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1. Introduction

Probiotic microorganisms have long been proposed to 
promote human health (Ashraf and Shah, 2014; Marchesi et 
al., 2015; Martin et al., 2014). Lactobacilli and bifidobacteria 
species are widely used to prevent and treat allergy and 
intestinal disorders (Tojo et al., 2014). Although several 
authors have shown favourable effects of probiotics in 
human health, their mechanism of action is not completely 

understood. Some proposed mechanisms are modulation of 
enzymatic activities (Hugo et al., 2006; Parvez et al., 2006), 
inhibition of intestinal pathogens (Franco et al., 2013), 
modulation of host defence mechanisms (Dogi et al., 2010; 
Galdeano and Perdigón, 2006; Kang and Im, 2015; Linares et 
al., 2015; Riedel et al., 2006; Zeuthen et al., 2006), immune 
regulation trough balance of pro-inflammatory and anti-
inflammatory cytokines (Hua et al., 2010), and competition 
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Abstract

It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent 
and involves multiple interactions between microorganisms and relevant host’s cell populations. In the present work 
we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 
133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 
cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii 
subsp. lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by 
epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling 
pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic 
cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This 
translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection 
of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect 
could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers 
production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). 
The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the 
presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis 
CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic 
strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial 
effect of selected lactobacilli strains on the course of B. cereus infection.
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for adhesion sites at the intestinal epithelium (Jung et al., 
2015; Scaldaferri et al., 2012; Viggiano et al., 2015).

Intestinal epithelial cells (IECs) represent an important 
barrier between lamina propria cells and the potentially 
harmful luminal contents . IECs are important 
immunoeffector cells with the capacity to release cytokines, 
chemokines, and other molecules involved in antigen 
presentation and immune defence (Canny et al., 2006). IECs 
and antigen presenting cells such as dendritic cells (DC) and 
macrophages play a key role in the orchestration of immune 
responses. Mucosal DCs are highly specialised in function 
and display a unique response to toll-like receptor ligands, 
are capable of driving immunoglobulin isotype switching 
to IgA, can imprint gut-homing receptors on T and B cells, 
and drive either T regulatory or Th17 cells depending on the 
analysed subtype. In the last years, there are several reports 
describing how the local microenvironment can shape 
DC function (Rescigno, 2010). Immunomodulation by 
probiotics can be achieved by modification of the Th1/Th2 
balance (Hua et al., 2010). Furthermore, they can induce 
B cells migration and increase specific immunoglobulin A 
(IgA) secretion by modulation of intestinal DC (Macpherson 
and Uhr, 2004), thus facilitating antigen uptake and 
presentation in Peyer’s patches.

The nuclear factor kappa B (NF-κB) is a transcription 
factor which plays a key role in regulating biological 
processes. NF-κB is typically present and resides in the 
cytoplasm of most cells as a complex with members of the 
IκB inhibitor protein family. In response to signals, NF-
κB activation occurs via phosphorylation of its inhibitor, 
which dissociates from the NF-κB dimer allowing the 
translocation to the nucleus, inducing gene expression. 
Over 200 physiological stimuli are known to activate NF-
κB, for instance, proinflammatory cytokines; bacterial 
toxins; viral products; and cell death stimuli (Baldwin, 1996; 
Tergaonkar, 2006). In this context, commensal bacteria 
or probiotic microorganisms, mostly through Toll like 
receptor-mediated signalling, could modify activation of 
NF-κB of intestinal epithelial cells (Cerf-Bensussan and 
Gaboriau-Routhiau, 2010). On the other hand, intestinal 
infections caused by enterobacteria, induce activation 
of an inflammatory cascade that lead to an increase of 
proinflammatory mediators (e.g. interleukin (IL)-8) that 
in turn enhances cell recruitment to the infection zone. 
Interestingly, some probiotic microorganisms are capable 
to inhibit IL-8 production from intestinal epithelial cells 
through modulation of NF-κB (Sokol et al., 2008). IL-8 is 
a pro-inflammatory interleukin that plays a pivotal role 
in cell recruitment to the site of infection. It is a relevant 
marker of intestinal inflammation (Roberts-Thomson et 
al., 2011) and IL-8 levels has been assessed in studies of 
the immunomodulatory effect of potentially probiotic 
strains (Kechaou et al., 2013; Torres-Maravilla et al., 
2015). Interestingly, even proinflammatory strains lead 

to protective effects (Kechaou et al., 2013). Other authors 
propose that probiotics contribute to intestinal homeostasis 
trough stimulation of tumour necrosis factor alpha (TNF-α) 
production, whereby beneficial effects would be associated 
with immunological stimulation process (Mizoguchi et al., 
2008; Pagnini et al., 2010).

