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Abstract

We study n-string scattering amplitudes in three-dimensional Anti-de Sitter space

(AdS3). We focus our attention on the processes in which the winding number conser-

vation is violated maximally; that is, those processes in which it is violated in n− 2 units.

A worldsheet conformal field theory calculation leads us to confirm a previous conjecture

about the functional form of these observables.
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String theory in AdS3 has served as a model to study AdS/CFT correspondence beyond the

supergravity approximation. What makes this possible is that in the three-dimensional case one

has access to the worldsheet conformal field theory formulation in terms of the SL(2,R) Wess-

Zumino-Witten model (WZW) [1, 2], and thus several observables of the theory, like three-point

functions, can be solved exactly. This, together with the existence of a non-renormalization

argument [3], has led the authors of [4, 5, 6] to perform explicit checks of the matching between

bulk and boundary correlators at the string theory level. The agreement found was exact, and

this represents one of the few examples in which one sees the bulk-boundary correspondence to

hold beyond the field theory approximation.

Besides its correlators being solvable, string theory in AdS3 presents several interesting as-

pects. In particular, its spectrum is very rich and exhibits intriguing properties. As observed in

[1, 2], in order to completely parameterize the spectrum of string theory in AdS3, it is necessary

to consider spectrally flowed sectors of the space of representation of the sl(2)k affine algebra.

These sectors are labeled by an integer number ω, whose physical interpretation is that of spec-

ifying the winding number of the string states. This winding number is a dynamical degree of

freedom associated to the presence of the B-field in the background. Not being a topological

quantity, this winding number can in principle be violated if a string scattering process takes

place. However, such a violation is not totally arbitrary, and it happens to be bounded from

above following a curious pattern: In a scattering process that involves n strings, the total

winding number ∆ω =
∑n

i=1 ωi is restricted to obey the bound |∆ω| ≤ n − 2; see [2]. In this

paper, we will focus on the case where this bound is saturated; namely we will analyze n-string

interaction processes satisfying |∆ω| = n− 2.

n-string amplitudes in AdS3 space admit to be written in terms of Liouville theory correla-

tion functions. This was proven in [7] for the case in which the winding number conservation

is violated up to n − 3 units (i.e. |∆ω| < n − 2.) A natural expression for the maximal case

|∆ω| = n − 2 was also proposed in [7] following an educated guess; however, in such special

case the proof in [7], based on the analysis of modular differential equations [8, 9], does not

hold because the corresponding Liouville n-point correlators do not generically involve degen-

erate primaries. Therefore, when the winding number conservation is violated maximally, the

formula in [7] that expresses n-string amplitudes in AdS3 in terms of n-point Liouville corre-

lators remains a conjecture. The aim of this paper is to show that a free field computation in
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the worldsheet conformal field theory actually confirms that formula. Proving so, amounts to

review the free field formalism introduced in references [10, 11], which is particularly useful to

compute worldsheet correlation functions that violate the winding number conservation. The

formalism is based on the Dotsenko conjugate representations introduced for the SU(2) case in

references [12, 13] and extended to the SL(2,R) case in references [10, 11, 14].

Let us begin by briefly reviewing string theory in AdS3. The theory is described by the level-

k SL(2,R) WZW model, where k is given by k = l2/α′, being −l−2 the curvature of AdS3. The

string spectrum is given by a subset of the direct sum of unitary SL(2,R) representations [1];

while discrete representations correspond to short string states, the continuous series correspond

to long string states, for which we do have an S-matrix interpretation. The string scattering

amplitudes in AdS3 are then given by integrating the SL(2,R) WZW correlation functions over

the worldsheet [2].

Correlation functions in the SL(2,R) WZW model are defined by analytic continuation of

correlation functions in the model formulated on H
3
+, which corresponds to Euclidean AdS3.

It is convenient to start by discussing the model on H
3
+ first. More specifically, we should

actually start by considering the model on H
3
+/U(1)× R, which, as suggested in [1] and shown

in [10, 11, 14], is the adequate construction to describe winding string states. To describe the

model on H
3
+/U(1)×R, one may use Wakimoto free field representation [15] with the addition of

extra fields: First, one adds a spacelike U(1) free boson X(z) to realize the coset H3
+/U(1), as in

[16, 17], and then adds an extra timelike free boson T (z) to represent the R time direction. The

piece H
3
+ is realized by the standard Wakimoto representation, which consists of a β-γ ghost

system and a boson φ with background charge.

