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Counterterms in semiclassical Hořava-Lifshitz gravity
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We analyze the semiclassical Hořava-Lifshitz gravity for quantum scalar fields in 3+1 dimensions.
The renormalizability of the theory requires that the action of the scalar field contains terms with
six spatial derivatives of the field, i.e. in the UV, the classical action of the scalar field should
preserve the anisotropic scaling symmetry (t → L2zt, ~x → L2~x, with z = 3) of the gravitational
action. We discuss the renormalization procedure based on adiabatic subtraction and dimensional
regularization in the weak field approximation. We verify that the divergent terms in the adiabatic
expansion of the expectation value of the energy-momentum tensor of the scalar field contain up to
six spatial derivatives, but do not contain more than two time derivatives. We compute explicitly
the counterterms needed for the renormalization of the theory up to second adiabatic order and
evaluate the associated β functions in the minimal subtraction scheme.

PACS numbers: 04.62.+v; 04.50.kd; 04.60.-m; 11.10.Gh

One year and a half ago, Hořava proposed a new approach to formulate a quantum theory of gravity [1]. Hořava’s
theory, which has attracted enormous attention, consists of a non-diffeomorphism-invariant ultraviolet modification
of Einstein’s general relativity. The main idea in [1] is to extend Einstein-Hilbert action with higher spatial derivative
terms, whose introduction, while manifestly breaking local Lorentz invariance, leads to heal the short distance diver-
gences and ultimately yields a power counting renormalizable theory. The way this is achieved without introducing
ghost instabilities is keeping the requirement of the theory to be of second-order in time derivatives. This introduces
an asymmetry between the time coordinate t and the coordinates xi associated to a preferable foliation that de-
fines a three-dimensional space-like hypersurface of induced metric (3)gij . In turn, four-dimensional diffeomorphism
invariance results manifestly broken at short distances, and consequently the theory only exhibits diffeomorphism
invariance in three-dimensions, in addition to the reparameterization invariance in time. According to this picture,
the four-dimensional general covariance of gravity would emerge merely as an approximate symmetry at low energy.
Fragmentation of space-time diffeomorphism invariance in the form of a preferable three-dimensional space-like

hypersurfaces defined at constant time, immediately suggests to consider the ADM decomposition for the metric as
the convenient picture. Namely, consider

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt), (1)

where, as usual, Latin indices refer to the spatial coordinates, i, j = 1, 2, 3, and gij = (3)gij . In the non-projectable
theory, the lapse function N depends both on time and the spatial coordinates, in such a way general relativiy is
captured within this formulation.
The action of Hořava’s theory is given by

S =
1

16πG

∫

dt dx3 N
√
g
(

KijK
ij − λK2 − 2Λ + ξR − V

)

(2)

where Λ is the bare cosmological constant and λ and ξ are arbitrary bare coupling constants; Einstein the-
ory corresponds to the special choice λ = 1. The extrinsic curvature Kij in the ADM variables takes the form
Kij = (

.
gij +∇iNj +∇jNi)/(2N), whose trace is given by K = Kijg

ij . Here, ∇i denotes the spatial derivative, while
the dot denotes the derivative with respect to time. The function V in (2) plays the rôle of a potential, as it only
depends on spatial derivatives of the metric, which would include higher derivative contributions (see below). In (2),
R represents the Ricci scalar curvature of the three-dimensional space-like hypersurface of induced metric gij .
The presence of terms in the action that involve higher spatial derivatives leads to different scaling dimensions for

the time and the spatial coordinates. This is represented by the scaling symmetry

xi → L2 xi, t → L2z t, N → N, Ni → L−4zNi (3)
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which is characterized by the dynamical critical exponent z. A consistent choice is z = 3, which is the one we will
consider throughout this paper. With this choice, we can consider the potential

V =
1

2
(a1∆R+ a2RijR

ij + ... ) + 4πG(b1∆
2R+ b2RijR

jkRi
k + ... ), (4)

where we are using the notation ∆ = ∇i∇i. The ellipses in (4) stand for other terms of the same dimension.
At low energy, the action turns out to be dominated by the term that involves the Ricci scalar R, with coefficient

