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Abstract
We theoretically investigate the effect of inhomogeneous light beams with (twisted light) and
without (plane-wave light) orbital angular momentum on semiconductor-based nanostructures,
when the symmetry axes of the beam and the nanostructure are displaced parallel to each other.
Exact analytical results are obtained by expanding the off-centered light field in terms of the
appropriate light modes centered around the nanostructure. We demonstrate how electronic
transitions involving the transfer of different amounts of orbital angular momentum are
switched on and off as a function of the separation between the axes of the beam and the
system. In particular, we show that even off-centered plane-wave beams induce transitions such
that the angular momenta of the initial and final states are different.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the last few decades, the design and subsequent study
of man-made nanostructures has occupied a crucial place in
pure and applied condensed matter research. The importance
of these systems stems from the fact that, on the one hand,
they are excellent tools to probe the laws of physics at different
length scales and, on the other hand, their technological
applications are vast, spanning electronics, optical devices, and
spintronics. Quantum dots (QDs) are a paradigmatic example
that illustrates the general trend [1, 2]. QDs mimic atoms at a
larger length scale (they are sometimes called artificial atoms)
and allow a flexible control of the ‘atomic’ properties, like the
strength of the Coulomb interaction via the dielectric constant,
the number of electrons, the shape of the confining potential,
the spin–orbit interaction, etc. Quantum rings (QRs) [3, 4] are
another important example of nanostructured systems where
interesting physical effects can be explored—the Aharonov–
Bohm effect, persistent currents, quantum interference, etc.

Much research is being carried out on semiconductor
nanostructures, which present, among other interesting
features, a strong coupling with optical (or near-optical)
electromagnetic fields. Naturally, the electronic states of these
structures can be probed and manipulated using a variety
of light pulses. For instance, the use of femtosecond light

pulses is usually claimed to outperform other methods when
an ultrafast control is sought. However, there has been
very little exploration of what can be done on semiconductor
nanostructures by taking advantage of the inhomogeneous
nature of light beams. In particular, the interaction of these
structures with twisted light (TL) [5]—i.e. light carrying orbital
angular momentum (OAM)—is only beginning to be studied,
although much effort is being devoted to the study of TL in
other areas of physics [6]. We have recently initiated studies in
the topic of TL–semiconductor interaction, both for QDs [7]
and QRs [8], and also for bulk and quasi-two-dimensional
systems [9, 10].

In particular, our previous article in QDs explored the
interaction of disc-shaped QDs with twisted light, in the case
where the beam axis coincides with the symmetry axis of the
QD. We predicted that the transitions are not vertical and may
connect states having different values of the orbital angular
momentum of the electron, and from an applied standpoint,
that the use of light carrying OAM would facilitate the ultrafast
manipulation of the electronic states in the system. It is
noticeable that the interaction of twisted light with QRs and
QDs is richer, in a sense, than the interaction with molecules,
whose internal electronic states cannot be modified as easily by
the light, in view of their small size and the applicability of the
dipole approximation [11].
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This paper extends our previous work on QDs and QRs
to the general case of the interaction of inhomogeneous
fields—with special emphasis on TL beams—with QDs or
QRs when the symmetry axis of the nanostructure and the
beam axis do not coincide. The problem we study is of
interest, for it addresses realistic experimental situations, like
the irradiation of an ensemble of nanostructures, where each
nanostructure will see a displaced light beam. Also, when a
single nanostructure is meant to be addressed, our theory shows
how an imprecise centering of the beam can alter significantly
the optical transitions. Finally, from a constructive point of
view, our calculations display the wealth of opportunities for
optical control of electronic states which can be achieved by
simply changing the positioning, waist and orbital angular
momentum of the light beam.

The differences between the centered and the off-centered
geometries of the beam with respect to the QR or QD can
be simply appreciated when the light beam does not carry
OAM, that is, for the usual plane-wave beams. In the centered
geometry, these beams can only induce vertical optical
transitions, that is, transitions between states whose envelope
wavefunctions have the same angular momentum (there is a
separate angular momentum conservation involving the spin
angular momentum of the light and the angular momentum
associated with the microscopic part of the electronic
wavefunctions, which follows the traditional principles of
optical transitions in solids). For these plane-wave beams,
we show here how the off-centered geometry induces non-
vertical transitions which are not allowed in the centered
one. This arises mathematically from the decomposition of
the off-centered laser-beam field in field modes centered in
the nanostructure. In this expansion multiple components
with non-zero OAM appear, which activate the non-vertical
transitions like twisted light does in a centered geometry. From
this simple case one can envision a similar phenomenon even
if the applied off-centered beam has non-zero OAM. This is, in
a nutshell, the essence of the phenomena explored here.