Lactobacillus delbrueckii subsp. lactis CIDCA 133 
is a potentially probiotic strain. Indeed, this strain 
has the ability to inhibit microorganisms involved in 
food-spoilage (Kociubinski et al., 1996), to resist bile 
(Kociubinski et al., 1999), to antagonise biological effects 
of enterohaemorrhagic Escherichia coli (EHEC) on cultured 
eukaryotic cells (Hugo et al., 2008) and to inhibit harmful 
enzymatic activities (Hugo et al., 2006). Furthermore, this 
strain has differential susceptibility to enterocyte-derived 
antimicrobial peptides (Hugo et al., 2010).

Bacillus cereus is a spore-forming microorganism 
responsible for foodborne illness, i.e. emetic and 
diarrheic syndromes (Bottone, 2010). Virulence of B. 
cereus is a multifactorial process that involves regulation 
of the expression of relevant virulence coding genes for 
extracellular factors (Gohar et al., 2002) as well as the ability 
of adhesion/invasion events (Minnaard et al., 2001, 2004, 
2007; Rowan et al., 2001). We have previously isolated four 
B. cereus strains that show differences in the presence of 
sequence of virulence genes as well as different biological 
effects on eukaryotic cells (Minnaard et al., 2004, 2007, 
2013).

In this work, we studied the effect of L. delbrueckii subsp. 
lactis CIDCA 133 on B. cereus infection of human epithelial 
and DC. In this context, HLA and CD86 markers from DC, 
cytokine production and NF-kB activation on epithelial 
cells were evaluated.

2. Materials and methods

Bacterial strains and culture conditions

L. delbrueckii subsp. lactis strain CIDCA 133 belongs to the 
CIDCA culture collection. Lactobacilli were grown in De 
Man, Rogosa and Sharpe (MRS) broth (Biokar Diagnostics, 
Beauvais, France) at 37 °C for 16 h in anaerobic conditions. 
Microorganisms, stored frozen at -80 °C, were reactivated 
twice in liquid medium before the assays. B. cereus strains 
were cultured in brain hearth infusion (BHI) broth (Biokar 
Diagnostics) supplemented with glucose 0.1% (w/v) (BHIG). 
Bacteria were cultured for 16 h at 32 °C under orbital 
agitation and afterwards, they were inoculated (4% v/v) in 
5 ml of BHIG and incubated with agitation at 32 °C for 3 h. 
Microorganisms were harvested by centrifugation (900×g 
for 10 min). B. cereus strains 2 and M2, were isolated from 
infant formula (Minnaard et al., 2001), T1 (Buchanan and 
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Schultz, 1992) and B10502 (Minnaard et al., 2004) were 
involved in different foodborne outbreaks.

A correlation curve between absorbance measured at 600 
nm (A600nm) versus cfu was plotted for each strain. The 
A600nm values were employed to calculate the bacterial 
number used in each experiment.

Labelling of bacteria

Bacteria labelling was carried out with carboxyfluorescein 
diacetatesuccinimidyl ester (CFSE; Molecular Probes, 
Eugene, OR, USA) at a final concentration of 5 µmol/l 
(Tuominen-Gustafsson et al., 2006). Microorganisms were 
incubated for 30 min at 37 °C in the dark, and washed twice 
with phosphate-buffered saline (PBS).

Cell lines and culture medium

HT-29 (ATCC® HTB-38™) and HT-29-NF-κB-hrGFP 
reporter cells (Guimarães et al., 2010) were cultured in 
DMEM or RPMI 1640 (Life Technologies, Carlsbad, CA, 
USA) supplemented with 10% (v/v) foetal bovine serum 
(FBS) (Life Technologies). HT-29-NF-κB-hrGFP cells 
were obtained after stable transfection of HT-29 cells with 
the pNF-kB-hrGFP plasmid from the PathDetect Signal 
Transduction Pathway cis-Reporting Systems Kit (Stratagene, 
Santa Clara, CA, USA). Briefly, subconfluent HT29 cells 
were transfected with pNF-kB-hrGFP plasmid using 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) and 
selected with hygromycin. After two weeks of selection, cells 
were stimulated for 24 h with a pro-inflammatory cocktail 
(25 ng/ml TNF-α, 1.25 ng/ml IL-1b and 3.75 ng/ml interferon 
gamma (IFN-γ)) and GFP positive cells were sorted with a 
MoFlo cell sorter (Dako, Carpinteria, CA, USA).

