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Theory of gravitation based on a non-Riemannian geometry with dynamical torsion field
is geometrically analyzed. To this end, the simplest Lagrangian density is introduced as
a measure (reminiscent of a sigma model) and the dynamical equations are derived.
Our goal is to rewrite this generalized affine action in a suitable form similar to the
standard Born–Infeld (BI) Lagrangian. As soon as the functional action is rewritten
in the BI form, the dynamical equations lead the trace-free GR-type equation and the
field equations for the torsion, respectively: both equations emerge from the model in
a sharp contrast with other attempts where additional assumptions were heuristically
introduced. In this theoretical context, the Einstein κ, Newton G and the analog to the
absolute b-field into the standard BI theory all arise from the same geometry through
geometrical invariant quantities (as from the curvature R). They can be clearly iden-
tified and correctly interpreted both physical and geometrically. Interesting theoretical
and physical aspects of the proposed theory are given as clear examples that show the
viability of this approach to explain several problems of actual interest. Some of them
are the dynamo effect and geometrical origin of αΩ term, origin of primordial magnetic
fields and the role of the torsion in the actual symmetry of the standard model. The
relation with gauge theories, conserved currents, and other problems of astrophysical
character is discussed with some detail.

Keywords: Non-Riemannian geometry; Born–Infeld; fundamental constants; Anomalous
MHD; magnetogenesis.

1. Introduction

A theme that is repeatedly discussed in theoretical backgrounds is if the existent
energy–matter of our natural world emerge from the same geometry of the space-
time. As is well known, the common standard approaches based only on General
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Relativity (GR) are not based on symmetry principles: if this were the case, a har-
monious interplay “matter–energy↔ spacetime” must be automatically fulfilled,
from the dynamical viewpoint. This was precisely the drawback of the Einstein GR
equations in the right-hand side, namely:

Rαβ −
gαβ

2
R = κTαβ

with κTαβ (energy–momentum distribution) added “by hand” according to the
physical scenario under consideration. It is heuristically implemented in GR by the
additive energy–momentum tensor that contains the matter fields and the energy
distribution. The “additive” fact breaks the characteristic nonlinearity of the gravity
theories.

Other current attempt that contains similar drawbacks as before is, for example,
the unimodular gravity. It is well known that the unimodular gravity is obtained
from Einstein–Hilbert action in which the unimodular condition√

− det gµν = 1

is heuristically imposed from the very beginning [1–3]. The resulting field equations
correspond to the traceless Einstein equations and it can be shown that they are
equivalent to the full Einstein equations with the cosmological constant term Λ,
where Λ enters as an integration constant. We see that the equivalence between
unimodular gravity and GR is given by the arbitrariness to select a suitable value
for lambda. On the other hand the idea that the cosmological term arises as an
integration constant is one of the motivations for the study of the unimodular
gravity, for recent study, see [5, 4] in the context of supergravity. The fact that
the determinant of the metric is fixed has clearly profound consequences on the
structure of the given theory. First of all, it reduces the full group of diffeomorphism
to invariance under the group of unimodular general coordinate transformations
which are transformations that leave the determinant of the metric unchanged.

In the non-Riemannian case, as we have pointed out previously [12–16], the cor-
responding affine geometrical structure induces naturally the following constraint:

K

g
= constant

that imposes a condition (ratio) between both basic tensors through their determi-
nants: the metric g and the fundamental one K (in the sense of a non-symmetric
theory), independently of the precise functional form of K or g. In this work, our
starting point will be precisely the last one, where a metric affine structure in the
spacetime manifold will be considered as described in Sec. 2, with the Lagrangian
function or geometrical action is taken as a measure or the square root of the deter-
minant of a particular combination of the fundamental tensors of the geometry:√

| det f(gµν , fµν,Rµν)|

with the (0, 2) tensors gµν , fµν,Rµν : the symmetric metric, the antisymmetric (that
acts as potential of the torsion field) and the generalized Ricci tensor (proper of the
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non-Riemannian geometry). The three tensors are related with a Clifford structure
of the tangent space (for details see [17]) and the explicit choice for f(gµν , fµν,Rµν) is
given in Sec. 3 and the geometrical explanation in Sec. 4. This type of Lagrangians,
reminiscent of the nonlinear sigma model, are geometrical non-Riemannian gener-
alizations of Nambu–Goto and Born–Infeld (BI) ones: this similarity is that we use
for the physical analysis of our model. Due to the basic structure of the theory,
induced energy–momentum tensors and fundamental constants (as G now func-
tions in reality) emerge naturally from the same geometry: this issue, that allows
the physical realization of the Mach principle, is treated in some detail in Sec. 8
after the obtention of the (trace-free) dynamical equations in Sec. 5. In Sec. 6,
the trace-free gravitational equations and the meaning of a cosmological-like term
as integration constant are discussed from the physical viewpoint. The important
role played by the dual of the torsion field as energy–matter carrier is given in
Sec. 7 and some physical consequences of the model, as the geometrical origin of
the αΩ-dynamo, are presented in Sec. 9. In Sec. 10, the direct relation between the
torsion (geometry) with axion electrodynamics and Chern–Simons (CS) theory is
discussed considering the structure of the dual vector of the torsion field. Finally, in
Sec. 11, an explanation about the magnetogenesis in FRW scenario, the structure
of the GUT where the standard model is derived and the role of the axion in the
dynamics of the cosmic magnetic field is presented with some concluding remarks
in Sec. 12.

2. Basis of the Metrical-Affine Geometry

The starting point is a hypercomplex construction of the (metric compatible) space-
time manifold [17, 18]

M, gµν ≡ eµ · eν , (1)

where for each point p ∈M there exists a local affine space A. The connection over
A, Γ̃, defines a generalized affine connection Γ on M , specified by (∇,K), where
K is an invertible (1, 1) tensor over M . We will demand for the connection to be
compatible and rectilinear, that is,

∇K = KT, ∇g = 0, (2)

where T is the torsion, and g the spacetime metric (used to raise and lower the
indices and determining the geodesics), that is preserved under parallel transport.
This generalized compatibility condition ensures that the generalized affine con-
nection Γ maps autoparallels of Γ on M into straight lines over the affine space A
(locally). The first equation above is equal to the condition determining the connec-
tion in terms of the fundamental field in the UFT non-symmetric. Hence, K can be
identified with the fundamental tensor in the non-symmetric fundamental theory.
This fact gives us the possibility to restrict the connection to a (anti-)Hermitian
theory.
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The covariant derivative of a vector with respect to the generalized affine con-
nection is given by

Aµ
;ν ≡ Aµ

,ν + Γµ
ανA

α, (3)

Aµ;ν ≡ Aµ ,ν − Γα
µνAα. (4)

The generalized compatibility condition (2) determines the 64 components of
the connection by the 64 equations

Kµν;α = KµρT
ρ

να where T ρ
να ≡ 2Γρ

[αν]. (5)

Note that by contracting indices ν and α in the first equation above, an additional
condition over this hypothetic fundamental (non-symmetric) tensor K is obtained

K α
µα; = 0

that, geometrically speaking, reads

d∗K = 0.

