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We propose a new scheme for observing Josephson oscillations and macroscopic quantum self-
trapping in a toroidally confined Bose-Einstein condensate: a dipolar self-induced Josephson junc-
tion. Polarizing the atoms perpendicularly to the trap symmetry axis, an effective ring-shaped,
double-well potential is achieved which is induced by the dipolar interaction. By numerically solving
the three-dimensional time-dependent Gross-Pitaevskii equation we show that coherent tunneling
phenomena such as Josephson oscillations and quantum self-trapping can take place. The dynamics
in the self-induced junction can be qualitatively described by a two-mode model taking into account
both s-wave and dipolar interactions.
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Josephson effects are a signature of quantum coher-
ence in macroscopic many-body systems. Firstly pre-
dicted and observed when two superconductors were
connected through a weak link [1], Josephson effects
have also been experimentally observed in a variety of
systems: in superfluid helium flowing through a sub-
micrometer aperture [2] and an array of nano-apertures
[3]; in contact-interacting Bose-Einstein condensates con-
fined in a double-well trap [4, 5] and in an optical lat-
tice [6]; and very recently in exciton-polariton systems in
semiconductors [7]. Josephson phenomena can also ap-
pear in multicomponent systems [8], either in condensate
mixtures or in spinor condensates. When the tunneling
occurs between different hyperfine states, the process is
referred to as internal Josephson effect [9]. All these sys-
tems are realizations of a Josephson junction (JJ). In
Bose-Einstein condensates (BECs), due to the nonlinear-
ity introduced by the s-wave contact interaction, there
appears a new phenomenon called macroscopic quantum
self-trapping [4, 10], characterized by the locking of most
of the atoms in one of the two wells.

Dipolar Bose-Einstein condensates (dBECs) [11] offer
a new playground for the study of Josephson effects due
to the anisotropic and long-range character of their in-
teraction [12]. Here we present a novel scenario for inves-
tigating the coherence properties of quantum transport:
a dipolar self-induced Josephson junction (SIJJ). Such
a junction is not directly created by an external poten-
tial, but rather based on the appearance of a ring-shaped
double-well potential in a toroidally confined dipolar con-
densate due to the anisotropy of the interaction. Joseph-
son dynamics in dipolar condensates has been addressed
in the literature for external double well potentials [13]
and in spinor dipolar condensates [14], but this is the
first time to our knowledge that a SIJJ is investigated.

We consider N = 5× 104 atoms of 52Cr with magnetic

dipole moment µ = 6 µB (with µB the Bohr magneton)
confined in a pancake-shaped toroidal trap [15]
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where m is the atomic mass, r⊥ =
√

x2 + y2 is the dis-
tance to the trap symmetry axis, and ω⊥ = 8.4× 2π s−1

and ωz = 92.5×2π s−1 are the radial and axial harmonic
trap frequencies. V0 = 30 ~ω⊥ and w0 = 10 µm are the
strength and waist of the Gaussian beam that creates a
hole in the condensate along the z axis. We consider the
dipoles oriented perpendicularly to the trap axis (say y
axis), and a small and repulsive s-wave scattering length,
a = 14 aB (with aB the Bohr radius), to ensure that the
dBEC is stable but dominated by the dipolar interaction.
In this configuration the axial symmetry imposed by the
external confinement is broken, and the anisotropic char-
acter of the dipolar interaction is enhanced [15].

The combination of the external toroidal trapping and
the mean-field dipolar potential, Vd(r), defines an effec-
tive potential, Veff(r) = Vt(r) + Vd(r), which has the
shape of a ring-shaped double well. This structure is
shown in the top left panel of Fig. 1 for the z = 0 plane,
with the two potential wells in the direction perpendicu-
lar both to the trap symmetry axis and the polarization
axis. Since the centered Gaussian potential introduces
a strong repulsive barrier at r⊥ = 0 that prevents the
atoms from tunneling through it, the double well struc-
ture arises in the azimuthal direction. The bottom left
panel of Fig. 1 shows the minimum effective potential
along the azimuthal coordinate, ϕ, with the two minima
at ϕ = 0 and ϕ = π and the two barriers at ϕ = π/2
and ϕ = 3π/2. According to this effective ring-shaped
double well, the atoms localize mostly in the attractive
regions inside the wells, producing an azimuthal density
dependence. This is seen in the right panels of Fig. 1,
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which show the density (top) and the maximum density
along ϕ (bottom) on the z = 0 plane.
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FIG. 1: Top: effective potential (left) and corresponding
ground state density (right) in the z = 0. Bottom: mini-
mum effective potential (left) and maximum density (right)
in the z = 0 plane as a function of the azimuthal angle ϕ.