ξ. In turn, the theory would reproduce Einstein’s general relativity in the infrared, provided λ flows to the value
λIR = 1. The consistency of the theory and the validity of this hypothesis were extensively discussed in the literature;
see [2–5] and references therein. Of special interest is the discussion in [6, 7], where an improved version of Hořava
gravity, which seems to be free of pathologies, was presented.
About renormalizability, of particular importance is the question on how the coupling of Hořava gravity to matter

affects the properties of the theory in the UV. With the purpose of addressing this problem, we study the coupling of the
theory to a quantum scalar field, representing the matter content. The gravitational field will be treated at a classical
level, so we are considering a semiclassical Hořava-Lifshitz gravity. It is interesting to remark that, if the matter fields
satisfy the usual dispersion relations (i.e if the classical action has four-dimensional general covariance), the theory
is non renormalizable. Indeed, it is well known in the context of quantum field theory in curved spacetimes that in
order to absorb the divergences associated to the matter fields it is necessary to include in the gravitational action
terms proportional to R2,RµνRµν and RµνρσRµνρσ , where Rµνρσ denotes the components of the four-dimensional
Riemann tensor. These terms contain four time derivatives of the metric, and therefore are not included in Hořava
gravity. As we will see, renormalizability of the field theory demands that the action for the matter sector contains
terms with six spatial derivatives, implying that in the UV the coupling to the scalar field preserves the Lifshitz-type
anisotropic scaling with critical exponent z = 3. We will verify that the divergent terms in the adiabatic expansion of
the expectation value of the stress-tensor associated to the scalar field actually contains up to six spatial derivatives
but it remains of second order in time derivatives. We will explicitly compute the counterterms needed for the
renormalization of the theory up to second adiabatic order, and we will write down the corresponding β-functions in
the minimal substraction scheme.
The computation techniques we will employ here have recently been employed with success to study renormalization

in the so-called Einstein-aether theory and in other field theories with modified dispersion relations [8]. The idea for
using the same techniques in Hořava-Lifshitz gravity comes from the observation that this theory is closely related to
such Lorentz violating scenarios; see for instance [9] and [10].
Let us begin by considering the coupling of Hořava-Lifshitz gravity to a Lifshitz-type scalar field. In the ADM

form, the components (4)gµν of the four-dimensional metric (1) are given by

(4)g00 = −N2 + gijN
iN j , (4)g0i = gijN

j , (4)gij = gij ,

where i, j = 1, 2, 3, and gij refers to the metric on the three-dimensional foliation of constant t. We consider small
perturbations of the metric about flat space; namely, we write

N = 1 + δn, N i = δN i, gij = δij + hij . (5)

We consider a matter Lagrangian giving by a scalar field ϕ that also exhibits anisotropic critical scaling; namely[11]

Sϕ =

∫

dtdx3√gN

(

1

2N2
(
.
ϕ−N i∂iϕ)

2 + F (ϕ, ∂ϕ)− 1

2
m2ϕ2

)

where the potential F (ϕ, ∂ϕ) is given by

F (ϕ, ∂ϕ) = −g1∂
iϕ∂iϕ− g2 (∆ϕ)2 + g3∆

2ϕ∆ϕ,

where we have to be reminded of the definition ∆ϕ = 1√
g∂i(

√
ggij∂jϕ), with gij = (3)gij = (4)gij− ((4)gi0 (4)gj0)/(4)g00,

and (4)g00 = −N−2. The equation for the Green function reads

−∂t

(√
g

N
(∂t −N i ∂i)G(x, x′)

)

+ ∂j

(

N i√g

N
(∂t −N i ∂i)G(x, x′)

)

−m2√gN G(x, x′) + 2g1∂i
(

N
√
g ∂iG(x, x′)

)

−

2g2
√
g∆(N ∆G(x, x′)) + g3

√
g∆

(

N ∆2G(x, x′)
)