This is a current-free condition over the tensor K that can be exemplified in the
simplest case with the prototype of non-symmetric fundamental tensor: Kµν =
gµν+ fµν

d∗K = d∗g + d∗f ⇒ d∗f = 0 (current-free e.o.m.),

where usually gµν plays the role of the spacetime metric and fµν the role of elec-
tromagnetic field.

The metric is uniquely determined by the metricity condition, which puts 40
restrictions on the derivatives of the metric

gµν,ρ = 2Γ(µν)ρ. (6)

The spacetime curvature tensor, that is defined in the usual way, has two possible
contractions: the Ricci tensor Rλ

µλν = Rµν , and the second contraction Rλ
λµν =

2Γλ
λ[ν,µ], which is identically zero due to the metricity condition (2).
In order to find a symmetry of the torsion tensor, let us denote the inverse of K

by K̂. Therefore, K̂ is uniquely specified by condition K̂αρ Kασ = KαρK̂ασ = δρ
σ.

As it was pointed out in [12–16], inserting explicitly the torsion tensor as the
antisymmetric part of the connection in (5), and multiplying by 1

2K̂
αν , results, after

straightforward computations, in

(Ln
√
−K),µ−Γν

(µν) = 0, (7)

where K = det (Kµρ). Note that from expression (7) we arrive at the relation
between the determinants K and g:

K

g
= constant

(strictly a constant scalar function of the coordinates). Now we can write

Γν
αν,β − Γν

βν,α = Γν
νβ,α − Γν

να,β, (8)
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as the first term of (7) is the derivative of a scalar. Then, the torsion tensor has the
symmetry

T ν
ν[β,α] = T ν

ν[α,β] = 0. (9)

This implies that the trace of the torsion tensor, defined as T ν
να, is the gradient

of a scalar field

Tα = ∇αφ. (10)

In [18], an interesting geometrical analysis is presented of non-symmetric field
structures. There, expressions precisely as (1) and (2) ensure that the basic non-
symmetric field structures (i.e. K) take on a definite geometrical meaning when
interpreted in terms of affine geometry.

3. Geometrical Lagrangians: Determinantal to Generalized
Born–Infeld Action

Let us to start with the geometrical Lagrangian introduced in [12–16]

Lg =
√

det[λ(gαβ + Fαβ) +Rαβ ]. (11)

It can be rewritten as

Lg =
√

det(Gαβ + Fαβ) (12)

with the following redefinitions

Gαβ = λgαβ +R(αβ) and Fαβ = λFαβ +R[αβ], (13)

where a totally antisymmetric torsion tensor Tα
γβ = εα

γβδh
δ is assumed (hδ its dual

a vector field). Consequently the generalized Ricci tensor splits into symmetric and
antisymmetric parts, namely:

Rµν =

R(µν)︷ ︸︸ ︷
◦
Rµν − T α

µρ T ρ
αν +

R[µν]︷ ︸︸ ︷
◦
∇αT

α
µν ,

where
◦
Rµν is the general relativistic Ricci tensor constructed with the Christoffel

connection. The expansion of the determinant leads to the BI generalization in the
usual form:

Lg =
√
|G|

√
1 +

1
2
FµνFµν − 1

16
(FµνF̃µν)2 (14)

= Λ2
√
|g|

√
1 +

1
2
Λ2

1FµνFµν − 1
16b4

(Λ2
2Fµν F̃µν)2, (15)

where

Λ = λ+
gαβR

(αβ)

4
, (16)
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Λ2
1 = λ2

(
1 +

2
λ

FµνR
[µν]

FµνFµν
+

1
λ2

R[µν]R
[µν]

FµνFµν

)
, (17)

Λ2
2 = λ2

1 +
2
λ

FµνR̃
[µν]

Fµν F̃µν
+

1
λ2

R[µν]R̃
[µν]

Fµν F̃µν

. (18)

Although the action is exact and has the correct limit, the analysis can be simplest
and substantially improved using the following action:

Lgs =

√
det

[
λgαβ

(
1 +

Rs

4λ

)
+ λFαβ

(
1 +

RA

λ

)]
, (19)

Rs ≡ gαβR(αβ); RA ≡ fαβR[αβ] (20)

(with fαβ ≡ ∂ ln(detFµν)
∂Fαβ

, detFµν = 2FµνF̃
µν) that contains all necessary informa-

tion and is more suitable to manage. In the next section, we will give the exact
justification about these choices and its simplification.

4. Choice of the Functional Action and Physics Geometrization

Let us give now the explanation about the specific choice of the Lagrangian (19) for
the simplest subsequent analysis: geometrical and dynamical. The quantum aspects
as supersymmetrical extensions, however, will be not treated here.

Symplectic geometry started from the study of phase spaces for mechanical
systems but, with the subsequent seminal works of Cartan that introduce the sym-
plectic structure into the geometry of the spacetime calculus, that thinking changed
radically.

The existence of a symplectic structure on a manifold is a very significant con-
straint and many simple and natural constructions in symplectic geometry lead to
manifolds which cannot possess a symplectic structure (or to spaces which can-
not possess a manifold structure). However, these spaces often inherit a bracket
of functions from the Poisson bracket on the original symplectic manifold. It is a
(semi-)classical limit of quantum theory and also is the theory dual to Lie algebra
theory and, more generally, to Lie algebroid theory.

From the point of view of the Poisson structure associated to the differential
forms induced by the unitary transformation from the G-valuated tangent space
implies automatically the existence of an even non-degenerate (super)metric. If the
induced structure from the tangent space (via Ambrose–Singer theorem) is intrin-
sically related to a (super)manifold structure. From the structure of the tangent
space Tp(M) we have seen that [10, 17]

UB
A (P ) = δB

A +RB
Aµνdx

µ ∧ dxν

= δB
A + ωk(Tk)B

A
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(with A,B, . . . generally a multi-index) where the Poisson structure is evident (as
the dual of the Lie algebra of the group manifold) in our case leading to the iden-
tification

RB
Aµνdx

µ ∧ dxν ≡ ωk(Tk)B
A .

