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Geometric phases, arising from cyclic evolutions in a curved parameter space, appear in a wealth of

physical settings. Recently, and largely motivated by the need of an experimentally realistic definition for

quantum computing applications, the quantum geometric phase was generalized to open systems. The

definition takes a kinematical approach, with an initial state that is evolved cyclically but coupled to an

environment—leading to a correction of the geometric phase with respect to the uncoupled case. We obtain

this correction by measuring the nonunitary evolution of the reduced density matrix of a spin one-half

coupled to an environment. In particularwe are interested in baths near a quantumphase transition,which are

known to induce strong decoherence. The experiments are done with a NMR quantum simulator, where we

emulate qualitatively the influence of a critical environment using a simple one-qubit model.

DOI: 10.1103/PhysRevLett.105.240406 PACS numbers: 03.65.Vf, 03.65.Yz, 03.67.Ac, 05.30.Rt

For decades, the geometric phase [1] (GP) has fascinated
physicists for its elegant theoretical grounds and its practical
applications [2]. The GP is resilient to dynamical perturba-
tions; thus, it might serve as a naturally fault-tolerant quan-
tum information processing device [3]. In order to explore
such applications, and unlike traditional studies of the GP in
closed systems with pure states, one must take into account
realistic experimental conditions—i.e., the explicit presence
of noise and environments. Uhlmann was the first in con-
sidering a system in a mixed state, embedded, as a subsys-
tem, in a larger system that is in a pure state [4]. Later,
Sjöqvist et al [5] put forward a definition of the GP for a
general mixed state undergoing a cyclic unitary evolution—
subsequently measured using NMR interferometry in
Ref. [6]. Different approaches to the problem were proposed
[7]. In the present Letter, we will follow the line of Tong
et al. [8], who developed a kinematic generalization of the
GP to open systems that takes into account the coupling to
an environment (leading to a nonunitary evolution of the
reduced density matrix of the system [9]). Arguably, this
approach is better suited to explore the usefulness of the GP
in a real quantum computer undergoing decoherence pro-
cesses [10]. Here we report a measurement of the GP for a
spin 1=2 undergoing nonunitary evolution induced by the
coupling to an environment, using the decoherence factor or
fidelity decay [11]. In particular—motivated by the recent
observation that baths near quantum criticality induce strong
decoherence [11]—we choose environments that can be
tuned near a quantum phase transition (QPT). This choice
not only adds richness to the behavior of the GP, but also
advances the program of understanding it in general open
systems [10]. In our experiments, performed in a NMR

quantum simulator, we measure the full time dependence
of the decoherence factor of the system spin—from which
we can determine the GP using the results of Ref. [8]. To
emulate the effect of a critical environment, we introduce a
simple qualitative model of the ground state degeneracy that
occurs at QPTs. Apart from demonstrating an alternative to
traditional interferometry-based approaches for measuring
the GP in open systems, our results further establish the
strong connections between quantum information, quantum
criticality, decoherence, and the quantum geometric phase
[11–14] that have been the focus of much recent research
(especially in the context of quantum simulations [15,16]).
The correction to the GP by a critical environment was

first studied by Yi and Wang [17], who gave some general
analytical results and found numerical instabilities in the GP
of a qubit near criticality of the bath (an XY spin chain).
More recently, it was shown that the GP of a spin coupled to
an antiferromagnetic environment changes suddenly when
the bath undergoes a first order QPT [18]. Notice that our
problem is seemingly related to, but different than, the use of
the GP as an order parameter in a QPTof a closed system, as
studied first by Carollo and Pachos and others [12,14].
We consider a spin 1=2 coupled to an environment with

a total Hamiltonian H ¼ �ZS � IE þ ZS �HSE þ IS �
HE, where HE is the Hamiltonian of the bath, ZS is the z
Pauli matrix of the system (in this notation, X and Y are,
respectively, the x and y Pauli matrices), IS is the identity
operator of the system and IE the one of the bath.
For simplicity, we only consider a dephasing spin-bath
interaction, ZS �HSE , neglecting relaxation effects and
limiting the relevance of the initial state (see discussion
below). We take a product initial state for the spin-bath
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system, �ð0Þ ¼ jc 0ihc 0j � j"ð0Þih"ð0Þj, where jc 0i ¼
sinð�=2Þj0i þ cosð�=2Þj1i and j"ð0Þi is a general initial
state of the bath. In absence of the bath, the spin follows
an evolution around the Bloch sphere, reaching again the
initial state for � ¼ 2�=�. To compute the global phase
gain during the evolution, one can use Pancharatnam’s
definition [19], which contains a gauge dependent part
[i.e., a dynamical phase �d ¼ � cosð�Þ] and a gauge in-
dependent part, commonly known as geometric phase
�g ¼ �½1� cosð�Þ�. When coupled to the bath, the re-

duced density matrix of the system at time t is

�rðtÞ ¼ sin2ð�=2Þj0ih0j þ cos2ð�=2Þj1ih1j
þ sin�

2
e�i2�trðtÞj0ih1j þ sin�

2
ei2�tr�ðtÞj1ih0j: (1)