+ g3
√
g∆2 (N ∆G(x, x′)) = −δ(x− x′). (6)

At the linearized level we have (5), which yields
√
g = 1 + h/2, gij = δij − hij . This can be used to write the

equation for the Green function (6) in the weak field approximation. The Feynman propagator of zero order in the
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metric perturbations reads

G
(0)
F (x, x′) =

∫

d4k

(2π)4
eik·(x−x′)

(−k20 + ω2
k − iε)

,

where k = |~k| and

ω2
k = m2 + 2g1k

2 + 2g2k
4 + 2g3k

6,

while the first order contribution can be written as follows

G
(1)
F (x, x′) =

∫

d4k

(2π)4

∫

d4p

(2π)4
eip·xeik·(x−x′) fk(p)

(−k20 + ω2
k − iε)

(

−(k0 + p0)2 + ω2
|~k+~p|

)

≡
∫

d4k

(2π)4

∫

d4p

(2π)4
eip·xeik·(x−x′) fk(p) (1 + ǫp)

−1

(−k20 + ω2
k − iε) (−k20 + ω2

k)
. (7)

Here, fk(p) is a function of k0, ki, p0, and pi that is linear in the metric perturbations

fk(p) =

(

δn− h

2

)

k24 + 2ik4kiδN
i −

(

δn+
h

2

)

ω2
k + hijk

ikj
dω2

k

dk2
+ hijδrsk

ikjkrps
d2ω2

k

d(k2)2

+ik4p0

(

δn− h

2

)

− δN ip0ki + ik4δN
ipi −

((

δn+
h

2

)

δij pikj + hijpikj

)

dω2
k

dk2

− d2ω2
k

d(k2)2

(

δn

2
p2k2 +

h

2

(

δijk
ipj

)2 − 1

2
hijk

ikjp2 − hijδrsp
iprkjks

)

+
d3ω2

k

d(k2)3

(

δn

4
p2k4 +

2

3
hijk

ikj(δrsk
rps)2 − δn

3
(δijk

ipj)2k2
)

− d2ω2
k

d(k2)2

(

h

4
p2δijk

ipj − 1

2
hijk

ipj
)

− d3ω2
k

d(k2)3

(

δn

3
p2k2δijk

ipj +
h

3

(

δijk
ipj

)3 − 2

3
hijk

ikjp2δrsk
rps − 2

3
hijp

ikj(δrsk
rps)2

)

− d3ω2
k

d(k2)3

(

δn

12
p4k2 +

h

3
p2

(

δijk
ipj

)2 − 1

6
hijk

ikjp4 − 2

3
hijδrsp

iprkjksp2
)

− d3ω2

d(k2)3

(

h

12
p4δijk

ipj − 1

6
hijk

ipjp4
)

. (8)

with p2 = |~p|2, and ǫp is defined as

ǫp =
−2k0p0 − p20 + ω2

|~k+~p| − ω2
k

−k20 + ω2
k

. (9)

In what follows, for the sake of convenience, we perform a Wick rotation in Eq.(7) and we call k4 = ik0.
To obtain the adiabatic expansion of the Feynman propagator we start by expanding the integrand of Eq.(7) in

powers of p0 and pi. The different adiabatic orders of fk(p) are given by

f
ad(0)
k =

(

δn− h

2

)

k24 + 2ik4kiδN
i −

(

δn+
h

2

)

ω2
k + hijk

ikj
dω2

k

dk2
, (10a)

f
ad(1)
k =ik4p0

(

δn− h

2

)

− δN ip0ki + ik4δN
ipi −

((

δn+
h

2

)

δij pikj + hijpikj

)

dω2
k

dk2

+hijδrsk
ikjkrps

d2ω2
k

d(k2)2
, (10b)

f
ad(2)
k =− d2ω2

k

d(k2)2

(

δn

2
p2k2 +

h

2

(

δijk
ipj

)2 − 1

2
hijk

ikjp2 − hijδrsp
iprkjks

)

+
d3ω2

k

d(k2)3

(

δn

4
p2k4 +

2

3
hijk

ikj(δrsk
rps)2 − δn

3
(δijk

ipj)2k2
)