Then, because we have in the general case a (matrix) automorphic structure, the
blocks inside the (sigma model-inspired) Lagrangian, namely:

λgαβ

(
1 +

Rs

4λ

)
+ λFαβ

(
1 +

RA

λ

)
in our case, are justified. That means that above blocks contain all the field dynam-
ics for a preliminary theoretical analysis.

Remark 1. Note that:

(1) the curvatures, the differential forms and the other geometrical operators
depend also on the field where they are defined: R, C or H.

(ii) typical example is the quaternionic H-case (e.g.: SU(2)-structure of the UFT
of Borchsenius theory) the metric is quaternion valuated with the property
g†[ij] = −g[ji].

5. Field Equations

The variational process is a crucial point both from the mathematical and from the
physical viewpoint. As we have been analyzed before, there exist several difficul-
ties concerning the starting physical assumptions involving the variational proce-
dure. The geometry of the spacetime manifold is to be determined by the Noether
symmetries

δLG

δgµν
= 0,

δLG

δfµν
= 0, (21)

where the functional (Hamiltonian) derivatives in the sense of Palatini (in this case
with respect to the potentials) are understood. The choice “measure-like” form
for the geometrical Lagrangian LG (reminiscent of a nonlinear sigma model), as is
evident, satisfies the following principles:

(i) the principle of the natural extension of the Lagrangian density as square root
of the fundamental line element containing also Fµν .

(ii) the symmetry principle between gµν and Fµν (e.g. gµν and Fµν should enter
into LG symmetrically).

(iii) the principle that the spinorial symmetry, namely

∇µgλν = 0, (22)

∇µσλν = 0 (23)
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with

gλν = γλ · γν , (24)

σλν = γλ ∧ γν ∼ ∗Fλν (25)

should be derivable from LG (21).

The last principle is key because it states that the spinorial invariance of the
fundamental spacetime structure (kinematic symmetry of the world picture) should
be derivable from the dynamical symmetries given by (21). The fact that the LG

satisfies the three principles will be demonstrated below showing also that it has
the simpler form.

Note that the action density proposed by Einstein in [27] in his non-symmetric
field theory satisfies (i) and (ii) but not (iii) [11].

Remark 2. Due to the totally antisymmetric character of the torsion field it is
completely determined by the fundamental (structural 2-form) antisymmetric ten-
sor, and consequently the variations must acquire the form given by expression (21):
it means that metric and torsion have their respective potentials.

5.1. δgLG

The starting point for the metrical variational procedure is in the same way as in the
standard BI theory: from the following factorization of the geometrical Lagrangian:

L =
√
|g|

√
det(αλ)

√
1 +

1
2b2

FµνFµν − 1
16b4

(Fµν F̃µν)2 ≡
√
|g|

√
det(αλ)R, (26)

where

b =
α

β
=

1 + (RS/4λ)
1 + (RA/4λ)

, (27)

RS = gαβRαβ , (28)

RA = fαβRαβ , (29)

and λ an arbitrary constant, we perform the variational metric procedure with the
following result (for details see Appendix A):

δgL = 0⇒ R(αβ) −
gαβ

4
Rs =

Rs

2R2α2

[
FαλF

λ
β − FµνF

µν R(αβ)

Rs

]
(30)

+
Rs

4R2α2b2

[
Fµν F̃

µν

(
FηρF̃

ηρ

8
gαβ − FαλF̃

λ
β

)
+
FηρF̃

ηρ

2
R(αβ)

Rs

]

+ 2λ

[
gαβ +

1
R2α2

(
FαλF

λ
β +

Fµν F̃
µν

2b2

(
FηρF̃

ηρ

8
gαβ − FαλF̃

λ
β

))]
, (31)
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Remark 3. Note that:

(1) Equation (31) is trace-free type, consequently the trace of the third term of the
above equation (that is the cosmological one) is equal to zero. This happens

trivially if λ = 0 or 4R2α2 = −(FαλF
αλ − (Fµν

eF µν)2

4b2 ). In terms of the Maxwell

Lagrangian we have (Rα)2 = (LMaxwell + (Fµν
eF µν)2

16b2 ) ≡ W(IS , IP , b) that allow
us to simplify Eq. (31) once more as follows:

R(αβ) −
gαβ

4
Rs =

Rs

2W

[
FαλF

λ
β − FµνF

µνR(αβ)

Rs

]

+
Rs

4Wb2

[
Fµν F̃

µν

(
FηρF̃

ηρ

8
gαβ − FαλF̃

λ
β

)

+
FηρF̃

ηρ

2
R(αβ)

Rs

]
+ 2λ

[
gαβ +

1
W

(
FαλF

λ
β

+
Fµν F̃

µν

2b2

(
FηρF̃

ηρ

8
gαβ − FαλF̃

λ
β

))]
.

(2) b takes the place of limiting parameter (maximum value) for the electromagnetic
field strength.

(3) b is not a constant, in general, in sharp contrast with the BI or string theory
cases.

(4) Because b is the ratio α
β = 1+(RS/4λ)

1+(RA/λ4) involving both curvature scalars from
the contractions of the generalized Ricci tensor: it is preponderant when the
symmetrical contraction of Rαβ is greater than the skew one.

(5) The fact pointed out in (ii), namely that the curvature scalar plays the role
as some limiting parameter of the field strength, was conjectured by Mansouri
in [19] in the context of gravity theory over group manifold (generally with
symmetry breaking). In such a case, this limit was stablished after the explicit
integration of the internal group-valuated variables that is not our case here.