Being described by the WZW model, the theory exhibits SL(2,R)k × SL(2,R)k affine Kac-

Moody symmetry, whose holomorphic part can be expressed in terms of the following operator

product expansion (OPE)

J3(z)J±(w) ≃ ± J±(w)

(z − w)
+O(1) (1)

J+(z)J−(w) ≃ k

(z − w)2
+

2 J3(w)

(z − w)
+O(1) (2)

J3(z)J3(w) ≃ −k/2

(z − w)2
+O(1) (3)

where the O(1) stand for regular terms. Analogous OPE holds for the anti-holomorphic piece.
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The double poles in the OPE above encode the contribution of the central element of the sl(2)k

affine algebra.

Using the free field representation mentioned above, the sl(2)k currents may be realized as

follows

J+(z) = β(z) ei
√

2

k
(X(z)+T (z)), (4)

J3(z) = −β(z)γ(z)−
√

k − 2

2
∂φ(z)− i

√
k

2
∂X(z)− i

√
k

2
∂T (z), (5)

J−(z) = (β(z)γ2(z) +
√
2k − 4γ(z)∂φ(z) + k∂γ(z)) e−i

√
2

k
(X(z)+T (z)). (6)

with the free field propagators

〈φ(z)φ(w)〉 = 〈X(z)X(w)〉 = −〈T (z)T (w)〉 = − log(z − w), 〈β(z)γ(w)〉 = 1

(z − w)
; (7)

and analogously for the anti-holomorphic contributions.

The states of the theory are labeled by indices j and m, as it is usual when classifying

representations of SL(2,R). It is also necessary to introduce an integer index ω to specify which

spectral flow sector of the sl(2)k algebra the states are Kac-Moody primary with respect to.

Then, we denote the states by kets |j,m,m, ω〉.
The vertex operators that create these states are

Φω
j,m,m(z) = c0 γj−m

(z) e
√

2

k−2
jφ(z)ei

√
2

k
mX(z)ei

√
2

k
(m+ k

2
ω)T (z) × h.c. (8)

where h.c. stands for Hermitian conjugate, which is actually a misnomer as it involves the

contributions that depend on m. The factor c0 is a normalization constant, independent of j

and m.

Operators (8) create the in-states from the SL(2,R) invariant vacuum |0〉; namely

lim
z→0

Φω
j,m,m(z) |0〉 = |j,m,m, ω〉 (9)

as well as the out-states

〈j,m,m, ω| = lim
z→∞

z2h
ω
j,mz2h

ω
j,m 〈0|Φω

−1−j,m,m(z), (10)

where hω
j,m is the conformal dimension of the operators,

hω
j,m = −j(j + 1)

k − 2
−mω − k

4
ω2. (11)
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It is worth noticing that the formula for the conformal dimension remains unchanged under

the Weyl reflection j → −1 − j. That is, the states created by the operator Φ±ω
−1−j,∓m,∓m have

the same conformal dimension than those created by Φω
j,m,m.

Operators (8) have the following OPE with the sl(2)k Kac-Moody currents

J3(z)Φω
j,m,m(w) ≃ (m+ kω/2)

(z − w)
Φω

j,m,m(w) +O(1) (12)

J±(z)Φω
j,m,m(w) ≃ (±j −m)

(z − w)1±ω
Φω

j,m±1,m(w) +O((z − w)∓ω) (13)

The theory also admits conjugate representations of the vertex operators. These are impor-

tant ingredients in our discussion. Such conjugate representations are defined by operators

Φ̃ω
j,m,m(z) =

1

Zj,m
βj+m
(z) e−

√
2

k−2
(j+ k

2
)φ(z)ei

√
2

k
(m− k

2
)X(z)ei

√
2

k
(m+ k

2
ω)T (z) × h.c. (14)

which create conjugate in-states

lim
z→0

Φ̃ω
j,m,m(z) |0〉 = |jn, mn, mn, ωn) . (15)

In (14) Z−1
j,m stands for a normalization factor, which gets fixed once one requires the two-

point function between an operator (8) and its conjugate (14) to be normalized to one; namely

〈1, m,m, ω |j,−m,−m,−ω) ≡ 1. This yields

Zj,m = (−1)j+mc0 Γ(j +m+ 1). (16)

Conjugate representation (14) was introduced in [14]. These operators can be thought of

as a twisted version of the operators proposed in [16] to describe discrete states in the two-

dimensional black hole background. Operators (14) create states in a conjugate representations

|jn, mn, mn, ωn). This is analogous to the SU(2) case studied in [12].