. (10c)
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From Eq.(8) one can see that no powers of p0 appear in the adiabatic orders f
ad(m)
k with m ≥ 3. Besides this property,

these m ≥ 3 adiabatic orders are not relevant for our discussion. Note also that the adiabatic orders f
ad(m)
k with

m ≥ 6 vanish.
We have also to expand ǫp in its adiabatic orders. That is,

ǫad(1)p =
2ik4p0 + 2

dω2

k

dk2 δijk
ipj

ω2
k + k24

, (11a)

ǫad(2)p =
−p20 +

dω2

k

dk2 p2 + 2
d2ω2

k

d(k2)2 (δijk
ipj)2

ω2
k + k24

, (11b)

and ǫ
ad(0)
p = 0. It is easy to see that ǫ

ad(m)
p with m ≥ 3 do not involve powers of p0; explicit expressions of these

adiabatic orders are not necessary for our present purposes.
The expression from which one obtains the components 〈Tµν(x)〉 of the expectation value of stress tensor after

taking the coincidence limit x → x′ is obtained by evaluating the derivatives of the propagator GF (x, x
′), as usual.

Appropriate regularization turns out to be necessary. For the case of the component T00(x), we find

〈T00(x)〉 = lim
x→x′

{

∂t∂t′ +
1

2
(δN i∂i∂t′ + δN i′∂i′∂t) +

m2

2
(1 + 2δn)

− (1 + 2δn)

(

−g1δ
ii′∂i∂

′
i − g2∂

2∂′2 +
1

2
g3(∂

4∂′2 + ∂2∂′4)

)

+
(

g1(h
ij′∂i∂j′ + hi′j∂i′∂j) + g2

(

hij∂i∂j∂
′2 + hi′j′∂i′∂j′∂

2
)

− g2(∂ihij∂j∂
′2 + ∂ihij′∂

2∂j′)
)

+
1

2
g3

(

hij∂i∂j∂
′4 + hi′j′∂i′∂j′∂

4 + ∂ihij∂j∂
′4 + ∂ihij′∂j′∂

4
)

− g3

(

hi′j′∂2∂i′∂j′∂
′2 + hij∂′2∂i∂j∂

2 − ∂ihij∂j∂
2∂′2 − ∂ihij′∂

2∂j′∂
′2
)

− 1

2
g3

(

∂2hij∂i∂j∂
′2 + ∂2hi′j′∂2∂i′∂j′ − ∂i∂

2hij∂j∂
′2 − ∂i∂

2hij′∂
2∂j′

)

− g3

(

∂kh
ij∂i∂j∂k∂

′2 + ∂k′hi′j′∂2∂i′∂j′∂k′ − ∂i∂khij∂k∂j∂
′2 − ∂i∂k′hij′∂

2∂k′∂j′
) }

Im GF (x, x
′) (12)

where hij = hij − h
2 δij , ∂

2 = ∂i∂i, and a primed index on a derivative indicates that the derivative is taken with
respect to a primed coordinate.
For the sake of simplicity, and because it is enough for our present purposes, we partially fix the gauge by setting

δN i = 0. This greatly simplifies the expression of the 〈T0i(x)〉 component, which reads

〈T0i(x)〉 =
1

2
lim
x→x′

(∂t∂i′ + ∂t′∂i) Im GF (x, x
′). (13)

To obtain the regularized expectation values of the stress tensor we use dimensional regularization. Therefore,
after computing the derivatives of Im GF (x, x

′) that appear in Eqns.(12) and (13), we can set x = x′. Then,
it is straightforward to separate the different adiabatic orders of 〈T0µ(x)〉 (µ = 0, 1, 2, 3), before performing the
integrations. In this way we obtain an integral expression for each adiabatic order. The next step is to use dimensional
regularization to perform the integrals. We apply dimensional regularization to both temporal and spatial directions,
but in a separated way. That is, we split the d−dimensional integrals into integrals in d1 and d2 dimensions, with
d = d1 + d2, where d1 → 1 and d2 → 3. All integrals in k4 are of the form