Cells were routinely propagated in 25 or 75 cm2 tissue 
culture flasks at 37 °C, 5% CO2 in a humidified incubator. 
Subsequently, cells were trypsinised and concentration was 
adjusted in order to obtain the required cell concentrations 
(see below). In all the assays cells were cultured for less 
than twenty passages.

Generation of human monocyte-derived dendritic cells

Peripheral blood mononuclear cells (PBMC) were obtained 
as described by Tiscornia et al., (Tiscornia et al., 2012) 
by Ficoll-Hypaque density-gradient centrifugation and 
stored in liquid nitrogen before use. For DCs differentiation, 
monocytes were incubated during 48 h in RPMI 1640 
supplemented with 10% (v/v) heat-inactivated FBS, 1000 
U/ml granulocyte-macrophage colony-stimulating factor 
(GM-CSF) (PeproTech, Rocky Hill, NJ, USA) and IL-4 (1% 
of a conditioned supernatant from the IL-4 transfected 
J588L cell line). Monocyte-derived DCs were harvested and 
cultured in 24-well tissue culture plates for experiments. 

Cell purity was assessed by cell surface staining and flow 
cytometry using antibodies (described below in flow 
cytometry and antibodies). Viability was determined by 
trypan blue exclusion. The selection criterion for sample 
acceptance was established in order to choose donors 
presenting more than 85% of CD11c+/CD14- cells and 
less than 5% of lymphocyte contamination (CD3+ and/or 
CD19+ cells) after the DC-differentiation process. Cells 
with the following phenotype (evaluated by flow cytometry): 
CD11c+CD14−MHC-IIlowCD86low were considered 
immature DCs, and cells expressing CD11c+CD14−MHC-

IIhighCD86high were considered mature DCs.

NF-κB activation assay using HT-29-NF-κB-hrGFP 
reporter cells

250 µl of cell suspension containing 2.5×105 cells/ml were 
added per well in 24-well tissue culture plates. Stimulation 
with B. cereus and L. delbrueckii subsp. lactis CIDCA 133 
was performed using a multiplicity of infection of 20 for 
18 h. Culture medium (DMEM) was supplemented with the 
bacteriostatic antibiotic chloramphenicol (100 µg/ml) to 
prevent bacterial growth during the experiment (Minnaard 
et al., 2004). TNF-α (3 ng/ml) stimulated cells were used 
as a positive control. Following infection, supernatant was 
obtained, clarified by centrifugation and stored at -80 °C 
for IL-8 determination. Cells were washed twice with PBS 
and detached with trypsin. Green fluorescent protein (GFP) 
expression was analysed by flow cytometry (Cyan™ ADP 
Analyzer; Beckman Coulter, Brea, CA, USA). For each 
sample, 10,000 counts were recorded, which were gated 
on a forward scatter (FSC) versus side scatter (SSC) dot 
plot. Doublets were excluded from analysis.

Co-culture assays

In the present study we have used an experimental setting 
previously optimised in our lab (Grompone et al., 2012; 
Tiscornia et al., 2012) and by other groups (Mileti et al., 
2009; O’Hara et al., 2006). Briefly, human monocyte-derived 
DCs were seeded (1.25×105 cells/well) in 12-well tissue 
culture plates (Corning Inc., Corning, NY, USA) using 500 
μl of culture medium (RPMI 1640). Non-polarised (HT-29 
or HT-29-NF-κB-hrGFP according to the experiment) cells 
were grown in the upper chamber of a transwell filter (3 
µm diameter of pores; Corning Costar, Cambridge, MA, 
USA) and incubated for 2 days in RPMI 1640 supplemented 
with 10% heat-inactivated FCS. Inserts containing epithelial 
cells (HT-29 or HT-29-NF-κB-hrGFP according to the 
experiment, see below) monolayer were transferred to 
the 12-well plates containing DCs. Fresh complete culture 
medium was added (500 μl) to the upper compartment and 
the cells were incubated for further 6 h.

The apical surface of the monolayers was stimulated with 
a bacteria-cell ratio of 20:1. Non-stimulated cells and cells 



I.S. Rolny et al.