It is easy to verify that operators Φω
j,m,m and Φ̃ω

j,m,m create states with the same conformal

dimension (11). Besides, one can also verify that (14) obeys the following OPE with the currents

J3(z)Φ̃ω
j,m,m(w) ≃ (m+ kω/2)

(z − w)
Φ̃ω

j,m,m(w) +O(1) (17)

J±(z)Φ̃ω
j,m,m(w) ≃ (∓1∓ j −m)

(z − w)1±ω
Φ̃ω

j,m±1,m(w) +O((z − w)∓ω); (18)
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that is, conjugate operators Φ̃ω
j,m,m have exactly the same properties that the Weyl-reflected

operator Φω
−1−j,m,m. In fact, as pointed out in [14], Weyl reflection can also be thought of as a

conjugation operation associated to the zero-dimension field Φ0
−1,0,0(z) = γ−1

(z)e
−
√

2

k−2
φ(z) × h.c.

Important ingredients of the Coulomb gas realization that the free field approach leads to

are the screening operators. These are given by

Φ̃−1

1− k
2
, k
2
, k
2

(z) = β(z) e−
√

2

k−2
φ(z) × h.c. (19)

These operators have conformal dimension one and regular OPE with the Kac-Moody currents.

Another special case of operators (14) is the conjugate representation of the identity operator.

This is given by the zero-dimension field

Φ̃0
0,0,0(z) = Φ1

− k
2
,− k

2
,− k

2

(z) = e−
√

2

k−2

k
2
φ(z)e−i

√
k
2
X(z) × h.c. (20)

Operator (20) was first introduced by Fateev and the brothers Zamolodchikov in their

renowned FZZ unpublished paper [18], and in reference [2] it was dubbed spectral flow op-

erator. Representation (20) is important to define the charge asymmetry conditions; see [12] for

the details.

In references [10, 11, 14], conjugate representations were considered to describe string scatter-

ing amplitudes in AdS3 in the case where the winding number is taken into account. Based on an

adaptation of Dotsenko works [12, 13], a prescription was proposed to calculate the correlators

on H
3
+/U(1)× R. According to such prescription, the string scattering amplitudes of n-strings

in AdS3 are obtained by integrating over the worldsheet the following correlation function

X∆ω
n = 〈j1, m1, m1, ω1|

∏p
t=2Φ

ωt

jt,mt,mt
(zt)

∏n−1
l=p+1 Φ̃

ωl

jl,ml,ml
(zl) |jn, mn, mn, ωn) (21)

where ∆ω =
∑n

i=1 ωi = p + 1 − n (notice that p ≥ 1.) That is, the tree-level string amplitude

is given by

A∆ω
string =

∫ ∏n−1
l=3 d2zl X

∆ω
n , (22)

integrating over n− 3 vertex insertions on the sphere.

Here we are concerned with the amplitudes of processes in which the total winding number

is violated in n− 2 units; namely, we will consider correlation functions

X2−n
n = 〈j1, m1, m1, ω1|

∏n−1
l=2 Φ̃ωl

jl,ml,ml
(zl) |jn, mn, mn, ωn) . (23)
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For this correlator not to vanish, it is necessary to insert a precise amount s of screening

operators (19). s is determined by the charge asymmetry condition corresponding to the field

φ(z), which yields s = −1 −
∑n

i=1 ji − (n − 2)k/2. On the other hand, the charge asymmetry

conditions corresponding to the fields X(z) and T (z) demand
∑n

i=1mi =
∑n

i=1mi = (n− 2)k/2

and
∑n

i=1 ωi = 2− n.

For further purpose it will be necessary to renormalize the vertex operators Φ̃ωi

ji,mi,mi
of the

n− 2 intermediate states, i = 2, 3, 4, ...n− 1. To do so, first we rewrite Zj,m as follows

Zj,m = (−1)j+mc0 Γ(j +m+ 1) = lim
ε→0

c0 Z
(ε)
j,m with Z

(ε)
j,m =

Γ(ε)

Γ(ε− j −m)
,

and then introduce a regularization factor to extract the divergence by renormalizing c0; namely

∏n−1
l=2

1

Zj,mZj,m
= lim

ε→0
ε2−n (c0/ε)

2−n∏n−1
l=2

1

Zj,mZ
(ε)
j,m

= c2−n ∏n−1
l=2 (−1)−jl−ml

Γ(−jl −ml)

Γ(1 + jl +ml)
.

The amplitudes of a scattering process of n strings in which the winding number conservation

is violated in n− 2 units is then given by integrating the correlation function

X2−n
n =

(−1)s−2jn−mn−mnΓ(−s)c2−n

Γ(1 + jn +mn)Γ(1 + jn +mn)

∏n−1
l=2

(−1)−jl−mlΓ(−jl −ml)

Γ(1 + jl +ml)∫ ∏s
r=1 d

2yr

〈
γ−1−j1−m1

(z1)

∏n
l=2 β

jl+ml

(zl)

∏s
r=1 β(yr)

〉

〈
e−

√
2

k−2
(j1+1)φ(z1)

∏n
l=2 e

−
√

2

k−2
(jl+

k
2
)φ(zl)

∏s
r=1 e

−
√

2

k−2
φ(yr)

〉

〈
ei
√

2

k
m1X(z1)

∏n
l=2 e

i
√

2

k
(ml− k

2
)X(zl)

〉〈
ei
√

2

k
(m1+

k
2
ω1)T (z1)

∏n
l=2 e

i
√

2

k
(ml+

k
2
ωl)T (zl)

〉
× h.c.

where the integrals over yr come from the insertion of s screening operators, with s = −1 −
∑n

i=1 ji − (n− 2)k/2; and where we set z1 = ∞, z2 = 1, and zn = 0.