(6) In similar form that the Eddington conjecture:R(αβ) ∝ gαβ, we have a condition
over the ratios as follows:

R(αβ)

Rs
∝ gαβ

D
(32)

that seems to be universal.
(7) The equations are the simplest ones when b−2 = 0(β = 0), taking the exact

“quasilinear” form

R(αβ)−
gαβ

4
Rs =

Rs

2α2

[
FαλF

λ
β − FµνF

µνR(αβ)

Rs

]
︸ ︷︷ ︸

Maxwell-like

+2λ
[
gαβ +

1
W FαλF

λ
β

]
︸ ︷︷ ︸

egeff

,

(33)

this particular case (e.g. projective invariant) will be used through this work.
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5.2. δfLG

Let us take as starting point the geometrical Lagrangian (19)

Lgs =

√
det

[
λgαβ

(
1 +

Rs

4λ

)
+ λFαβ

(
1 +

RA

4λ

)]
(34)

=
√
|g|λ2α2

(√
1 +

1
2
FµνFµν − 1

16
(FµνF̃µν)2

)
(35)

then, having into account that. RA = fµνRµν and ∂ ln(detFµν)
∂Fαβ

= fαβ we obtain

δLG

δFσω
= 0→

(√
|g|λβ
2Rb

)[
F

σωβ − F

4λ
R[µν]χ

µνσω

]
= 0, (36)

where F ≡[FµνF
µν− 1

4b
−2(Fµν F̃

µν)2], Fσα≡[F σα− 1
4b

−2(Fµν F̃
µν)F̃ σα] and χµνσω ≡

fµωfσν − fµσfων .
Contracting (36) with Fαβ , a condition over the curvature and the electromag-

netic field invariants is obtained as(√
|g|λβ
Rb

)
F

[
β − RA

2λ

]
= 0.

The condition satisfied for RA = −4λ is the exact projective invariant case (that
corresponds with β = 0), and for RA = 2λ.

6. Emergent Trace-Free Gravitational Equations: The Meaning
of Λ

Starting from the trace-free equation (31)

◦
Rαβ −

gαβ

2

◦
R︸ ︷︷ ︸

≡Gαβ

= 6
(
−hαhβ +

gαβ

2
hγh

γ
)

︸ ︷︷ ︸
≡T h

αβ

+
gαβ

2
Rs + TF

αβ + 2λραβ , (37)

ραβ ≡ gαβ +
1
W

(
FαλF

λ
β +

Fµν F̃
µν

2b2

(
FηρF̃

ηρ

8
gαβ − FαλF̃

λ
β

))
, (38)

TF
αβ ≡

Rs

2W

{(
FαλF

λ
β − FµνF

µνR(αβ)

Rs

)

+
1

2b2

[
Fµν F̃

µν

(
FηρF̃

ηρ

8
gαβ−FαλF̃

λ
β

)
+

(FηρF̃
ηρ)2

2
R(αβ)

Rs

]}
.

(39)
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Then, as
◦
∇

α

Gαβ =
◦
∇

α

(T h
αβ + TF

αβ) = 0 consequently

∇α
(gαβ

2
Rs + 2λραβ

)
= 0

⇒
(gαβ

2
Rs + 2λραβ

)
= Λgαβ → Rs = 2Λ (40)

come back to the original trace-free expressions we have the expected formula
◦
Rαβ −

gαβ

2

◦
R︸ ︷︷ ︸

≡Gαβ

= 6
(
−hαhβ +

gαβ

2
hγh

γ
)

︸ ︷︷ ︸
≡T h

αβ

+ TF
αβ + Λgαβ. (41)

Remark 4. Tracing the first expression in (40) we have Rs = 2Λ =
◦
R + 6hµh

µ

linking the value of the curvature and the norm of the torsion vector field. Conse-
quently, if the dual of the torsion field has the role of the energy–matter carrier,
the meaning of lambda as the vacuum energy is immediately stablished.

7. The Vector hµ and the Energy–Matter Interpretation

One of the main characteristics in unified field theoretical models is the possibility to
introduce the energy and matter through its geometrical structure. In our case the
torsion field takes the role of right-hand side of the standard GR gravity equation
by means of its dual, namely hµ.

Consequently, in order to explain the physical role of hµ we know (due to the
Hodge–de Rham decomposition (Appendix B) that it can be decomposed as:

hα = ∇αΩ + εβγδ
α ∇βAγδ + γ1

axial vector︷ ︸︸ ︷
εβγδ

α Mβγδ + γ2

polar vector︷︸︸︷
Pα , (42)

where γ1 and γ2 can be phenomenologically related to physical constants (e.g.
γ1 = γ2 = γ = 8π

c

√
G is a physical constant related to the Blackett formula [20]).

The arguments in favor of this type of theories and from the decomposition (42)
can be resumed as follows:

(i) the existence of an angular momentum Helmholtz theorem [21, 22]: the theorem
in analysis is exactly as in E3, but in the four-dimensional case M4 there exists
an additional axial vector ;

(iii) the concept of chirality is achieved in the model by the existence of polar and
axial vectors in expression (42).

(iv) if Ω, Aγδ are the wave tensors and εβγδ
α Mβγδ, Pα the particle vectors (vector

and axial part), the concept of an inertial-wave vector is introduced in Eq. (42).

Consequently, from the equation of motion for the torsion namely: ∇αT
αβγ =

−λF βγ and back to (42) we obtain the following important equation:
◦
�Aγδ − γ[∇αM

α
γδ + (∇γPδ −∇δPγ)] = −λFγδ. (43)
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Consider, in particular, the case when λF γδ → 0:

◦
�Aγδ = γ[∇αM

α
γδ + (∇γPδ −∇δPγ)]. (44)

We can immediately see that, if Mα
γδ is identified with the intrinsic spin angular

momentum of the ponderable matter, Pδ is its lineal momentum vector and Aγδ is
the gravitational radiation tensor, then Eq. (4) states that the sum of the intrinsic
spin angular momentum and the orbital angular momentum of ponderable matter
is conserved if the gravitational radiation is absent.

8. Is the G Really Constant?

At this level, no assertion can state with respect to G or even with respect to c. The
link with the general relativistic case is given by the identification of electromagnetic
energy–momentum tensor with the term analogous TF

αβ in our metric variational
equations:

8πG
c4

(
FαλF

λ
β − FµνF

µν gαβ

4

)
→ Rs

2W

(
FαλF

λ
β − FµνF

µν R(αβ)

Rs

)
.

Consequently, we have

κ =
8πG
c4
→ Rs

2R2α2
and

gαβ

4
=
R(αβ)

Rs
(45)

the above expression says that the ratio must remain constant due to the Noether
symmetries and conservation laws of the field equations. Note that (as in the case
of b) there exists a limit for all the physical fields coming from the geometrical
invariants quantities.