The system resembles two dipolar condensates in a
ring-shaped geometry that are coupled via two links. If
the barrier height, ∆Veff, is large compared to the chemi-
cal potential, µ̃, the system behaves as two weakly linked
condensates. The weak link condition can be reached by
tuning the s-wave scattering length to small values, which
should still be large enough to prevent spatial sponta-
neous symmetry breaking [15]. We find that the ground
state verifies ∆Veff/µ̃ = 1.1, which is at the limit of the
weak link condition. The system can thus be thought of
as a self-induced Josephson junction. In the remaining of
this letter we will show that it can behave as a bosonic
JJ, presenting Josephson as well as self-trapping dynam-
ics. Note here that this junction really consists of two
coupled SIJJs, which in this scenario behave in phase in
much the same way as the array of nano-apertures does
in the experiments with helium [3].

We study the dynamics of this dipolar SIJJ within
the mean-field framework by solving the full-3D time-
dependent Gross-Pitaevskii (TDGP) equation:

[

− ~
2

2m
∇2 + Vt(r) + g|Ψ(r, t)|2 + Vd(r, t)

]

Ψ(r, t) =

= i~
∂

∂t
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where g = 4π~
2a/m is the coupling constant of the con-

tact interaction. Note that the mean field dipolar poten-
tial, Vd(r, t), depends on time through the wave function

Ψ(r, t). At each time, it can be written in terms of the
microscopic dipole-dipole interaction as

Vd(r, t) =
µ0µ

2

4π

∫

dr′
1 − 3 cos2 θ

|r − r
′|3 |Ψ(r′, t)|2 , (3)

where r and r
′ are the positions of two aligned dipoles

and θ is the angle between their relative position and the
polarization axis. The TDGP equation with the dipolar
term becomes an integro-differential equation. To solve
the time evolution we have used a Hammings algorithm
(predictor, corrector, modifier) initialized by a fourth-
order Runge-Kutta method. The dipolar term has been
treated using Fourier transform techniques (see Ref. [16]
and references therein). The spatial grid used in the com-
putation contains 128 × 128 × 64 points with a spacing
of 0.6, 0.6 and 0.4 µm, respectively for the directions x,
y and z. The time step used is 3 × 10−6 s.

Josephson effects in BECs are characterized in terms
of two conjugate variables: the population imbalance and
the phase difference between the two wells. We define
the left and right wells as the regions where x < 0 and
x > 0, respectively. The population imbalance and phase
difference are given by Z(t) = (NL(t) − NR(t))/N and
φ(t) = φR(t)−φL(t), respectively, where NL(R)(t) corre-
sponds to the number of atoms on the left (right) well,
and φL(R)(t) the phase of the dipolar condensate aver-
aged on the left (right) well. To prepare the system with
an initial population imbalance Z(0) 6= 0, we solve the
stationary Gross-Pitaevskii equation in imaginary time
[15] with a small tilting in the external potential, ensur-
ing thus the desired asymmetry in the population of the
two wells. We then let the system evolve in time without
any tilting, according to Eq. (2).

For small values of the initial imbalance the system
exhibits Josephson oscillations between the two self-
induced wells. Figure 2 shows the dynamic evolution of
the population imbalance and the phase difference corre-
sponding to initial conditions Z(0) = 0.1 and φ(0) = 0
(solid lines). Z(t) and φ(t) present sinusoidal oscillations
shifted by π/2, and the time average of the population
imbalance is zero. In this regime, the atoms tunnel pe-
riodically from the left to the right well and back. The
wave function of the dBEC at each well remains coherent
during this process, that is with a uniform phase. This is
translated into a phase difference that oscillates in time
at the same frequency as the imbalance.