This paper is organized as follows. Section 2 briefly covers
the already studied problem of the interaction of TL with
electrons in nanostructures (QDs and QRs) when the beam and
system symmetry axes coincide. Section 3 develops the theory
used to solve the general problem of a TL beam displaced
from the symmetry axis of the nanostructure and presents in
detail the differences between the centered and off-centered
geometries. Conclusions are given in section 4.

2. Background: centered beam

In this section we treat the problem of the interaction of
TL with QDs and QRs, in the case where both symmetry
axes coincide. The model and results are based on previous
studies [7, 8] and serve as an introduction to the more general
problem of off-centered beams.

Succinctly stated, twisted light is light carrying orbital an-
gular momentum h̄l per photon, characterized by inhomoge-
neous fields having a phase eilθ and radial dependence of the
Laguerre [12] or Bessel [13] form. In the Coulomb gauge,
the inhomogeneous vector potential has both transverse and

longitudinal components [9]. Under typical experimental con-
ditions, in which qr/qz < 1, the transverse component is the
dominant one, and in cylindrical coordinates is [9]

Al(r, t) = εσ Fl(r)ei(qz z−ωt) + c.c.

= A(+)
l (r, t) + A(−)

l (r, t), (1)

where ε± = x̂ ± iŷ is the transverse circular-polarization
vector. We choose to work with Bessel modes for the radial
dependence, since these will allow for analytical results in
section 3. Thus, we take

Fl(r) = Jl(qrr)eilθ . (2)

Quantum dots and rings based on semiconductor materials can
be made to confine both electrons and holes. Electronic states
in these structures can be mathematically described by the
product of envelope R(r)eimθ Z(z), microscopic ub(r) (here
taken at zero crystal momentum) and spin ξ functions:

�b(r) = [R(r)eimθ Z(z)]ub(r) ξ. (3)

In semiconductor systems, strain lifts the degeneracy of the
heavy-hole and light-hole bands. Therefore, a two-band model
in the effective-mass approximation with one conduction
(b = c) and one heavy-hole valence (b = v) band is sufficient
to treat our problem. In addition, we have assumed that
the envelope function is separable. Furthermore, since the
confinement in the z direction is much stronger than that in
the x–y plane, it is a good approximation to assume that the
electron remains in the lowest-energy z eigenstate.

The coupling between the semiconductor structure and the
TL beam is modeled using the minimal-coupling Hamiltonian,
which to lowest order in the vector potential is given by

hl = − q

me
Al(r, t) · p, (4)

where q = −e, me and p are the charge, mass and momentum
of the electron, respectively. This coupling causes electronic
transitions between the conduction and valence bands. The
physics of the interaction can be derived—e.g. using Fermi’s
golden rule, master equation or Heisenberg equations—from
the matrix elements of hl . Since we are interested in interband
transitions, the rotating-wave approximation is applied and we
obtain for the matrix elements of the light–matter interaction

〈cα′| h(+)l |vα〉 = −2πq

me
e−iωt (ε · pcv)δl,(m′−m)

× δξ ′,ξ

∫ ∞

0
dr r Jl(qrr)R∗

cα′(r)Rvα(r), (5)

〈vα′ | h(−)l |cα〉 = −2πq

me
eiωt (ε∗ · pvc)δl,(m−m′)

× δξ ′,ξ

∫ ∞

0
dr r Jl(qr )R

∗
vα′ (r)Rcα(r), (6)

where α is a collective index that gathers all quantum numbers
relevant for QDs (radial and angular) or QRs (angular) and
contains in particular the angular quantum number m that
appears in equation (3). We used the usual matrix element
pbb′ = 1

a3

∫
a3 d3r ub(r)∗ (−ih̄∇)ub′(r). The expressions given

above represent absorption (v → c) and emission (c → v) of
light, respectively (for a detailed derivation, see [7] and [8]).
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Figure 1. Relative positions of the nanoparticle and the light beam.
The QD/QR is placed at the origin O and the TL beam axis passes
through D. The z axis is normal to the plane of the drawing.

3. Off-centered beam

We now consider the case of light beams whose center is
displaced with respect to that of the nanostructure. We
formulate the theory for TL beams with arbitrary OAM, given
by l; the case of plane waves is then easily derived by setting
l = 0. The geometry of the problem is shown in figure 1.
The nanostructure is centered at the origin of coordinates, with
symmetry axis along z, and a beam of TL propagates in the z
direction, displaced from the origin by a distance D. Hereafter,
we shall refer to this situation as having an ‘off-centered’ TL
beam (with respect to the nanostructure). We first formulate
the theory and then analyze the main aspects of its predictions.