Here, rðtÞ ¼ h"0ðtÞj"1ðtÞi is the decoherence factor in-

duced by the environment, with j"kðtÞi ¼ e�it½HEþð�1ÞkHSE �
j"ð0Þi. The phase � acquired by the open system after a
period � is defined as [8],

� ¼ arg

�X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kð�Þ�kð0Þ

q
hkð0Þjkð�Þie�

R
�

0
dthkðtÞjð@=@tÞjkðtÞi

�
;

(2)

where jkðtÞi and �kð�Þ are, respectively, the instantaneous
eigenvectors and eigenvalues of �rðtÞ. Of the two k modes
(þ and�) of the one-qubit model we are treating, only the
þ mode contributes to the GP. Because our environments
can induce a complex decoherence factor, i.e., rðtÞ ¼
jrðtÞje�i’, we obtain a slightly different expression than
that shown in Ref. [9], namely

� ¼
Z �

0
dt

�
�� @’

@t

�
sin2

�
�þt
2

�

þ tan�1
sin’ð�Þ sinð�þ�2 Þ sinð�2Þ

cos’ð�Þ sinð�þ�2 Þ sinð�2Þ þ cosð�þ�2 Þ cosð�2Þ
; (3)

where we have defined

cosð�þt =2Þ¼2ð�þ�sin2�=2Þ
�ðtÞ ; sinð�þt =2Þ¼ jrðtÞjsin�

�ðtÞ ;

�ðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrðtÞj2sin2ð�Þþ4½�þ�sin2ð�=2Þ�2

q
: (4)

During normal quantum evolution, the system gains a
global phase. The central result of Eq. (3) is to extract
(by a proper choice of the ‘‘parallel transport condition’’)
the purification independent part of the phase—which can
be called a geometric phase because it is gauge invariant
and reduces to the known unitary evolution limit.

In order to study the behavior of the GP when the bath is
near a quantum phase transition, we have solved Eq. (3)
both numerically and analytically with an Ising spin chain
environment (see supplementary material [20]). In particu-
lar, the nonanalyticity of the GP at the critical point in the
thermodynamical limit becomes evident in the limit of

weak system-bath coupling [20]. Nevertheless, a full quan-
tum simulation of a large enough critical system is on the
edge of current technology, and beyond the scope of this
Letter. Therefore, we opt for emulating the most relevant
aspects of a critical bath qualitatively with a simplified
model that is within experimental reach.
Near its critical point, the spectrum of a quantum critical

system is characterized by the closing of the energy gap
between the ground and the first excited state. In the
thermodynamical limit, the gap closes with a power law
�j�� �cjz� (where z and � are critical exponents), but for
all finite size systems there is a minimum gap � near �c. It
is remarkable that, for many purposes, this feature of the
spectrum is enough to describe qualitatively the effects of a
critical environment: as long as the excitations involved are
small, and one is only interested in qualitative behavior, a
small energy expansion of the decoherence factor can
justify considering just two levels with appropriate dynam-
ics [16]. Thus, we propose to emulate a complex critical
bath using a simple two-level system model with
Hamiltonian HE ¼ �j�jz��1�ZE þ�XE, where �c ¼ 0
represents the ‘‘critical point’’ or QPT. The simplification
might seem excessive, but it has been successful in pre-
vious studies: For z� ¼ 1 (the mean field case), it gives a
correct qualitative description of the creation of topologi-
cal excitations during a finite speed quench [21]. In es-
sence, the model is quantitatively not far away from the
small systems used in demonstrations of quantum phase
transitions [15,22]. A complete characterization of when
this model does not describe the correct physics of a
critical model is missing (one such case is the calculation
of the path length of an adiabatic evolution [23]). For
example, our simplified model cannot capture one feature
observed in the Ising chain case: the total number of
environment modes that contribute significantly to the
geometric phase appears to be larger in the paramagnetic
phase than in the ferromagnetic phase. This behavior could
be related to the different nature of the excitations in both
phases. Nevertheless, our results show that for the GP
problem the model gives a fair qualitative description
when the gap � is much smaller than the natural frequency
� of the system spin.
Using a tomographic approach, we measure the GP of a