752� Beneficial Microbes 7(5)

treated with 0.5 μg/ml of lipopolysaccharide (LPS) from E. 
coli serotype O26:B6 (Sigma-Aldrich, St. Louis, MO, USA) 
were used as controls. Plates were incubated for 18 h at 
37 °C in a 5% CO2 atmosphere. Culture supernatants from 
the basal compartment were clarified by centrifugation and 
stored at -80 °C for cytokines determination. Monocyte-
derived DCs were harvested and stained for flow cytometry 
analyses.

In order to evaluate the effect of B. cereus in a co-culture 
system experiments with DCs and HT-29 cells were 
performed. HT-29 cells cultured in the upper compartment 
were apically infected with CFSE-labelled B. cereus 
strain B10502 and incubated for 18 h in RPMI 1640 with 
100 µg/ml chloramphenicol. After washing with PBS, cells 
were detached with trypsin and analysed by flow cytometry 
to assess association. Similarly, association with DC in the 
lower compartment was determined.

All the experiments were performed in the presence or 
absence of non-labelled strain CIDCA 133 in the upper 
compartment.

Flow cytometry and antibodies

The following antibodies were used for flow cytometry: 
B-ly6 (anti-human CD11c, allophycocyanin (APC)-
conjugated), 2331 (anti-human CD86, phycoerythrin 
(PE)-conjugated), TU36 (anti-human HLA-DR fluorescein 
isothiocyanate (FITC)-conjugated), M5E2 (anti-human 
CD14 FITC-conjugated), HIB19 (anti-human CD19 
PE-conjugated), HIT3a (anti-human CD3 FITC-
conjugated). The corresponding isotype controls were 
used. All antibodies were used according to manufacturer’s 
instructions (BD Pharmingen, San Jose, CA, USA). Surface 
markers (HLA-DR and CD86) were expressed as the median 
of the fluorescence intensity (MFI) according to Tiscornia 
et al. (2012). For sample analysis, 10,000 counts, gated on 
FSC vs SSC dot plot, were recorded. Acquisitions were 
performed using a Cyan™ ADP (Beckman Coulter) flow 
cytometer and Summit 4.3 software.

Cytokine quantification

IL-6, IL-8, IL-10, IL-12 p70 and TNF-α levels were 
determined by FlowCytomix™ technology (Bender 
MedSystems, Vienna, Austria) and analysed by flow 
cytometry (BMS FlowCytomix Software version 2.2.1).

Statistical analysis

Results were obtained from 2 or 3 independent experiments. 
Student t-test and median analysis were performed with 
InfoStat (InfoStat, Version 2008, Grupo InfoStat, FCA, 
Universidad Nacional de Córdoba, Cordoba, Argentina). 

Differences were considered statistically significant when 
P<0.05.

3. Results

Bacillus cereus induced NF-κB activation in HT-29-NF-κB-
hrGFP reporter cells

In order to study the effects of B. cereus strains on NF-
κB activation, HT-29-NF-κB-hrGFP reporter cells were 
incubated with microorganisms for 18 h and the activation 
of NF-κB was determined by flow cytometry (% of GFP+ 
cells). A significant increase (P<0.05) of GFP+ cells was 
found in cells infected with B. cereus (Figure 1); 4.1±0.1%; 
3.9±0.5%; 3.6±0.3% and 4.0±0.0% for strain B10502, T1; M2 
and 2, respectively. Interestingly, the co-incubation of L. 
delbrueckii subsp. lactis strain CIDCA 133 with B. cereus 
(strains B10502, T1 and M2) led to a further increase of 
GFP+ cells (P<0.005) compared with cells infected only 
with B. cereus strains (6.9±0.3%; 9.8±0.1% and 8.3±0.2% 
for strains B10502, T1 and M2, respectively). On the other 
hand, the Lactobacillus had no effect on cells infected with 
B. cereus strain 2 (3.8±0.7%). The positive control (TNF-α-
stimulated cells) led to 33.4±1.5% of GFP+ cells (Figure 1).

Bacillus cereus induced IL-8 production by HT-29-NF-κB-
hrGFP reporter cells

Since several cis elements, including a binding site for the 
inducible NF-κB, have been identified in the regulatory 
region of the IL-8 gene, we have examined the ability of 
different B. cereus strains to stimulate IL-8 secretion. This 
cytokine production was significantly increased when HT-
29-NF-κB-hrGFP reporter cells were infected with B10502, 
T1 and 2 strains (Figure 2). IL-8 levels after stimulation with 
B10502 strain (2,009.7±131.8 pg/ml) were comparable to 
those obtained in TNF-α-stimulated cells (2,063.8±141.6 
pg/ml), while after T1 and 2 strains stimulation were 
796.8±64.0 pg/ml and 782.7±44.4 pg/ml, respectively. In 
contrast, IL-8 levels produced by cells incubated with B. 
cereus M2 strain (197.5±29.6 pg/ml) or L. delbrueckii subsp. 
lactis strain CIDCA 133 (143.7±18.9 pg/ml) were slightly 
higher than levels produced by control unstimulated cells 
(52.7±11.0 pg/ml) (Figure 2).