For a large initial population imbalance, the SIJJ en-
ters the regime of self-trapping oscillations. This can
be clearly seen in Fig. 3, where the imbalance and the
phase difference are plotted as a function of time for ini-
tial conditions Z(0) = 0.65 and φ(0) = 0 (solid lines). In
this situation, the time average of the imbalance remains
around 0.5 and the phase difference is unbounded (run-
ning phase mode). Although in this regime the atoms
remain locked in one of the wells, there is still some
tunneling of particles at a frequency higher than in the
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FIG. 2: Time evolution of the population imbalance (top
panel) and phase difference (bottom panel) with initial con-
ditions Z(0) = 0.1 and φ(0) = 0. Solid lines are the TDGP
results, and dashed lines correspond to the TMM. The phase
difference is expressed in units of π.
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FIG. 3: Time evolution of the population imbalance (top
panel) and phase difference (bottom panel) with initial con-
ditions Z(0) = 0.65 and φ(0) = 0. Solid lines are the TDGP
results, and dashed lines correspond to the TMM. The phase
difference is expressed in units of π.

Josephson regime. These imbalance oscillations are non-
sinusoidal and have a complicated structure, which hints
at a richer self-trapping dynamics. However, this point
is beyond the purpose of the present letter, and will be
addressed in a future work.

Figures 2 and 3 show that a toroidally confined dBEC
behaves as a SIJJ, and that such a structure can sus-
tain both Josephson and self-trapping dynamics. In this
sense, the SIJJ is robust, since the dipolar interaction
is strong enough to keep the double-well shape of the
effective potential in time. Even when the initial imbal-
ance is large, the double well structure is well defined,

although in this case the double well is not symmetric.
We have therefore shown that a new class of systems exist
where the double-well potential structure is self-induced
by an anisotropic interaction (in this case the dipolar
interaction), and that for these systems Josephson and
self-trapping oscillations are predicted to occur depend-
ing on the initial population imbalance between the two
wells.

To gain insight into the tunneling dynamics obtained
by evolving the TDGP equation, we have performed a
two-mode analysis of the SIJJ, taking into account both
s-wave and dipolar interactions. The two-mode model
(TMM) lies on the assumption that the dynamical be-
havior of a JJ can be fully captured by analyzing the co-
herent dynamics between two spatially localized modes:
the left and right modes, respectively ΦL(r) and ΦR(r).
In this approximation, the condensate order parameter
is written using the ansatz [10]

Ψ(r, t) = ψL(t)ΦL(r) + ψR(t)ΦR(r) , (4)

with 〈Φi|Φj〉 = δij , and the coefficients fulfill ψj(t) =
√

Nj(t)e
iφj(t), i, j = L,R. Note that in this ansatz the

time evolution is contained only in the coefficients ψj(t).
By substituting ansatz (4) into Eq. (2) and performing

some algebra [17], one obtains the two-mode equations
for a symmetric dipolar SIJJ,

Ż =(−1 + α)
√

1 − Z2 sinφ+ ε(1 − Z2) sin 2φ (5)

φ̇ =ΛZ − (−1 + α)
Z√

1 − Z2
cosφ− εZ cos 2φ , (6)

with

Λ =
U

2K
− B + 2I1 +D1

2K
(7)

α =
I2 +D3

K
N (8)

ε =
I1 +D1

2K
N . (9)

The different parameters appearing in (7)–(9) are given
by the integrals

K = −
∫

(

− ~
2

2m
∇ΦL∇ΦR + ΦLΦRVt

)

dr (10)

U =

∫

dr

[

g|ΦL|4 +

∫

vd|Φ′

L|2dr′|ΦL|2
]

dr (11)

B =

∫

dr|ΦL|2
∫

vd|Φ′

R|2dr′ (12)

I1 =g

∫

|ΦL|2|ΦR|2dr , I2 = g

∫

|ΦL|2ΦLΦRdr (13)

D1 =

∫

drΦLΦR

∫

dr′vdΦ′

LΦ′

R (14)

D3 =

∫

drΦLΦR

∫

dr′vd|Φ′

L|2 , (15)
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where vd = µ0µ
2(1 − 3 cos2 θ)/(4π|r − r

′|3) is the micro-
scopic dipole-dipole interaction and Φ′

L(R) = ΦL(R)(r
′).