qubit coupled to a critical environment using a nuclear
magnetic resonance (NMR) quantum simulator, with the
environment represented by the two-level model described
above (with critical exponents z� ¼ 1 and a transverse field
strength B ¼ ��). The target Hamiltonian to simulate
experimentally is: H ¼ �ZS þ 	ZSZE þ BZE þ�XE,
where ZS and ZE are the z Pauli matrices of the system
and environment, respectively. We obtain the GP by mea-
suring the magnetization of the system spin in the X � Y
plane, which gives us the decoherence factor rðtÞ.
Denoting by �� ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2z�

p
the eigenenergies of

HE, the decoherence factor of this model is
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rðtÞ ¼ ei��ð�Þt
�
cos��ð�þ 	Þt� i

�2�ð�þ 	Þ ��2	2

��ð�Þ��ð�þ 	Þ
� sin��ð�þ 	Þt

�
; (5)

where, to simplify notation, we have chosen the system-
environment interaction to be HSE ¼ 	ðIS � ZSÞZE . The
correction to the GP due to this decoherence factor [shown
in Fig. 1 with the experimental results to be discussed
below] contains the main elements observed in more com-
plex models, as Ising spin chains [20]: a maximum correc-
tion of the GP at criticality, and a small asymmetric
correction far away from the critical point.

The experimental sequence is as follows: We first fix�,
	, and �. Then, for each value of B, we initialize the
system, and measure the decoherence factor rðtÞ of
the system after evolution with an operator U ¼ e�iHt

for various times t 2 ½0; 2�=��. The measured decoher-
ence factor is shown in Figs. 1(a) and 1(b). The GP is
calculated using a numerical interpolation of rðtÞ in Eq. (3).

We choose the C13 and H1 spins in the molecule
of carbon-13 labeled chloroform (CHCl3) dissolved in
d6-acetone as the quantum registers (qubits) for the dem-
onstration. The C13 atom simulates the system, and the H1

the environment, where the scalar coupling between them
is measured to be J ¼ 215 Hz. Data were taken with a
Bruker DRX 700 MHz spectrometer.

Our choice of system-environment coupling makes the
decoherence factor rðtÞ independent of the initial state of
the system (given by the angle �) [see Eq. (1)]. This, in
turn, makes the GP depend trivially on �, which can be
fully appreciated when approximating Eq. (3) in the weak
coupling regime (see supplementary material [20]).
Because we concentrate on how the criticality properties
of the bath affect the GP, it is experimentally convenient to
fix an initial state of the system that maximizes the signal-
to-noise ratio, and change only the parameters of the
environment spin. In particular, we choose the input state

of the system to be ðj0iS þ j1iSÞ=
ffiffiffi
2

p
. The corresponding

decoherence factor can then be used to compute Eq. (3) for
any other initial state of the system. From Eq. (1) we can
see that rðtÞ is encoded in the coherent terms proportional
to h2
þi [see Fig. 2(b)], which can be observed directly in
NMR by adding the two complex amplitudes of the peaks
in the C13 spectra.
We use the gate sequence of Fig. 2(a) [24–26] to pre-

pare the pseudopure state j00iSE , to which we apply the

unitary e�i�YS=4ei�YE=2 to reach the input state jc ini ¼
ðj0i þ j1iÞSjgiE=

ffiffiffi
2

p
. Here jgiE ¼ j0i cosð�=2Þ � j1i�

sinð�=2Þ is the ground state of the environment for a given
B value, where tan� ¼ ��=B with � 2 ð0; �Þ. Because
the decoherence factor is independent of the initial state of
the system, we chose it such that it maximizes the signal-
to-noise ratio of the experiment.
The quantum simulated evolution U for a time t can be

implemented with a Trotter approximation [27,28],

FIG. 1 (color online). (a) Observed absolute value squared of
the decoherence factor and (b) its argument, both as a function of
time and external magnetic field strength. (c) Computed correc-
tion to the geometric phase for a choice of � ¼ �=4. Large filled
circles are the experimental data, and the solid line is the
theoretically expected value (without free parameters). Also
shown is the difference between the GP measured in presence
of the environment (small filled circles), and the GP measured
when the system and environment are decoupled (small empty
circles). Here, � ¼ 100 �Hz, � ¼ 0:02�, and 	 ¼ 0:1�.