Interestingly, the presence of the Lactobacillus strain 
significantly (P<0.05) reduced the IL-8 production of B. 
cereus infected cells. Indeed, 562.2±27.7, 193.6±2.3 and 
232.8±8.6 pg/ml were found for strains B10502, T1 and 2, 
respectively (Figure 2). On the other hand, Lactobacillus 
did not change the IL-8 production of M2-stimulated cells 
(166.6±72.6 pg/ml).
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Lactobacillus delbrueckii modifies Bacillus cereus 
interaction with dendritic and HT-29 cells

Infection of HT-29 cells (upper compartment) in co-
culture with monocyte-derived DC (lower compartment) 
was performed in order to assess association of bacteria 
to eukaryotic cells. These studies were performed with 
strain B10502 since this strain was able to induce strong 

inflammatory response in HT-29 cells (IL-8 production) and 
lactobacilli were capable to significantly decrease this effect.

As depicted in Figure 3, B. cereus strain B10502 was able 
to migrate from the upper compartment to the lower 
compartment. In addition, the presence of lactobacilli 
modified the percentage of B. cereus associated to DC. 
Indeed, 42.7±2.0% of the DC were associated to B. cereus 
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Figure 1. NF-κB activation in HT-29-NF-κB-hrGFP cells infected with different strains of Bacillus cereus in the presence or not of 
Lactobacillus delbrueckii subsp. lactis CIDCA 133. Different microorganisms (L. delbrueckii subsp. lactis CIDCA 133 or B. cereus 
strains: B10502, T1, M2 and 2) were added to the cells and incubated for 18 h. NF-κB activation (measured by the percentage 
of GFP+ cells) was analysed by flow cytometry. Stimulation with TNF-α was used as a positive control. Bars represent means ± 
standard deviation from three independent experiments. ▲ indicate significant differences (P<0.005) between the bars; * indicate 
significant differences with control.
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Figure 2. Effect of Lactobacillus delbrueckii subsp lactis CIDCA 133 on IL-8 production induced by Bacillus cereus strains in 
HT-29-NF-κB-hrGFP cells. Different microorganisms (L. delbrueckii subsp lactis CIDCA 133 or B. cereus strains: B10502, T1, 
M2 and 2) were added to HT-29-NF-κB-hrGFP cells and incubated for 18 h. IL-8 production was measured on supernatants by 
flow cytometry. Stimulation with TNF-α was used as a positive control. Bars represent means ± standard deviation from three 
independent experiments. ▲ indicate significant differences (P<0.005); * indicate significant differences with control.
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whereas these values decreased to 18.0±0.6% in the presence 
of strain 133. In contrast, HT-29 cells (upper compartment) 
revealed different association pattern: 13.1±0.4% of cells 
interacting with B. cereus while 22.4±0.7% of cells were 
found when the lactobacilli was present during infection.

CD86 and HLA-DR expression markers on dendritic cells

In order to determine the DC response in co-culture with 
HT-29 cells to the bacteria, CD86 and HLA-DR expression 
markers were assessed after 18 h of incubation with B. 
cereus strain B10502 alone or in combination with L. 
delbrueckii subsp. lactis strain CIDCA 133. As shown in 
Figure 4, even though the system was responsive to LPS 
stimulation, no differences in HLA-DR expression levels 
(control MFI: 89.1±18.1) were observed in cells stimulated 
with B. cereus B10502 (MFI: 108.9±24.8), lactobacilli (MFI: 
114.6±23.3), or both microorganisms (MFI: 131.2±6.7) 
when compared to the control (cells without stimulation). 
In contrast, expression of the co-stimulatory marker CD86 
induced by B. cereus B10502 was similar to the positive 
control stimulated with LPS (MFI 611.1±77.8 and 703.3±18, 
respectively). Incubation of cells with L. delbrueckii subsp. 
lactis strain CIDCA 133 alone lead to a trend of higher 
expression of CD86 (P=0.11) as compared with control 
unstimulated cells.

