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a b s t r a c t

We investigate the behavior of the four-terminal resistance R4pt in an interacting quantum wire

described by a Luttinger liquid with an applied bias voltage V and coupled to two voltage probes. We

extend previous results, obtained for very weakly coupled contacts, to the case in which the effects of

the probes become non-trivially correlated.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Quantum transport in novel materials is one of the most active
areas of present research in condensed matter physics [1]. The
problems that arise are specially interesting in one-dimensional
(1D) devices such as quantum wires and carbon nanotubes. In these
cases the effect of electron–electron (e–e) interactions is crucial,
leading to the so-called Luttinger liquid (LL) behavior [2], character-
ized by correlation functions which decay with interaction-depen-
dent exponents [3]. On the other hand, one of the central issues in
quantum transport is the actual nature of the resistance in a
mesoscopic device. Improving the pioneering works that established
the fundamental relation between the two-terminal conductance G

and the universal quantum G0 ¼ e2=h [4], Büttiker has elaborated
the concept of the multi-terminal resistance within scattering-
matrix theory [5,6], for non-interacting electrons at low V and zero
temperature. In the particular four-terminal case, the resistance R4pt

is expected to characterize the genuine resistance of the sample.
One of the remarkable features of Büttiker’s theory is the possibility
of having R4pt o0 as a consequence of quantum interference. This
effect has been experimentally observed [7,8].

While the consequences of elastic scattering due to impurities
can be analyzed in terms of non-interacting electrons, the role of the
e–e interaction in the behavior of R4pt remains an open question.
The proper evaluation of this quantity implies dealing with a multi-
terminal setup as the one in Fig. 1, which is difficult to implement
within theoretical approaches like those of Refs. [9–11]. Previous
multi-terminal treatments in LL rely in the effective reduction to a
non-interacting model by recourse to a Hartree–Fock decoupling of
the interaction term [12] or focus in linear response in V [13]. More
ll rights reserved.
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recently we presented an alternative approach, based on Keldysh
non-equilibrium Green’s functions, which allowed us to treat the
e–e interaction exactly, while going beyond linear response [14]. In
that work we considered the setup sketched in Fig. 1, which consists
in a quantum wire described by a Tomonaga–Luttinger model under
the influence of a voltage V. Two reservoirs are in contact with the
wire at the points x1,x2 through very weak tunneling constants
w1 and w2, their chemical potentials m1,m2 satisfy the condition of
a vanishing current through the ensuing contacts. In this way,
a continuous current I flows through the wire, and

R4pt

R2pt
¼
m1�m2

V
: ð1Þ

Although the hypothesis of non-invasive contacts considerably sim-
plifies the calculations, in real measurements this condition is very
difficult to fulfill. Besides, within this approximation, potentially
interesting quantum interference effects coming from the mutual
influence of the reservoirs are ignored. The main purpose of this work
is to start exploring the effect of invasive contacts on R4pt .
2. Model and calculations

The full system is described by the action:

S¼ SwireþSresþScont , ð2Þ

where Sres describes the two reservoirs that constitute the voltage
probes and

Swire ¼

Z
dx dtfcyr ½ið@tþ@xÞ�mr �cr

þcyl ½ið@t�@xÞ�ml�cl�g½cyrcrþc
y

l cl�
2g, ð3Þ

where g is the e–e interaction in the forward channel, while
mr ¼ mþV=2 and ml ¼ m�V=2. The term Scont represents the tunneling
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Fig. 1. Sketch of the setup: A voltage V is imposed on a Luttinger liquid, through

the chemical potentials for the left and right movers: mr,l ¼ m7V=2. Two voltage

probes are connected at the positions x1 ,x2. The corresponding chemical potentials

m1;2 are fixed by the condition of zero current through the contacts.
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Fig. 2. R4pt=R2pt as a function of the voltage V, for different values of e–e

interaction strength K. The positions of the probes are x1 ¼�10 and x2 ¼ 10, and

the strength of the couplings are w1 ¼w2 ¼ 0:1.
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between the reservoirs and the wire,

Scont ¼
X

j ¼ 1;2

X
a,b ¼ r,l

Z
dx wjdðx�xjÞ � ½e

8 iðkF þk0
F
Þxcyawb,jþh:c:�, ð4Þ

where the fields wyb,j, with a,b¼ l,r and j¼1,2 are the degrees of
freedom of the reservoirs. The upper and lower sign corresponds to l

and r, respectively. We carry out the gauge transformation cyl,rðxÞ-
e7 ikF xcyl,rðxÞ.

The tunneling current from the probes to the wire casts

Ij6iwj

X
a,b

/wya,jðtÞcbðxj,tÞ�c
y

bðxj,tÞwa,jðtÞS: ð5Þ

In the following, we evaluate the currents Ij using perturbation
theory with respect to the coupling between the wire and the
probes. In Ref. [14] we considered ‘‘non-invasive’’ probes, which
correspond to completely uncorrelated probes. Thus, the currents
were evaluated up to second order in the tunneling coupling w,
which corresponds to the lowest order in this parameter. In the
present work we compute up to order w4. As we shall see, this
correction allows us to capture inelastic scattering effects induced
by the coupling to the probe, as well as new interference effects
coming from contributions proportional to w2

1w2
2, which are due

to correlations between the probes.
The tunneling current can be written in terms of Green’s

functions of the wire (G) and the reservoirs (gj):

Ij ¼�2
X
ab,j

R w2
j

Z
do
2p ½G

o
aa ðxj,xj;oÞgA

bj
ðoÞþGR

aaðxj,xj;oÞgo
bj
ðoÞ�

� �
:

ð6Þ

The above expression for the current is exact. The approximations
are made in evaluating the Green functions GR

aaðx,x0;oÞ and
Go
aa ðx,x0;oÞ. In doing so, we have assumed that the self-energy

of the Luttinger liquid is the same that the self-energy of the LL
coupled to the probes. The expansion of the expression for the
current in different orders of the parameters wj gives Ij ¼ I1

j þ I2
j ,

where I1
j is Oðw2

j Þ and corresponds to the result derived in
Ref. [14] for non-invasive probes, while I2

j is Oðw4
j Þ and this is

precisely the contribution we aim to analyze in the present work.
Concretely:

Ið2Þj ¼w2
j

X
i ¼ 1;2

X
a,b ¼ l,r

w2
i

Z
do
2p ð7Þ

�f½Go
a ðxi,xj;oÞg4

j ðoÞ�G4
a ðxi,xj;oÞgo

j ðoÞ� � GR
ðxj,xi;oÞgR

i ðoÞ

þ½Go
a ðxj,xi;oÞg4

j ðoÞ�G4
a ðxj,xi;oÞgo

j ðoÞ� � GA
ðxi,xj;oÞgA

i ðoÞ

þ½g4
j ðoÞg

o
i ðoÞ�go

j ðoÞg
4
i ðoÞ� � GA

aðxi,xj;oÞGR
bðxj,xi;oÞg:

ð8Þ

The chemical potentials of the probes mj are determined from
the condition of local equilibrium of the probe in relation to the
driven LL. This corresponds to Ij¼0 through each of the contacts
between the LL and the probes. Thus, we have a system of two
transcendental equations which we have solved numerically in
order to find m1 and m2. Replacing these values in (1) we find
R4pt=R2pt in terms of the parameters of the system, namely, K, V, x1

and x2. Our main results are displayed in Figs. 2 and 3.
3. Discussion

Let us now gather our main results and conclusions. First of all
we recall that in the case of non-invasive contacts, a non-
vanishing R4pt=R2pt is possible in the present setup provided that
the wire contains some source of backscattering, like a barrier or
an impurity [14] (see also Ref. [6]). Instead, when we take into
account the higher order terms in the coupling w, there is a non-
vanishing four-terminal resistance, even in the absence of impu-
rities. This is because within the Oðw4Þ approach we are able to
capture processes where a given probe senses the effect intro-
duced by the other one. In addition, coupling a probe to the wire
beyond the non-invasive condition, introduces inelastic scattering
processes and decoherence. This manifests itself in the fact that
the four terminal resistance is always positive, while in the case of
an elastic impurity sensed by non-invasive probes it may also be
negative, due to the coherence nature of the electronic transport
through the wire.

In Fig. 2 we plot R4pt=R2pt as a function of the bias voltage V, for
different values of the e–e interaction K. This suggests that the
many-body interactions tend to screen the resistive behavior
introduced by the coupling between the probes and the wire. We
see that R4pt=R2pt , after an initial monotonous growth, presents an
oscillatory behavior. The period of these oscillations is given by
2p=Kðx2�x1Þ. Moreover, the magnitude of the resistance decreases
with increasing e–e interaction. Interestingly, for values of V larger
than the first maximum the resistance can be very well fit as
R4pt=R2pt � AþB sinðKVðx2�x1ÞÞ=V2gþ1, where g¼ ðKþK�1

�2Þ=4
and A and B are constants which are proportional to the product
w1w2 (remember that we have set w1 ¼w2 ¼w in this study). Thus,
for non-invasive probes, for which w2-0, the whole effect dis-
appears and one has R4pt=R2pt ¼ 0 unless an impurity is present in
the wire.

The physical interpretation of these findings is the following. For
low enough V the ratio R4pt=R2pt displays a non-ohmic behavior as a
function of V, given by a power law with an interaction dependent
exponent. For higher values of V, a classical ohmic-like resistive
behavior is established, related to inelastic backscattering processes
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Fig. 3. R4pt=R2pt as a function of the position of the second probe x2, given the first

probe fixed at x1 ¼�10. The strength of the e–e interaction is K¼0.7, and the

couplings w1 ¼w2 ¼ 0:1.
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taking place at the probes. This behavior implies a constant value of
R4pt=R2pt , which is given by the constant A introduced above.

Fig. 3 shows the behavior of R4pt=R2pt as a function of the
distance between the reservoirs, for different values of V. We
observe the occurrence of 2kF Friedel-like oscillations. This
feature has also been shown in non-interacting [6], disordered
[15] as well as in interacting [14] and time-dependent pumped
[16] systems with non-invasive probes. In such cases the origin is
the interference effects generated in the coherent transport due to
back-scattering events at a static or dynamical impurity. In our
case, these oscillations are due to interference effects between the
two voltage probes. Interestingly, in the present case they also
display a modulation with period 2p=KV , while for a given K their
amplitudes decrease with increasing V.

Four-terminal configurations have been also considered in trans-
port experiments in quantum dots embedded in Aharonov–Bohm
rings [17]. In such geometries, the interference effects have been
exploited to infer the phase of the transmission function. In
quantum dots, the behavior of the four-terminal resistance has been
experimentally studied and universal fluctuations similar to the one
observed in the conductance of these devices have been observed
[18]. In agreement with our results, four-terminal resistance
fluctuations are found to increase, as the coupling to the probes is
increased. A closer comparison with such devices, however, implies
including elastic scattering processes and disorder induced by
impurities, in our treatment. A step in this direction has been done
in Ref. [19], where the effect of a single impurity in the behavior of
R4pt=R2pt of a biased Luttinger wire has been analyzed.
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