Id1
(j, l) =

Ωd1

(2π)d1

∫ +∞

0

dk4
kd1−1+j
4

(k24 + ω2
k)

l
=

Ωd1

(2π)d1

ω−2l+j+d1

k

2Γ(l)
Γ

(

l − j + d1
2

)

Γ

(

j + d1
2

)

where j is an even number (Id1
(j, l) = 0 if j is odd) and l is an integer; Ωd1

= 2πd1/2/Γ(d1/2), with Γ(z) being the
Gamma function. Note that the right hand side is finite in the limit d1 → 1 (as is usual in dimensional regularization
for odd dimensions), then, we set d1 = 1.
Using the adiabatic expansion of the expectation value of the stress-tensor, by simple power counting one can study

up to which adiabatic order it contains divergences and how many temporal derivatives do appear in the divergent
terms. To illustrate this, let us consider as an example the following contribution to 〈T00〉:

t00(x) = lim
x→x′

∂t∂t′Im GF (x, x
′).
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It can be shown that this term, along with others which are similar, are the most divergent ones. The contribution
that is linear in the metric perturbations can be written as

t00(x) = −
∫

d4p

(2π)4
eip·x

∫

ddkE
(2π)d

k4(k4 + ip0)

(k24 + ω2
k)

2
fk(p)

∑

r=0

(−ǫp)
r, (14)

Let us first analyze the terms that do not contain p0. In a schematic way, it is simple to show that the ultraviolet
behavior of a term in fk(p) and in ǫp, respectively, is given by ǫp ∼ k6−npn/(k24 + ω2

k), with 1 ≤ n ≤ 6, and

fk(p) ∼ δg k6−sps, where 0 ≤ s ≤ 5 and δg represents a component of δ(4)gµν . Then, for a term characterized by n, s
and r, the integration in k4 yields

∫

dd1kE
k24fk(p)

(k24 + ω2
k)

2
(−ǫp)

r ∼ δg

∫

dd1kE
k24k

6(1+r)

(k24 + ω2
k)

2+r

(p

k

)s+nr

∼ δg k3
(p

k

)s+nr

.

Therefore, by power counting it can be shown that the integral in k is convergent only if s+ rn > d+ 2. That is, for
d = 4, we have that pd+2 = p6 is the maximum power of p that appears in a divergent contribution; i. e., terms of
adiabatic order greater than six are finite.
Let us now analyze the terms that contain powers of p0. In Eq.(14) p0 appears explicitly and also implicitly through

fk(p) and ǫp. Notice that of all the adiabatic orders only f
ad(1)
k (p), ǫ

ad(1)
p and ǫ

ad(2)
p depend on p0 (see Eqns.(10) and

(11) and the paragraphs that follows each of them). Then, one can write all the terms of second adiabatic order that
involve one or two powers of p0 (i.e., terms with p0pi or with p20 and no additional power of pµ) and show that all of
them are logarithmically divergent. Hence, as the convergence improves with the adiabatic order, we can conclude
that the contribution of higher adiabatic orders with at least one power of p0 will be finite. Below, we compute
explicitly the terms of second adiabatic order of the 00 and 0i components of 〈Tµν〉 and we show that while the terms
with one and two powers of p0 are both logarithmically divergent, the ones with p20 do not appear in the final result.
We expect that terms with p20 do appear in the ij components, but here we will not compute these explicitly.
In summary, in 〈Tµν〉 there appear divergences up to in the sixth weighted adiabatic order, where the weighted

adiabatic order of a term is given by (z = 3)

W = zn0 + ni

where ni and n0 are, respectively, the number of spatial derivatives and time derivatives appearing in the term. This
is analogous to the weighted power counting criterion introduced in [12] for field theories in Minkowski spacetime (see
also [13]).
In order to illustrate the procedure by which we obtain the regularized adiabatic orders in terms of 3−tensorial

quantities, let us consider as an example the zeroth adiabatic order of 〈T00(x)〉. After performing the integrals in pµ
(which are straightforward) and the integral in k4 (as described above), we obtain