Cytokine production by dendritic and HT-29 cells in co-
culture with Bacillus cereus

To determine secretion of cytokines, supernatants of 
co-cultures were analysed after 18 h of incubation with 
B. cereus strain B10502 alone or in combination with L. 
delbrueckii subsp. lactis strain CIDCA 133. Incubation 
with single strains as well as with combined strains lead to 
a significant stimulation of IL-8 production in co-cultures 
as compared with unstimulated control (885.66±19.28 pg/
ml). Although these values were lower than those obtained 
for the LPS control (6,181.4±65.6 pg/ml) there were no 
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Figure 3. Association of CFSE-labelled Bacillus cereus B10502 
to monocyte-derived dendritic cells and epithelial cells (HT-
29). Association of B. cereus B10502 to monocyte-derived 
dendritic cells (white bars) and epithelial cells (grey bars) 
after 18 h of incubation in the presence or not of Lactobacillus 
delbrueckii subsp lactis CIDCA 133. Microorganisms were 
added to the upper compartment (HT-29 cells) in a co-culture 
system with dendritic cells (DC) in the lower compartment. Bars 
represent means ± standard deviation from two independent 
experiments. ▲ indicate significant differences between 
compared treatments (P<0.05).
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Figure 4. Expression of (A) HLA-DR and (B) CD86 in monocyte-derived dendritic cell (DC) co-cultured with HT-29-NF-κB-hrGFP 
cells, Lactobacillus delbrueckii subsp. lactis CIDCA 133 and Bacillus cereus B10502. Epithelial cells (upper compartment) were 
infected with B. cereus B10502 in the presence or absence of L. delbrueckii subsp lactis CIDCA 133. Surface markers on DC (lower 
compartment) were determined by flow cytometry after 18 h incubation. Controls: untreated cells (control) and lipopolysaccharide-
stimulated cells (LPS). Results were expressed as the medians of fluorescence intensity (MFI) ± standard deviation from two 
independent experiments. * indicate significant differences with control (P<0.05).
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significant differences for any of the treatments tested 
(Figure 5A).

Production of IL-6 showed different pattern of stimulation 
as compared with IL-8. Values similar to basal levels were 
observed when cells were stimulated with either LPS 

(128.3±11.6 pg/ml) or strain CIDCA 133 (87.6±123.9 
pg/ml), while a significant increase was observed when 
cells were incubated with strain B10502 (890.6±263 pg/ml). 
The presence of Lactobacillus in combination with B. cereus 
did not modify IL-6 production (1,091.52±55.73 pg/ml) as 
compared to stimulation with B. cereus alone (Figure 5B).
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Figure 5. Cytokine production (A – IL-8; B – IL-6; and C – TNF-α) by monocyte-derived dendritic cells co-cultured with HT-29 cells, 
Lactobacillus delbrueckii subsp lactis CIDCA 133 and Bacillus cereus B10502. Epithelial cells (upper compartment) were infected 
with B. cereus B10502 in the presence or absence of L. delbrueckii subsp lactis CIDCA 133. After 18 h incubation, cytokines 
were determined in the lower compartment (DC). Controls: untreated cells (basal) and lipopolysaccharide-stimulated cells (LPS). 
Results were expressed in pg/ml. Data are shown as the mean ± standard deviation from three independent experiments. * indicate 
significant differences (P<0.05) with control. ▲ indicate significant differences between compared treatments (P<0.05).
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Lactobacilli and B. cereus in single cultures were able 
to increase TNF-α production (P<0.05) in co-cultures 
as compared to uninfected control. Of note, when both 
lactobacilli and B. cereus were added to the epithelial 
compartment, a significant increase in TNF-α production 
was observed (5,990.5±421.3 pg/ml, P<0.05) as compared 
with cells treated with individual strains (Figure 5C). 
Production of IL-10 and IL-12p70 was not detectable under 
any of the experimental conditions of the present study 
(data not shown).

4. Discussion

In the present study the immunomodulatory effect of 
a potentially probiotic strain on B. cereus-infected cells 
was demonstrated through in vitro studies with cultured 
human epithelial and DC. By using cultures of HT-29 
cells, we demonstrate that infection with B. cereus leads 
to the production of IL-8 following induction of NF-kB 
pathway. Studies with co-cultures of epithelial and DC 
allowed us to get a further insight and show that infection 
of human epithelial cells induces phenotypic and functional 
maturation of DC and production of pro-inflammatory 
cytokines. Interestingly, the presence of L. delbrueckii subsp. 
lactis CIDCA 133 modifies cell response.