FIG. 2. (a) Gate sequence for preparing the pseudopure state
j00iSE from the thermal state �th ¼ �CZS þ �HZE , where �C

and �H are the gyromagnetic ratio of C13 and H1. (b) Gate
sequence for the quantum simulation of the system and mea-
surement of the decoherence factor rðtÞ, proportional to h2
þi ¼
hX þ iYi. The rectangles denote single-qubit gates, implemented
through radio-frequency pulses. The rotation angle is shown
inside the rectangle, and the direction above. We used cos� ¼
2�C=�H � 1=2 and tan� ¼ ��=B with � 2 ð0; �Þ. The narrow
black rectangles represent the gradient pulses along Z axis. The
two connected circles denote the J-coupling evolution e�i
ZSZE ,
where 
 is indicated next to the line. The grayed area marks the
quantum simulation of the desired Hamiltonian, to the left is the
initial state preparation, and to the right the measurement.
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U � e�i�tXE=2e�i	tZSZEe�i�tZSe�iBtZEe�i�tXE=2 (6)

where we choose � ¼ 100� Hz, � ¼ 0:02�, 	 ¼ 0:1�,
and the time t goes from zero to the maximum time of the
evolution, �. We checked numerically that the Trotter
approximation reduces the fidelity less than 0.3% for B 2
½�0:2�; 0:2��. Furthermore, we decompose the unitary

operations e�iBtZE as e�i�XE=4e�iBtYEei�XE=4, and e�i�tZS as

e�i�XS=4e�i�tYSei�XS=4 so that we can implement them
with standard rf pulses. The coupling operation e�i	tZSZE

is realized using the natural spin coupling with an evolu-
tion time 2	t=ð�JÞ. After the evolution U, we measure the
magnetization in the XY plane, which is proportional to the
decoherence factor rðtÞ. The whole gate sequence for each
measurement is shown in Fig. 2(b). Notice that we measure
the absolute value as well as the complex phase of rðtÞ,
necessary for the GP. The total evolution time was always
well below the natural decoherence time of the quantum
simulator.

To eliminate systematic errors, we repeat the experiment
but uncoupling the system and the environment (	 ¼ 0).
From this we compute a baseline GP, which we subtract
from the full (coupled) experiment. Thus, we obtain the
correction to the GP due to the presence of the critical
environment, which agrees well with theoretical expecta-
tions [see Fig. 1(c)].

Conclusions.—Using a NMR quantum simulator, we
obtained the quantum geometric phase of an open system
undergoing nonunitary evolution. The GP is computed in a
tomographic manner; i.e., we measure the off-diagonal
elements of the reduced density matrix of the system,
from which we extract the decoherence factor that we
use in the definition of the open system GP. Our experi-
ments support the observation that when the environment
is near a second order quantum phase transition, the cor-
rection to the GP becomes singular. For our experiments
we introduced a simplified two-level model that captures
the closing of the gap typical of quantum phase transitions.
This, in turn, gave us a way to represent the well-known
suppression of the decoherence factor observed from criti-
cal environments, and confirm qualitatively our numerical
and analytical results. In future work, we will introduce a
third (probe) spin to perform an independent and direct
measurement of the GP using traditional interferometry-
based techniques [6]. Furthermore, by adding stochastic
fields and further spins, we can quantum simulate more
realistic environments and couplings to the system. Despite
the apparent simplicity of our experiment, we believe that
the techniques we developed are quite general and appli-
cable to more complex quantum simulations, and to related
approaches such as bath engineering [29]—designing an
environment so that it induces a system to relax and
decohere to interesting quantum many-body pure states.
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[10] E. Sjöqvist, Physics 1, 35 (2008).
[11] H. T. Quan et al., Phys. Rev. Lett. 96, 140604 (2006).
[12] A. C.M. Carollo and J. K. Pachos, Phys. Rev. Lett. 95,

157203 (2005).
[13] L. Campos Venuti and P. Zanardi, Phys. Rev. Lett. 99,

095701 (2007).
[14] S. Oh, Phys. Lett. A 373, 644 (2009); A. I. Nesterov and

S. G. Ovchinnikov, Phys. Rev. E 78, 015202(R) (2008); X.
Peng, S. Wu, J. Li, D. Suter, and J. Du, arXiv:1006.1468
[Phys. Rev. Lett. (to be published)].