3.1. Theory

Let us use equation (1) to write the vector potential centered
at D (herein, we indicate displaced vector potentials and
Hamiltonians by a tilde):

Ãl(y, t) = εσ Fl(y)ei(qz z−ωt) + c.c., (7)

where

Fl(y) = Jl(qr y)eilθy

= Jl(qr y)(−1)leilψ eilθD

since θy = π + ψ + θD. The relation [14]

Jl(qr y)eilψ =
∞∑

s=−∞
Jl+s(qr D)Js(qrr)eisφ (8)

allows us to express Fl(y) in terms of centered coordinates as

Fl(y) = (−1)l
∞∑

s=−∞
Jl+s (qr D)Js(qrr)e

is(θD−θ)eilθD

=
∞∑

s=−∞
(−1)l−s Fl−s (D)Fs(r),

Figure 2. Weights corresponding to the decomposition of the
off-centered TL beam in terms of TL beams centered at the origin.

where the last equation follows by changing s to −s. From
equation (7), the final form of the vector potential centered at
position D:

Ãl(y, t) =
∞∑

s=−∞
(−1)l−s Fl−s (D)A(+)

s (r, t)

+
∞∑

s=−∞
(−1)l−s F∗

l−s (D)A(−)
s (r, t) (9)

is given in terms of a superposition of TL vector potentials
centered at the origin, each having different OAM, and
weighted by Fl−s (D). This expansion is easily understood
by analogy with the transformation of angular momentum in
classical mechanics, when the proper axis—from which the
motion is seen as a pure rotation—is changed to an arbitrary
axis. Although our transformation makes the representation
of Ãl(y, t) more complex, it is justified by the need to refer
both the TL beam and the electronic states to the same axis.
Figure 2 shows the weights squared |Fl−s (D)|2 = Jl−s (qr D)2

of the decomposition of equation (9).
It is now a simple algebraic matter to write down the

interaction Hamiltonian h̃l = (−q/me)Ãl(y, t) · p, which
becomes

h̃l =
∞∑

s=−∞
(−1)l−s Fl−s (D)

[
− q

me
A(+)

s (r, t) · p
]

+
∞∑

s=−∞
(−1)l−s F∗

l−s (D)
[
− q

me
A(−)

s (r, t) · p
]
,

or, using the Hamiltonian at the origin hl

h̃l =
∞∑

s=−∞
(−1)l−s Fl−s (D)h(+)s +

∞∑
s=−∞

(−1)l−s F∗
l−s (D)h

(−)
s

= h̃(+)l + h̃(−)l . (10)

The matrix elements of the Hamiltonian, equation (10), are
determined using the matrix elements for the centered case,
equations (5) and (6), and give

〈cα′| h̃(+)l |vα〉 =
∞∑

s=−∞
(−1)l−s Fl−s (D)〈cα′| h(+)s |vα〉

3
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〈vα′ | h̃(−)l |cα〉 =
∞∑

s=−∞
(−1)l−s F∗

l−s (D)〈vα′ | h(−)s |cα〉.

The sums are solved thanks to the delta function δs,±(m′−m) that
appear in the matrix elements of h(±)s . Then

〈cα′| h̃(+)l |vα〉 = (−1)l−(m
′−m)Fl−(m′−m)(D)

× 〈vα′ | h(+)m′−m |cα〉 (11)

〈vα′ | h̃(−)l |cα〉 = (−1)l−(m−m′)F∗
l−(m−m′ )(D)

× 〈vα′ | h(−)m−m′ |cα〉. (12)

The final expressions are

〈cα′| h̃(+)l |vα〉 = −2πq

me
e−iωt (εσ · pcv)Fl−(m′−m)(D)

× (−1)l−(m
′−m)

∫ ∞

0
dr r Jm′−m(qr)R∗

cα′(r)Rvα(r), (13)

〈vα′ | h̃(−)l |cα〉 = −2πq

me
eiωt (ε∗

σ · pvc)F
∗
l−(m−m′ )(D)

× (−1)l−(m−m′)
∫ ∞

0
dr r Jm−m′ (qr)R∗

vα′(r)Rcα(r), (14)

where, to ease the notation, we eliminated the delta functions
for the spin indices and assumed that the bands are the correct
ones which yield non-vanishing matrix elements.

