FT-IR spectra of longipin in solution (D2O) and in the presence of

MLV composed by POPC or POPG:POPC (1:1 molar ratio). The dashed lines are second

derivative used for band fitting (Figure F). Longipin concentration-dependent dye leakage

from POPG:POPC vesicles loaded with CF 80 mM. The assay was performed under low

ionic strength conditions NaCl 10 mM/sucrose 140 mM with longipin at increasing concentra-

tions (1, 5, 10 or 20 μM) added in ~ 200 s. CF fluorescence was monitored (λEX = 474 nm /

λEM = 518 nm), and Triton X-100 was added to a final 0.1% concentration to achieve the maxi-

mum fluorescence intensity (Figure G). MIC values of streptomycin against microorgan-

isms evaluated under microbial growth inhibition assay (Table A).
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