〈T00(x)〉ad(0) =
µ4−d

2

∫

dd2k

(2π)d2

{

ωk

(

1 + 2δn− h

2

)

− hij

ωk

(

g1kikj + 2g2kikjk
2 + 3g3kikjk

4
)

}

, (15)

where µ is an arbitrary parameter of dimensions of mass, introduced to ensure that ϕ has the correct dimensionality.
To carry out the angular integrations we use the following property [14]:

∫

dd2kki1 ...kirg(k2) =

{

0 if r is odd,

T i1...irAr[g] if r is even,

where

T i1...ir =
1

r!
[δi1i2δi3i4 ...δir−1ir + all permutations of the i’s],

Ar [g] =
2πd2/2Γ[(r + 1)/2]

Γ[1/2]Γ[(d2 + r)/2]

∫ ∞

0

dkkd2+r−1g(k2).

The remaining integrals can be related by performing an integration by parts,

〈T00(x)〉ad(0) =
µ4−dΩd2

4(2π)d2

∫ +∞

0

dk2kd2−2

{

ωk

(

1 + 2δn− h

2

)

− h

d2
k2

dωk

dk2

}

=
µ4−dΩd2

4(2π)d2

(1 + 2δn)

∫ +∞

0

dk2kd2−2ωk = −(4)g00
µ4−dΩd2

4(2π)d2

I0. (17)
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where we have defined I0 =
∫ +∞
0 dk2kd2−2ωk. Moreover, one can easily show that, due to the gauge condition

δN i = 0, one has 〈T0i(x)〉ad(0) = 0. Therefore, as expected, the lowest adiabatic order of the energy momentum
tensor is proportional to the metric and can be absorbed into a redefinition of the cosmological constant (see below).
We follow the same procedure for the second adiabatic order of 〈T0µ(x)〉. After a long but straightforward calculation

the results are

〈T00(x)〉ad(2) = −µ4−dΩd2

48(2π)d2

I1(∂i∂jhij − ∂2h) = −µ4−dΩd2

24(2π)d2

I1G00,

〈T0i(x)〉ad(2) = −µ4−dΩd2

48(2π)d2

{

I2(∂j ḣij − ∂iḣ) +
I3

d2(d2 + 2)
(2∂j ḣij + ∂iḣ)

}

= −µ4−dΩd2

24(2π)d2

{

I2G0i +
I3

d2(d2 + 2)
(2G0i + 3∂iK

j
j )

}

, (18)

where G00 and G0i are components of the linearized Einstein tensor Gµν and Ki
j is the linearized extrinsic curvature,

and we have defined the following integrals:

I1 =

∫ +∞

0

dk2
kd2−2

ωk

dω2
k

dk2
, I2 =

∫ +∞

0

dk2
kd2−2

ωk
, I3 =

∫ +∞

0

dk2
kd2+2

ω3
k

d2ω2
k

d(k2)2
.

Notice that while I1 is quartically divergent, I2 and I3 are logarithmically divergent. The terms in Eq.(18) have first
time derivatives of the metric and, as we have anticipated, result to be logarithmically divergent. We have repeated
all the calculations without partially fixing the gauge δN i = 0, and reobtained Eq. (18) as a cross-check.
With these results we can now analyze the renormalization of the bare constants associated to the terms of second

adiabatic order that appear in the gravitational action (2). To do so, we start by writing the 00 and 0i parts of the
semiclassical equations for the metric (in the weak field approximation), keeping only terms up to second adiabatic
order; namely

1

8πG

{

Λ(4)g00 + ξG00

}

= 〈T00(x)〉 = 〈T00(x)〉ren + 〈T00(x)〉ad(0) + 〈T00(x)〉ad(2), (19)