9. Physical Consequences

9.1. Electrodynamic structure in 3 + 1

The starting point will be the line element in 3 + 1 splitting [6, 7] (Appendix C):
the four-dimensional spacetime is split into three-dimensional space and one-
dimensional time to form a foliation of three-dimensional spacelike hypersurfaces.
The metric of the spacetime is consequently given by ds2 = −α2dt2 + γij(dxi +
βidt)(dxj + βjdt), where γij is the metric of the three-dimensional hypersurface,
α is the lapse function, and βi is the shift function (see Appendix C for details).
For any nonlinear Lagrangian, in sharp contrast with the Einstein–Maxwell case,
the field equations d ∗ F = ∗J and the Bianchi-geometrical condition dF = 0
(where we have defined the Hodge dual ∗ and F = ∂L

∂F ) are expressed by the vector
fields

E,B,E =
∂L
∂E

, B =
∂L
∂B

(46)
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In our case given by the geometrical Lagrangian Lg (not be confused with the Lie
derivative Lβ !)

∇ · E = −h · B + 4πρe, (47)

∇ ·B = 0, (48)

∇× (αE) = −(∂t − Lβ)B

= −∂0B + (β · ∇)B − (B · ∇)β, (49)

∇× (αB) + h0B−h× E = −(∂t − Lβ)E + 4παj

= ∂0E− (β · ∇)E + (E · ∇)β + 4παj, (50)

where hµ is the axial torsion vector.

9.2. Dynamo effect and geometrical origin of αΩ term

In the case of weak field approximation and (F 01 → Ei, F jk → Bi) the electromag-
netic Maxwell-type equations in 3+1 take the form

∇νF
νµ = T µνρFνρ = εµνρ

δh
δFνρ (d∗F =∗ J), (51)

∇ ·E = −h · B, (52)

∂tE −∇×B = h0B − h× E (53)

and

∇ ∗
ν F νµ = 0 (dF = 0), (54)

∇ · B = 0, (55)

∂tB = −∇× E. (56)

Putting all together, the set of equations is

∇ · E + h ·B = ρext, (57)

∂tE −∇×B = h0B − h× E − σext[E + v ×B], (58)

∇ ·B = 0, (59)

∂tB = −∇× E, (60)

where we have introduced external charge density and current. Following the stan-
dard procedure we take the rotational to the second equation above, obtaining
straightforwardly the modified dynamo equation

∇× ∂tE +∇2
B = ∇× (h0B) + (h · B − ρext)h

+ (∇ · h)E − σext[∂tB + (∇ · v)B], (61)

where the standard identities of the vector calculus plus the first, the third and the
fourth equations above have been introduced. Note that in the case of the standard
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approximation and (in the spirit of this research) without any external or additional
ingredients, we have

∇2
B = h0(∇×B) + (h · B)h+ (∇ · h)E. (62)

Here we can see that there exists an α-term with a pure geometrical origin, and
not only a turbulent one that is given by h0 (the zero component of the dual of the
torsion tensor).

9.3. Comparison with the mean field formalism

Now we compare the above equations with respect to the mean field formalism [23].
Starting from expressions (51)–(56) as before, we have

η∇2
B +∇× (v ×B)− ∂tB+η∇× (−h0B + h× E)︸ ︷︷ ︸

EGeom

= 0. (63)

EGeom takes the place of electromotive force due to the torsion field with full
analogy as E =〈u× b〉 is the mean electromotive force due to fluctuations. Also, as
in the mean field case that there are the splitting

E = E〈0〉 + E〈B〉 (64)

with E〈0〉 independent of 〈B〉 and E〈B〉 linear and homogeneous in B, we have in
the torsion case the following correspondence:

−h0B ←→ E〈B〉,

h× E ←→ E〈0〉,

geometrical←→ turbulent.

Consequently, the problems of mean-field dynamo theory that are concerned with
the generation of a mean EMF by turbulence have in this model a pure geometric
counterpart. In the past years, attention has shifted from kinematic calculations,
akin to those familiar from quasilinear theory for plasmas, to self-consistent theories
which account for the effects of small-scale magnetic fields (including their back-
reaction on the dynamics) and for the constraints imposed by the topological conser-
vation laws, such as that for magnetic helicity. Here the torsion vector generalizes (as
we can see from above set of equations) the concept of helicity. The consequence of
this role of the dual torsion field is that the traditionally invoked mean-field dynamo
mechanism (i.e. the so-called alpha effect) may be severely quenched or increased
at modest fields and magnetic Reynolds numbers, and that spatial transport of this
generalized magnetic helicity is crucial to mitigating this quench. Thus, the dynamo
problem is seen in our model as one of the generalized helicity transports, and so
may be tackled like other problems in turbulent transport. A key element in this
approach is to understand the evolution of the torsion vector field besides that of
the turbulence energy and the generalized helicity profiles in spacetime. This forces
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us to confront the problem of spreading of strong MHD turbulence, and a spatial
variant or analogue of the selective decay problem with the dynamics of the torsion
field.

10. Torsion, Axion Electrodynamics or Chern–Simons Theory?

Let us briefly review the electromagnetic sector of the QCD theory based on a
gauge symmetry SU(3)× U(1)

LQCD/QED =
∑

ψf [γµ(∂µ − igf t
αAα

µ − iqfAµ)−mf ]ψf

−
Gα

µνG
αµν

4
− FµνF

µν

4
−
g2θGα

µνG̃
αµν

32π2
− g2θFµν F̃

µν

32π2
. (65)

As is well known, electromagnetic fields will couple to the electromagnetic currents,
namely: Jµ =

∑
fqfψfγµψf consequently, there appear terms that will induce

through the quark loop the coupling of Fµν F̃
µν (the anomaly) to the QCD topo-

logical charge. The effective Lagrangian can be written as

LMCS = −FµνF
µν

4
−AµJ

µ − c

4
θFµν F̃

µν , (66)

where a pseudoscalar field θ = θ(x, t) (playing the role of the axion field) is intro-
duced and c =

∑
f

(qf e)2

2π2 . This is the CS Lagrangian where, if θ is constant, the
last term is a total divergence: Fµν F̃

µν = ∂µJ
µ
CS. The question appears if θ is not

a constant θFµν F̃
µν = θ∂µJ

µ
CS = ∂µ(θJµ

CS)− Jµ
CS∂µθ.