[15] J. Zhang et al., Phys. Rev. Lett. 100, 100501 (2008).
[16] J. Zhang et al., Phys. Rev. A 79, 012305 (2009).
[17] X. X. Yi and W. Wang, Phys. Rev. A 75, 032103 (2007).
[18] X.-Z. Yuan, H.-S. Goan, and K.-D. Zhu, Phys. Rev. A 81,

034102.
[19] S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247

(1956).
[20] See supplementary material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.105.240406 for de-
tailed calculations and application to an Ising spin chain
bath.

[21] B. Damski, Phys. Rev. Lett. 95, 035701 (2005).
[22] A. Friedenauer et al., Nature Phys. 4, 757 (2008).
[23] S. Boixo and R.D. Somma, Phys. Rev. A 77, 052320

(2008).
[24] D. G. Cory, M.D. Price, and T. F. Havel, Physica

(Amsterdam) 120D , 82 (1998).
[25] J. Du et al., Phys. Rev. Lett. 94, 040505 (2005).
[26] J. Zhang et al., Phys. Rev. A 75, 042314 (2007).
[27] L.M.K. Vandersypen and I. L. Chuang, Rev. Mod. Phys.

76, 1037 (2005).
[28] X. Peng, J. Du, and D. Suter, Phys. Rev. A 71, 012307

(2005).
[29] F. Verstraete, M.M. Wolf, and J. I. Cirac, Nature Phys. 5,

633 (2009); S. Diehl et al., Nature Phys. 4, 878 (2008); N.
Syassen et al., Science 320, 1329 (2008).

PRL 105, 240406 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

10 DECEMBER 2010

240406-4

http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1119/1.18570
http://dx.doi.org/10.1119/1.18570
http://dx.doi.org/10.1016/S0375-9601(99)00803-8
http://dx.doi.org/10.1038/35002528
http://dx.doi.org/10.1126/science.1058835
http://dx.doi.org/10.1016/0034-4877(86)90055-8
http://dx.doi.org/10.1103/PhysRevLett.85.2845
http://dx.doi.org/10.1103/PhysRevLett.91.100403
http://dx.doi.org/10.1103/PhysRevLett.90.190402
http://dx.doi.org/10.1103/PhysRevLett.90.190402
http://dx.doi.org/10.1103/PhysRevLett.94.070407
http://dx.doi.org/10.1103/PhysRevLett.94.070407
http://dx.doi.org/10.1103/PhysRevLett.90.160402
http://dx.doi.org/10.1103/PhysRevLett.90.160402
http://dx.doi.org/10.1103/PhysRevLett.92.020402
http://dx.doi.org/10.1103/PhysRevLett.92.020402
http://dx.doi.org/10.1140/epjd/e2006-00186-y
http://dx.doi.org/10.1103/PhysRevLett.93.080405
http://dx.doi.org/10.1103/PhysRevA.74.042311
http://dx.doi.org/10.1103/PhysRevA.74.042311
http://dx.doi.org/10.1016/j.physleta.2008.11.038
http://dx.doi.org/10.1103/Physics.1.35
http://dx.doi.org/10.1103/PhysRevLett.96.140604
http://dx.doi.org/10.1103/PhysRevLett.95.157203
http://dx.doi.org/10.1103/PhysRevLett.95.157203
http://dx.doi.org/10.1103/PhysRevLett.99.095701
http://dx.doi.org/10.1103/PhysRevLett.99.095701
http://dx.doi.org/10.1016/j.physleta.2008.12.023
http://dx.doi.org/10.1103/PhysRevE.78.015202
http://arXiv.org/abs/1006.1468
http://dx.doi.org/10.1103/PhysRevLett.100.100501
http://dx.doi.org/10.1103/PhysRevA.79.012305
http://dx.doi.org/10.1103/PhysRevA.75.032103
http://dx.doi.org/10.1103/PhysRevA.81.034102
http://dx.doi.org/10.1103/PhysRevA.81.034102
http://link.aps.org/supplemental/10.1103/PhysRevLett.105.240406
http://link.aps.org/supplemental/10.1103/PhysRevLett.105.240406
http://dx.doi.org/10.1103/PhysRevLett.95.035701
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1103/PhysRevA.77.052320
http://dx.doi.org/10.1103/PhysRevA.77.052320
http://dx.doi.org/10.1016/S0167-2789(98)00046-3
http://dx.doi.org/10.1016/S0167-2789(98)00046-3
http://dx.doi.org/10.1103/PhysRevLett.94.040505
http://dx.doi.org/10.1103/PhysRevA.75.042314
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1103/PhysRevA.71.012307
http://dx.doi.org/10.1103/PhysRevA.71.012307
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1126/science.1155309