Expanding the Wick contractions, and considering the free field propagators (7), one finds

the integral expression

X2−n
n = c2−n ∏n

i=1

Γ(−ji −mi)

Γ(1 + ji +mi)

∏n−1,n
i<j (zi − zj)

βij (zi − zj)
βij

∏n−1,n
i<j |zi − zj |−2αiαjΓ(−s)

∫ ∏s
r=1 d

2yr
∏n

i=1

∏s
r=1 |zi − yr|−2αib

∏s−1,s
r<t |yr − yt|−2b2 , (24)
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where we introduced the notation αi = b(ji + 1 + b−2/2) with b−2 = k − 2, and βij = k/2 −
mi −mj − kωiωj/2 −miωj −mjωi, and analogously for βij changing mi and ωi for mi and ωi

respectively. Notice that, in terms of αi, we have s = b−1
∑n

i=1 αi + 1 + b−2.

In finding an expression like (24), the rapid way of dealing with the contraction of the β-γ

system is that of first assuming the case of j1 −m1 being a positive integer and then extending

the resulting expressions. Also, it was used in (24) that the product of the multiplicity factor

coming from the Wick contraction of the β-γ contribution and the normalization of the nth

vertex can be rewritten as

Γ(−j1 −m1)Γ(−j1 −m1)

Γ(1 + jn +mn)Γ(1 + jn +mn)
=

Γ(−j1 −m1)

Γ(1 + j1 +m1)

Γ(−jn −mn)

Γ(1 + jn +mn)
(−1)jn−j1+mn−m1 .

The zi-dependent factor in the first line of (24) comes from the Wick contraction of the

fields X(z) and T (z). In the second line of (24), on the other hand, one already sees the n-

point Liouville correlation function appearing. In fact, Liouville correlation functions of primary

operators Vαi
(zi) = e

√
2αiφ(zi) are given by

〈
∏n

i=1 Vαi
(zi)〉L =

∫
Dϕ e−

1

4π

∫
d2w((∂ϕ)2+(b+1/b)Rϕ+4πe2bϕ)

∏n
i=1 e

√
2αpϕ(zi) =

=
Γ(−s)

b

∏n−1,n
i<j |zi − zj|−2αiαj

∫ ∏s
p=1 d

2yp
∏n

i=1

∏s
l=1 |zi − yl|−2αib

∏s−1,s
l<t |yl − yt|−2b2

with s = −b−1
∑n

i=1 αi + 1 + b−2. This means that, after absorbing an irrelevant factor, we can

write correlation functions (23) as follows

X2−n
n = c2−n

∏n
i=1

Γ(−ji −mi)

Γ(1 + ji +mi)

∏n−1,n
l<t (zl − zt)

βlt(zl − zt)
βlt 〈

∏n
i=1 Vαi

(zi)〉L , (25)

recalling βlt = k/2−ml −mt − kωlωt/2−mlωt −mtωl, αi = b(ji +1+ b−2/2), and b−2 = k− 2.

(25) is exactly the expression conjectured in [7] for the case |∆ω| = n− 2, and this is what

we wanted to prove. The worldsheet conformal field theory calculation in terms of free fields

actually confirms that formula. It is worth pointing out that resorting to the prescription of

[10, 11, 14] in terms of conjugate representations was crucial to find (25); a free field calculation

in terms of the standard Wakimoto representation for the vertices (c.f. [17]) would never lead

to such a direct computation, in particular because it is not clear in that case how to implement

the winding number violation. Therefore, the result obtained here can be interpreted as a non-

trivial test passed by the prescription of [10, 11, 14], which seems to be powerful enough to
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yield an expression like (25) even in a case in which the modular differential equations are not

at hand. Of course, even when convincing, a computation based on a free field realization can

hardly be considered a rigorous proof; in particular, it strongly relies on analytic continuation

of the integral formulas involved. However, it is still interesting that formula (25) is confirmed

by these means. It has already been argued in [7] that free field computations in the FZZ dual

theory done by Fateev in an unpublished paper [19] gave further evidence in favor of the validity

of (25).

This work was supported by ANPCyT, CONICET, and UBA.
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