Adhesion of microorganisms to enterocytes and secretion 
of extracellular factors can induce IL-8 production 
in epithelial cells. This has been demonstrated for 
example for Helicobacter pylori (Papadakos et al., 2013), 
enteropathogenic E. coli (EPEC), enteroaggregative E. 
coli (EAEC) (Edwards et al., 2011), enteroinvasive E. coli 
(Jung et al., 1995), Yersinia enterocolitica (Jung et al., 
1995; Schulte et al., 1996), Salmonella dublin, Shigella 
dysenteriae and Listeria monocytogenes (Jung et al., 
1995). In contrast, potentially probiotic microorganisms 
belonging to genera Bifidobacterium and Lactobacillus 
not only do not induce IL-8 production in epithelial 
cells (Imaoka et al., 2008; Lammers et al., 2002) but also 
have the ability to reduce the activation of the NF-κB 
pathway in epithelial cells (Chen, 2013; Grompone et 
al., 2012). This potentially anti-inflammatory effect was 
also demonstrated for yeasts isolated from kefir that were 
also able to decrease flagellin-mediated activation of NF-
κB (Romanin et al., 2010). Agonists involved in these 
effects comprise genomic DNA and cell wall components 
(Hiramatsu et al., 2013). Lipoteichoic acid (LTA) is a key 
cell wall component of Gram (+) bacteria. However, even 
though LTA from pathogenic and non-pathogenic bacteria 
share many common structures, it has been demonstrated 
that biological responses are different. Indeed, whereas 
LTA from pathogens induce inflammation, those from 
non-pathogens can even decrease inflammation (Kim et 
al., 2012a).

We determined that the presence of strain CIDCA 133 
did not modified viability of B. cereus (data not shown). 
In contrast, in our experimental conditions, there was an 
effect of chloramphenicol on the viability of all the B. cereus 
strains under study. Even if this is a bacteriostatic agent that 
does not modified B. cereus viability in short experiments 
(Minnaard et al., 2004, 2013), there was a significant 
reduction of B. cereus viability (4 log) after 18 h incubation 
with 100 µg/ml chloramphenicol (data not shown). Since no 
bacterial lysis was observed, the number of total bacteria 
remained unchanged. It is important to point out that 
all the B. cereus strains under study decreased to similar 
values of cfu and that the presence of strain 133 did not 
modify these values. On the other hand, viability of strain 
133 did not change in the presence of chloramphenicol in 
the 18 h incubation period. Therefore, the effect of strain 
133 cannot be ascribed to a reduction of total B. cereus 
concentrations. The supplementation of culture media with 
antibiotics is mandatory in cell stimulation experiments 
with B. cereus since even short incubation periods (3 h) in 
antibiotic-free media lead to complete destruction of the 
cell monolayers due to bacterial growth. Supplementation 
of culture media with antibiotics is a common practice in 
the studies of interaction between bacteria and eukaryotic 
cells. Furthermore, many studies have been performed 
in the presence of bactericidal agents, such as penicillin 
and streptomycin (Carasi et al., 2015; Huang et al., 2015; 
Klingspor et al., 2015; Mastropietro et al., 2015). It is worth 
noting that it has long been demonstrated that stimulation 
of cell response occurs even when cells are incubated with 
non-viable bacteria or cellular fractions (Jeon et al., 2015; 
Kaji et al., 2010).

Probiotic lactobacilli can modulate immune responses by 
signalling through NF-κB and mitogen-activated protein 
kinase (MAPK) pathways (Van Baarlen et al., 2009). Of 
note, live Lactobacillus rhamnosus increases activation of 
NF-κB in human bladder cells but decreases production 
of TNF-α, IL-6 and CXCL8 (Karlsson et al., 2012). In the 
present study, we show that activation of NF-κB triggered 
by B. cereus in HT-29 cells increased in the presence of L. 
delbrueckii subsp. lactis CIDCA 133 but with a decrease of 
IL-8 production. These findings emphasise the relevance 
of alternative transcription factors other than NF-κB (e.g. 
MAPK) and in addition the effect of post-transcriptional 
regulation of NF-κB. Furthermore, effect of extracellular 
factors produced by L. delbrueckii subsp. lactis CIDCA 133 
cannot be ruled out (Garrote et al., 2015; Iraporda et al., 
2015; Karlsson et al., 2012; Tanaka et al., 2015).