Now we can see from the previous section that if, from the general decomposition
of the four-dimensional dual of the torsion field via the Hodge–de Rham theorem,
we retain bα as gradient of a pseudoscalar (e.g. axion) these equations coincide in
form with the respective equation for MCS theory. Precisely because under this
condition hα = ∇αθ , in flat space (curvature = 0 but torsion �= 0) the equations
become the same as in [8], namely

∇ · E − cP ·B = ρext, (67)

∂tE −∇×B = −c
·
θB + cP × E − σext[E + v ×B], (68)

∇ ·B = 0, (69)

∂tB = −∇× E (70)

provided:

h0 → −c
·
θ, (71)

h→ −cP , (72)

where from QCD the constant c is determined as c = e2

2π and the ∂µθ = (
·
θ, P ) in

the [8] notation. The main difference is that while in the case of photons in axion
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ED was given by [9] the Lagrangian where the above equations are derived as

LMCS = −FµνF
µν

4
−AµJ

µ +
c

4
PµJ

µ
CS, Jµ

CS ≡ εµσρνAσFρν (73)

in our case is the dual of the torsion field (that we take as the gradient of a pseu-
doscalar) responsible for the structure of the set of equations.

11. Magnetic Helicity Generation and Cosmic Torsion Field

Here we consider the projective invariant case β = 0 (RA = −4λ) where the gravi-
tational and field equations are considerably simplified because R = 1 and b−1 = 0.
Scalar curvature R and the torsion 2-form field T a

µν with a SU(2) Yang–Mills struc-
ture are defined in terms of the affine connection Γλ

µν and the SU(2) valuated
(structural torsion potential) fa

µ by

R = gµνRµν , Rµν = Rλ
µλν ,

Rλ
µλν = ∂νΓλ

µρ − ∂ρΓλ
µν + · · · ,

T a
µν = ∂µf

a
ν − ∂νf

a
µ + εa

bcf
b
µf

c
ν .

(74)

G and Λ are the geometrically induced Newton gravitational constant (as we have
been discussed before) and the integration cosmological constant, respectively. From
the last equation for the totally antisymmetric Torsion 2-form, the potential fa

µ

defines the affine connection Γλ
µν . Similar to the case of Einstein–Yang–Mills sys-

tems, for our new UFT model it can be interpreted as a prototype of gauge theories
interacting with gravity (e.g. QCD, GUTs, etc.). We stress here the important fact
that all the fundamental constants are really geometrically induced as required by
the Mach principle. After varying the action, we obtain the gravitational equation
(41), namely
◦
Rαβ −

gαβ

2

◦
R = 6

(
−hαhβ +

gαβ

2
hγh

γ
)

+ κgeom

[
FαλF

λ
β − FµνF

µν gαβ

4

]
+ Λgαβ

(75)

with the “gravitational constant” geometrically induced as

κg ≡
Rs

2W =
8πG
c4

∣∣∣∣
today

(76)

and the field equation for the torsion 2-form in differential form

d∗T a +
1
2
εabc(fb ∧∗ Tc −∗ Tb ∧ fc) = −λ∗fa. (77)

Note that κg (76) and Λ are not independent, but related by Rs = 2Λ. In the
case β = 0 we have the simplest expression:

κg ≡
Rs

2
(
1 + Rs

4λ

)2 =
Λ(

1 + 2Λ
4λ

)2

in consequence, generalizing the conjecture of Markov in [24], if Λ is proportional
to the energy, κ goes as Λ if |Λ| ≤ 1, and as Λ−1 in other case.
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We are going to seek for a classical solution of (75) and (77) with the following
spherically symmetric ansatz for the metric and gauge connection:

ds2 = dτ2 + a2(τ)σi ⊗ σi ≡ dτ2 + ei ⊗ ei. (78)

Here τ is the Euclidean time and the dreibein is defined by ei ≡ a(τ)σi. The gauge
connection is

fa ≡ fa
µdx

µ = fσa, (79)

for a, b, c = 1, 2, 3, and for a, b, c = 0, we have

f0 ≡ f0
µdx

µ = sσ0. (80)

This choice for the potential torsion is according to the symmetries involved in the
problem.

The σi 1-form satisfies the SU(2) Maurer-Cartan structure equation

dσa + εa
bcσ

b ∧ σc = 0 (81)

Note that in the ansatz the frame and SU(2) (isospin-like) indices are identified
(as for the case with the non-abelian-Born–Infeld (NBI) Lagrangian of [30]). The
torsion 2-form

T γ =
1
2
T γ

µνdx
µ ∧ dxν (82)

becomes

T a = dfa +
1
2
εa

bcf
b ∧ f c

=
(
−f +

1
2
f2

)
εa

bcσ
b ∧ σc, (83)

d∗T a + 1
2ε

abc(fb ∧∗ Tc −∗ Tb ∧ fc) = −2λ∗fa,

(−2f + f2)(1− f)dτ ∧ eb ∧ ec = −2λdτ ∧ eb ∧ ec,
(84)

∗T a≡h(−2f + f2)dτ ∧ e
a

a2
, (85)

∗fa = −f dτ ∧ e
b ∧ ec

a3
. (86)

Note that to be complete in our description of the possible physical scenarios, we
include f0 as a U(1) component of the torsion potential (although does not belong
to the space SU(2)/U(1)). Taking all the above issues into account, the expression
for the torsion is analogous to the non-abelian 2-form strength field of [30].

Inserting T a from (83) into the dynamical equation (77), we obtain

(−2f + f2)(1− f)dτ ∧ eb ∧ ec = −λdτ ∧ eb ∧ ec, (87)

and from expression (87), we have an algebraic cubic equation for f

(−2f + f2)(1 − f) + λ = 0. (88)

We can see that, in contrast with our previous work with a dualistic the-
ory [30] where the NBI energy–momentum tensor of BI was considered, there exist
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three non-trivial solutions for f , depending on the cosmological constant λ. In
this preliminary analysis of the problem, only the values of f make the quantity
(−f + 1

2f
2) ∈ R. Consequently, for λ = 2, we find f = 2.35, then

T a
bc =

2
5
εa

bc

a2
; T a

0c = 0. (89)

That is, only spatial torsion field is non-vanishing while cosmic time torsion field
vanishes (an analogous feature with magnetic and electric Yang–Mills can be seen
in the solution of Giddings and Strominger and in [30]). Substituting the expression
for the torsion 2-form (89)a into the symmetric part of the variational equation we
reduce Eq. (41) or (75) to an ordinary differential equation for the scale factor a,

3

[(
ȧ

a

)2

− 1
a2

]
− Λ =

3κg

4a2
(f2 + s2) +

3
2a4

f2(f − 2)2 (90)

which in the case for the computed value for f ∼ 2.35 with s = 10 and Λ � 1 the
scale factor is described in Fig. 1 and the scale factor goes as:

a(τ) = Λ−1/2

√(
1−

12κ2
gΛ
α

)1/2

sinh
(√

Λ/3(τ − τ0)
)
− 1 + κg(f2 + s2)/4, (91)

where we define the geometrically induced fine structure function α ≡ κg(f2+s2)/4.