1

8πG

{

G0i − (λ− 1)∂iK
j
j

}

= 〈T0i(x)〉 = 〈T0i(x)〉ren + 〈T0i(x)〉ad(2), (20)

where we have added and subtracted the adiabatic expansion of 〈T0µ(x)〉 in order to separate the renormalized part
〈T0µ(x)〉ren and the divergent contributions. The latter are to be absorbed into a redefinition of Λ, G, λ and ξ. Then,

we introduce Eqns. (17) and (18) into (19) and (20), and we find that 〈T00(x)〉ad(0) and 〈T0µ(x)〉ad(2) can be cancelled
with the following choice of the bare constants:

ΛG−1 = (ΛG−1)R − µ4−dΩd−1

(2π)d−2
I0, (21a)

ξG−1 = (ξG−1)R − µ4−dΩd−1

6(2π)d−2
I1, (21b)

G−1 = (G−1)R − µ4−dΩd−1

6(2π)d−2

[

I2 +
2I3

(d− 1)(d+ 1)

]

, (21c)

G−1(λ− 1) = (G−1(λ− 1))R +
µ4−dΩd−1

2(2π)d−2

I3
(d− 1)(d+ 1)

, (21d)

where we denote the renormalized constants by a subscript R.
It is worth noting that from these equations we can recover the well-known results [15] corresponding to the usual

(z = 1) scalar field by setting g1 = 1/2 and g2 = g3 = 0 before taking the limit d → 4. In such a case, I3 vanishes
and in the limit d → 4 we have I0 ∼ m4(d− 4)−1/4 and I1 = I2 ∼ m2/(d− 4).
All the integrals on the right hand side in Eqs. (21) are divergent in the limit d → 4. In the particular case of a

massless field (m = 0) these integrals can be computed explicitly. We assume that g3 > 0 and g22 − 4g1g3 > 0 in order
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to avoid zeros of ωk. Thus, in the limit d → 4 we have:

i0 ≡ µ4−dΩd−1

(2π)d−1
I0 = −g2(g

2
2 − 4g1g3)

8
√
2π2g

5/2
3

[

1

d− 4
− ln(µg

1/4
3 )

]

+ FP,

i1 ≡ µ4−dΩd−1

(2π)d−1
I1 = − (g22 − 4g1g3)

4
√
2π2g

3/2
3

[

1

d− 4
− ln(µg

1/4
3 )

]

+ FP,

i2 ≡ µ4−dΩd−1

(2π)d−1
I2 = − 1√

2g3π2

[

1

d− 4
− ln(µg

1/4
3 )

]

+ FP,

i3 ≡ µ4−dΩd−1

(2π)d−1
I3 = − 2

5
√
2g3π2

[

1

d− 4
− ln(µg

1/4
3 )

]

+ FP,

where FP denotes the µ-independent finite part.
The renormalization group equations are obtained simply recalling that the bare constants are independent of µ,

and are given by

µ
d

dµ

(

ΛG−1
)

R
=

g2√
2

(g22 − 4g1g3)

4πg
5/2
3

, (23a)

µ
d

dµ

(

ξG−1
)

R
=

1√
2

(g22 − 4g1g3)

12πg
3/2
3

, (23b)

µ
d

dµ

(

G−1
)

R
=

3

5
√
2g3π

, (23c)

µ
d

dµ

(

G−1(λ− 1)
)

R
= − 2

5
√
2g3π

. (23d)

Note that, in contrast to what happens in the case of a usual (z = 1) scalar field, here we have obtained that the
renormalized constants depend on µ for a massless field. Note also that in these equations, as g3 > 0 and g22−4g1g3 > 0,
the right hand side have a determined sign, except in the first equation which depends on the sign of g2.
Assuming that the order of magnitude of the constants gi are determined by a single mass scale MC , i.e. g1 ∼

g2M
2
C ∼ g3M

4
C ∼ O(1), these equations give us information on the running of the renormalized constants in the UV

[16], at scales larger than MC . With the renormalization scheme we are considering (minimal subtraction), it is not
possible to analyze the IR behaviour of the coupling constants. As pointed out in [14, 17, 18], this would require a
mass dependent renormalization scheme. We hope to address this problem in a forthcoming publication.
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