Co-cultures of epithelial and DC allow for the study of the 
cross talk between cell populations relevant for the host's 
response and pathogenic or beneficial microorganisms. 
Since early studies on the immune response elicited by 
probiotic microorganisms (Haller et al., 2000) this in 
vitro model has demonstrated to be useful for the study 
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of the interaction of microorganisms in the context of 
intestinal infections (Fang et al., 2010; Haller et al., 2000; 
Pozo-Rubio et al., 2011). This experimental approach 
allowed the demonstration of the immunomodulatory 
effect of L. rhamnosus, which decreases HLA-DR and 
CD86 expression marker on DC in a LPS-stimulated 
co-culture system (Grompone et al., 2012). In contrast, 
other Lactobacillus strains induced HLA-DR and CD86 
expression in DC from human origin (Mohamadzadeh et 
al., 2005). Interestingly, other potentially probiotic strains 
modified the expression of MHCII, CD86 and CD40 and the 
production of inflammatory cytokines (IL-6 and TNF-α) by 
murine DC depending on the presence of epithelial cells in 
normal and inverted co-culture systems (Kim et al., 2012b).

Presence of B. cereus or L. delbrueckii subsp. lactis CIDCA 
133 alone, lead to stimulation of CD86 in the absence of 
LPS. This suggests a signalling pathway other than Toll-like 
receptor (TLR)-4-mediated. The presence of lactobacilli 
does not modifies CD86 expression. It is worth to note 
that epithelial cells (HT-29) in the upper compartment 
of co-cultures, were stimulated at the apical domain and 
that translocation of B. cereus to the lower compartment 
was reduced by the presence of L. delbrueckii subsp. lactis 
CIDCA 133.

In spite that number of DC associated to B. cereus in the 
lower compartment significantly decreases when epithelial 
cells at the upper compartment were incubated with both 
lactobacilli and B. cereus, there were no changes in CD86 
expression in DC. These findings support the hypothesis 
that stimulation of epithelial cells in the upper compartment 
generates a cross-talk with DC of the lower compartment 
through soluble factors.

Concerning functional maturation, determination of 
cytokines demonstrates that both strains were able to 
induce IL-8 and TNF-α production by DC but only B. 
cereus was able to trigger IL-6 production. Interestingly, 
our results showed that whereas presence of L. delbrueckii 
subsp. lactis CIDCA 133 did not modify the production of 
IL-8 nor IL-6 by B. cereus-infected DC, this Lactobacillus 
significantly increased TNF-α production. The ability of 
lactobacilli to trigger TNF-α production by macrophages 
through TLR-2 signalling has been demonstrated (Ditu et 
al., 2014; Matsuguchi et al., 2003). In addition, spent culture 
supernatants of B. cereus induce TNF-α production in 
holoxenic mice (Ditu et al., 2014). Furthermore, in a murine 
model of infection (Rolny et al., 2014), mice infected with 
B. cereus strain B10502 show slight increases in expression 
of genes associated to TNF-α production. In the present 
work, the addition of L. delbrueckii subsp. lactis CIDCA 
133 potentiates TNF-α production by DC in the lower 
compartment of a co-culture system with B. cereus-infected 
epithelial cells. Although TNF-α is a pro-inflammatory 
cytokine, it has been shown to play a role in the containment 

of B. cereus in a murine model of intraocular infection. 
Production of TNF-α at early stages of infection leads to the 
recruitment of immune cells that in turn contribute to the 
control of pathogen multiplication (Ramadan et al., 2008).

Surprisingly, strain 133 was unable to induce neither IL-
10 nor IL-12. Induction of these interleukins is a typical 
biological response following interaction between probiotics 
and host's cells. This strain-dependent response is related 
to differential activation of the ERK pathway by different 
bacterial components such as CpG motifs and cell wall 
components (Kaji et al., 2010). Strong inducers of the ERK 
pathway lead to high levels of IL-10 and low levels of IL-12 
whereas those bacteria that shows a weak ability to induce 
ERK pathway lead to high values of IL-12 and low values 
of IL-10. However, other signalling pathways are involved 
in the production of IL-10/IL-12 and some strains that 
share many common agonists (e.g. lypoteichoic acids) are 
unable to induce these interleukins. Interestingly, these 
microorganisms have shown faster intracellular digestion 
by macrophages (Kaji et al., 2010).

The present work demonstrates for the first time the effect 
of L. delbrueckii subsp. lactis CIDCA 133, a potentially 
probiotic strain, in an in vitro model of B. cereus infection. 
Our results showed that the presence of the lactobacilli lead 
to the modulation of the cell response of infected cells and 
an enhancement of previously demonstrated protective 
response such as TNF-α production by DC.
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