Fig. 1. Wormhole solution (a versus t) for f = 2.35 and constants k = π < 1.

aIn the tetrad:
◦
R00 = −3

··
a
a

,
◦
Rab = −[

··
a
a

+ 2(
·
a
a
)2 − 2

a2 ].
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11.1. Primordial symmetries of standard model and torsion field

In [25], the cross-section for neutrino helicity spin flip obtained from this type of
f(R;T ) model of gravitation with dynamic torsion field introduced by one of the
authors in [16] was phenomenologically analyzed using the relation with the axion
decay constant fa (Peccei–Quinn parameter) due to the (partially logarithmical)
energy dependence of the cross-section, Consequently, the link with the phenomeno-
logical energy/mass window was found from the astrophysical and high energy
viewpoints. The important point is that, in relation with the torsion vector inter-
action Lagrangian, the fa parameter gives an estimate of the torsion field strength
that can variate with time within cosmological scenarios as the described above,
potentially capable of modifying the overall leptogenesis picture, beside the mag-
netogenesis, the bariogenesis and also to obtain some indication about the original
(super) symmetry of the early universe.

In FRW scenario given here, we saw that the torsion through its dual vector,
namely:

h0 =
2
5
δ0aCτ

a2
dτ ∧ ea (92)

goes as ∼ a−2 with Cτ a covariantly constant vector field (e.g.
◦
∇Cτ = 0) that we

take of the form Cτ ∼ (
·
θ + qτ ) (due to the Hodge–de Rham decomposition of hµ,

expression (42)) where θ is a pseudoscalar field playing the obvious role of axion and
qτ : vector field linking h0 with the magnetic field via the equation of motion for the
torsion. Consequently, the torsion dual vector hi has the maximum value when the
radius of the universe is amin, e.g. amin = a(τ0) increases to the maximum value of
the spin-flip neutrino cross-section and, for instance, the quantity of right neutrinos
compensating consequently the actual asymmetry of the electroweak sector of the
standard model (see the behavior of a in Fig. 1). This fact indicates that the original
symmetry group contains naturally SUR(2)× SUL(2)×U(1) typically inside GUTs
structurally based generally on SO(10), SU(5) or some exceptional groups as E(6),
E(7), etc.

Also, it is interesting to note that from the FRW line element written in terms of
the cosmic time the Hubble flow electromagnetic fields Eµ ≡ (0, Ei) = a−2(0, ∂τAi)
and Bµ ≡ (0, Bi) = a−2(0, εijk∂jAk)

∇ ·E +
(
α

f
∇θ + Π

)
· (a2B) = 0, (93)

∂τ (a2E)−∇× (a2B) =
(
α

f
∂τθ + Π0

)
(a2B)−

(
α

f
∇θ + Π

)
× E, (94)

∇ ·B = 0, (95)

∂tB = −∇× E, (96)
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where Πµ ≡ fµ(uµ, γ
5bµ, eAµ, . . . , ) is a vector function of physical entities as poten-

tial vector, vorticity, angular velocity, axial vector, etc. as described by expression
(42). In principle, we can suppose that it is zero (low back reaction [28]) then

h =
α

f
∇θ, h0 =

α

f
∂τθ (97)

being [∂2
τ − ∇

2 − α
f ∂τθ∇×](a2B) = 0 the second-order equation for the magnetic

field that shows the chiral character of the plasma particles.

11.2. Magnetogenesis and cosmic helicity

Now we pass to see which role is played by the torsion field in the mag-
netic field generation in a FRW cosmology. Taking as the starting point the
(hyper)electrodynamic equations [29] and introducing a Fourier mode decompo-
sition B(x) =

∫
d3kB(k)e−ik·x with B(k) = hi

−→e i where i = 1, 2, −→e 2
i = 1,

−→e i ·
−→
k = −→e 1 ·−→e 2 = 0, the torsion-modified dynamical equations for the expanding

FRW become
·
z +

[(
2
·
a+

k2

σ

)
+
ah0|k|
σ

]
z = 0, (98)

·
z +

[(
2
·
a+

k2

σ

)
− ah0|k|

σ

]
z = 0, (99)

where the magnetic field is written in terms of complex variable z(z) as

z = h1 + ih2, (100)

z = h1 − ih2. (101)

From Eq. (99) we see that the solution for z namely:

z = z0e
−

“
2a+ k2

σ τ
”
+

R ah0|k|
σ dτ (102)

contains the instable mode in the sense of [29] k
σ τ <

∫
ah0

σ dτ . Consequently, a
defined polarization of the magnetic field appears and from the dynamical equation
for the torsion field: ∇[µhν] = −λF̃µν that in this case is

∇[ihτ ] = ∇i(a−2qτ ) = −λBi, (103)

which implies a relation between the vector part of the h0 (namely qτ ) with the
vector potential Ak of the magnetic field as follows:

∇iqτ ≈ −λεijk∇jAk. (104)

Consequently, the primordial magnetic field (or seed) would be connected in a self-
consistent way with the torsion field by means of the dual vector h0. It (hµ) in turn,
would be connected phenomenologically with the physical fields (matter) of theory
through Hodge–de Rham decomposition expression (42). We note from expression
(102) that the pseudoscalar (axion) controls the stability, growth and dynamo effect
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but not the generation of the magnetic field (primordial or seed) as is clear from
expression (104) where the (pseudo) vector part of h0 contributes directly to the
generation of the magnetic field as clearly given by Eq. (103).

12. Discussion and Perspectives

In this paper, we have introduced a simple geometric Lagrangian in the context of
an unified theory based in a non-Riemannian geometry. From the functional action
proposed, that is, as square root or measure (Nambu–Goto–Born–Infeld type), the
dynamic fundamental equations were derived: an equation analogous to trace-free
Einstein equations and a dynamic equation for the torsion (which was taken totally
antisymmetric). Although the aim of this paper is to introduce the theoretical
basis of the model, from this starting point, we bring some results and possible
explanations about a few problems in the current research [26]. Some of them are
as follows:

(1) From the geometrical viewpoint:

(i) The cosmological term appears as integration constant of a natural manner
and is linked with the curvature and fundamental fields.

(ii) The fundamental constants (as G) are really functions of the spacetime
coordinates geometrically induced and linked between them.