Note that the only parameters that appear in Eqs. (5)
and (6) are Λ, α and ε, which here depend on both
dipolar and s-wave interactions, in contrast to the TMM
derivations found in the literature [10, 13, 17]. To com-
pute the integrals (10)–(15) and therefore to determine
the parameters (7)–(9), we have used the modes defined
as ΦL(R)(r) = (Φs(r) ± Φas(r))/

√
2, where Φs(r) and

Φas(r) are the symmetric (ground state) and antisym-
metric (first excited state) wave functions of the dou-
ble well potential of Fig. 1. For the case analyzed here,
Λ = 17.84, α = 0.1307 and ε = 0.1156.

We have obtained the dynamics within the TMM by
solving Eqs. (5) and (6). The results are given as dot-
ted lines in Figs. 2 and 3, for the same initial conditions.
We see from the figures that the TMM is a good qual-
itative approximation to the full dynamics given by the
TDGP Eq. (2): the order of magnitude of the frequency
and amplitude of the oscillations, as well as the dynam-
ical regime imposed by the initial conditions, are well
predicted.

The discrepancy between the TDGP dynamics and the
TMM can be attributed to a combination of different fac-
tors. Firstly, it has been recently shown that the fact
that the system does not lie in the deep weak-link limit
gives rise to a frequency in the two-mode approximation
larger than the experimental one [18], which lies closer
to the TDGP result. Secondly, the self-induced nature of
the double well means that it depends on time, which is
not taken into account in a TMM with time-independent
parameters. Lastly, the SIJJ presented here is clearly
two-dimensional, whereas the TMM mimics it as one-
dimensional. Dynamics in other directions different than
x might affect the behavior of the imbalance and the
phase difference. This opens the possibility of new phys-
ical aspects of a SIJJ which are not present in a usual
JJ.

The whole system is scalable in terms of the dimension-
less constants λ = ωz/ω⊥, w̃0 = w0/a⊥, C̃ = 4πNa/a⊥,
D = Nµ0µ

2m/(4π~
2a⊥) and Ṽ0 = V0/(~ω⊥), which are

the coefficients of the different terms of the dimension-
less TDGP equation. The oscillator length is defined
as usual as a⊥ =

√

~/(mω⊥). For the case considered

here λ = 11, w̃0 = 2.08, C̃ = 96.77, D = 24.99 and
Ṽ0 = 30. With these dimensionless constants it would
be easy to export the same physics to another set of pa-
rameters experimentally accessible in 52Cr [11], or even
to condensates of alkali gases such as 39K or 7Li, where
dipolar effects have been recently observed in Refs. [19]
and [20], respectively, making use of a soft zero cross-
ing of the scattering length near a Feshbach resonance.
Moreover, this scenario can be extended to other systems,
such as exciton-polaritons in semiconductors, which can
be polarized and where the ring-shaped geometry is ex-
perimentally easier to implement than an external double

well [21].

In conclusion, we propose a dipolar self-induced
Josephson junction. This junction is created by the
anisotropic character of the dipolar interaction modu-
lated by a toroidal trap, which gives rise to a ring-shaped,
double-well effective potential. The time-dependent
Gross-Pitaevskii equation predicts Josephson oscillations
as well as a self-trapping regime in this system, de-
pending on the initial population imbalance. Moreover,
the self-induced Josephson junction can be analized in
a two-mode picture, giving qualitative agreement with
the Gross-Pitaevskii results. The system formed by the
coupled self-induced Josephson junctions can serve as
a starting point for the realization of the bosonic ana-
log of the superconducting quantum interference device
(SQUID) [1], due to the close analogy between the two
systems.
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