(iii) There are a geometrical origin (not turbulent) of the α-term and the
dynamo effect given by the torsion field.

(2) From an FRW cosmological scenario:

(iv) A new wormhole solution in cosmological spacetime with torsion field is
presented and analyzed.

(v) We show that primordial cosmic magnetic fields can be originated by the
dual torsion field hµ.

(vi) The axion field, that is contained in hµ, controls the dynamics and sta-
bility of the cosmic magnetic field, but is not responsible for the magne-
togenesis itself.

(vii) The dynamic torsion field hµ acts as a mechanism for the reduction of an
original GUT symmetry of the universe containing ∼ SU(3)× SU(2)R ×
SU(2)L × U(1) to SU(3)× SU(2)L × U(1) today.

(viii) From (vii) the GUT candidates are SO(10), SU(5) or some exceptional
groups as E(6), E(7), for example.

Appendix A.

g-variation

L =
√
|g|

√
det(αλ)

√
1 +

1
2b2

FµνFµν − 1
16b4

(Fµν F̃µν)2 ≡
√
|g|

√
det(αλ)R,

(A.1)
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where

b =
α

β
=

1 + (RS/4λ)
1 + (RA/4λ)

, (A.2)

RS = gαβRαβ , (A.3)

RA = fαβRαβ , (A.4)

and λ is arbitrary constant. Knowing that in the metrical case we have as usual
procedure:

δgL = [δ(
√
|g|

√
det(αλ))R +

√
|g|

√
det(αλ)δR], (A.5)

δ(FµνF
µν) = 2FµλF

λ
ν δgµν , (A.6)

δ(F̃µνF
µν) =

(
−1

2
F̃ηρF

ηρgµν + 4F̃µρF
ρ

ν

)
δgµν , (A.7)

then[
2R(αβ)−

gαβ

2
Rs

]
R =

Rs

Rα2

[
FαλF

λ
β +

1
2b2

Fµν F̃
µν

(
FηρF̃

ηρ

8
gαβ − FαλF̃

λ
β

)]

−FµνF
µνR(αβ) +

R(αβ)

Rα2


(
FηρF̃

ηρ
)2

4R2b2
− FµνF

µν


+ 4λ

[
gαβ +

1
R2α2

(
FαλF

λ
β +

Fµν F̃
µν

2b2

×
(
FηρF̃

ηρ

8
gαβ − FαλF̃

λ
β

))]
, (A.8)

R(αβ) −
gαβ

4
Rs =

Rs

2R2α2

[
FαλF

λ
β − FµνF

µν R(αβ)

Rs

]

+
Rs

4R2α2b2

[
Fµν F̃

µν

(
FηρF̃

ηρ

8
gαβ − FαλF̃

λ
β

)

+
FηρF̃

ηρ

2
R(αβ)

Rs

]
+ 2λ

[
gαβ +

1
R2α2

(
FαλF

λ
β +

Fµν F̃
µν

2b2

×
(
FηρF̃

ηρ

8
gαβ − FαλF̃

λ
β

))]
, (A.9)

Appendix B.

Some remarks on the general Hodge–de Rham decomposition of h = hαdx
α.
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Theorem B.1. If h = hαdx
α /∈ F ′(M) is a 1-form on M, then there exist a zero-

form Ω, a 2-form α = A[µν]dx
µ ∧ dxν and a harmonic 1-form q = qαdx

α on M

such that

h = dΩ + δα+ q → hα = ∇αΩ + εβγδ
α ∇βAγδ + qα. (B.1)

Note that even if it is not harmonic, and assuming that qα is a polar vector, an
axial vector can be added such that the above expression takes the form

hα = ∇αΩ + εβγδ
α ∇βAγδ + εβγδ

α Mβγδ + qα, (B.2)

where Mβγδ is a completely antisymmetric tensor (of such a manner that εβγδ
α Mβγδ

≡ γ5bα is an axial vector).
Consequently, we know that in unified theories where we are not able to deal with

energy–momentum tensor, the fields and their interactions are effectively restricted
due to the same geometrical framework: the spacetime itself. This fact permits us
to rewrite (14) considering the physical quantities of interest:

hα = ∇αΩ + εβγδ
α ∇βAγδ + γ5bα + (Pα − eAα).

Appendix C.

C.1. Electrodynamical equations in 3 + 1

The starting point will be the line element in 3 + 1 splitting [6, 7]: the four-
dimensional spacetime is split into three-dimensional space and one-dimensional
time to form a foliation of three-dimensional spacelike hypersurfaces. The metric of
the spacetime is consequently, given by

ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt),

where γij is the metric of the three-dimensional hypersurface, α is the lapse function,
and βi is the shift function. At every spacetime point, a fiducial observer (FIDO)
is introduced in such a way that his corresponding world-line is perpendicular to
the hypersurface where he is stationary.

His FIDO 4-vector velocity is then given by

Uµ =
1
α

(1,−βi), Uµ = (−α, 0, 0, 0),

one deals with the physical quantities defined on the three-dimensional hypersurface
as measured by the FIDO. For example, the electric field and the magnetic field
are defined with the help of the Uµ respectively, by

Eµ = FµνUν ,

Bµ = − 1
2
√−g ε

µνρσUνFµν ,

note that the zero components are null: E0 = B0 = 0. Also, the 4-current Jµ can
be similarly decomposed as

Jµ = ρeU
µ + jµ,
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where we defined

ρe = −JµUµ,

jµ = Jµ + JνUνU
µ

then j0 = 0. So that j, E and B can be treated as 3-vectors in spacelike hypersur-
faces. In terms of these 3-vectors the Maxwell equations can be written as

∇ · E = 4πρe,

∇ · B = 0,

∇× (αE) = −(∂t − Lβ)B

= −∂0B + (β · ∇)B − (B · ∇)β,

∇× (αB) = −(∂t − Lβ)E + 4παj

= ∂0E − (β · ∇)E + (E · ∇)β + 4παj.

The derivatives in these equations are covariant derivatives with respect to the
metric of the absolute space γij being Lβ the Lie derivative operator geometrically
defined as LβV = d(iβ · V ) with V a vector field.

ZAMOs observers

U =
1
α

(∂t − βiei)

in the Boyer–Lindquist coordinates we have er, eθ and eϕ = 1√
gϕϕ

∂ϕ. The plasma
4-velocity (medium) u can be expressed as u = γ(U + v) where v is the plasma
3-velocity with respect to the ZAMOs.
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