3.2. Results and analysis

We would like to draw first a general picture of what happens
to the electronic transitions when the TL beam is displaced. To
this end, let us consider the main ingredient in the calculation
of the transition probability using Fermi’s golden rule, namely

|〈vα′ | h̃(+)l |cα〉|2 = κ |Fn(D)|2 = κ Jn(qr D)2, (15)

where n = l − (m ′ − m). Note that κ contains relevant
information that will be unfolded later in this section, when
precise numerical calculations are presented.

For concreteness, let us assume that the TL beam
possesses l = 1; it is worth stressing that l is the OAM of the
beam as seen from its proper axis. When the beam is centered,
Jn(qr D = 0)2 	= 0 only for n = 0. This implies that the
only allowed transition is that connecting states that differ by
one unit of angular momentum: m ′ − m = 1, see figure 3(a).
As the beam is displaced off the nanostructure symmetry axis,
other transitions between states having m ′ − m = ±2,±3, . . .
become allowed, see figure 3(b). To understand this apparent
violation of conservation of OAM, we recall that, according
to equation (9), the off-centered beam is a superposition of
centered beams with varying values of OAM. Due to the n
dependence of the zeros of the Bessel function, there are
specific values of qr D such that, for instance, the transition
matrix element between states differing by one unit of angular
momentum is zero, while the probability for other transitions
remains finite, as illustrated in figure 3(c).

In order to perform a numerical analysis, we shall now
consider the whole expressions in equations (13) and (14).
Thus, we need to consider specific radial functions. For the

Figure 3. Pictorial representation of the possible transitions in a QR,
induced by TL having OAM l = 1. (a) A centered beam produces a
non-vertical transition between a valence-band and a
conduction-band state differing by one unit of angular momentum m.
(b) An off-centered beam produces several non-vertical transitions.
(c) For a particular choice of qr D the transition from the upper
valence-band state to the m = 1 conduction-band state becomes
negligible.

case of a QR, employing for the sake of simplicity a hard-wall
model:

R(r) =
√

2

r0d
sin

[
π

d
(r − r0 + d/2)

]
, (16)

4
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Figure 4. Normalized transition matrix element for a TL beam with
l = 1 and for different values of the initial and final angular
momentum quantum number.

with r0 and d the radius and width of the ring; R(r) = 0 outside
the ring. We assume r0 
 d , which allows us to restrict the
analysis to one subband. For a QD, considering a parabolic
confinement, which is the most widely used model for quasi-
two-dimensional dots, the radial wavefunction is

Rsm(r) = (−1)s√
2π 

√
s!

(s + |m|)!e
−r2/(4 2)

×
(

r√
2 

)|m|
L |m|

s (r 2/(2  2)), (17)

where  is a characteristic length for the confinement of
electrons, s and m are the radial and angular momentum
quantum numbers, and L |m|

s (x) is a Laguerre polynomial.
For the QR, the integral is (the quantum number indices in

R(r) are unnecessary)
∫ ∞

0
dr r Jm′−m(qr)|R(r)|2 = Jm′−m(qrr0). (18)

For the case of a QD, a redefinition of the radial coordinate to
x = r 2/(22) allows us to simplify the expression [7]. In the
following, we exemplify this by using the case of a QR. The
matrix element for the absorption of light becomes

〈cα′| h̃(+)l |vα〉 = −(−1)n
2πq

me
(εσ · pcv)

× Fn(D)Jm′−m(qrr0)e
−iωt . (19)

We are now in a position to precisely determine the transition
probability. We see at once that the probability for the
transition {vα} → {cα′} is determined by the displacement
D, the difference m ′ − m between the angular momentum
quantum numbers and the relative sizes of QR (r0) to beam
waist (�q−1

r ).
For a general displacement D 	= 0, several transition

matrix elements have finite values, as explained before.
The relative strength of each transition is determined by
[Jl−(m′−m)(qr D)Jm′−m(qrr0)]2.

Let us exemplify this for a TL beam with l = 1; then,
we have n = 1 − (m ′ − m). Figure 4 shows the quantity
[J1−(m′−m)(qr D)Jm′−m(qrr0)]2 for different values of D and
m ′−m. We observe what was said previously from a qualitative

Figure 5. Normalized transition matrix element for plane-wave light
(l = 0) and for different values of the initial and final angular
momentum quantum number.

point of view. At zero displacement, the only contribution
comes from transitions differing by one unit in their angular
momentum. When the beam is displaced, other transitions
become allowed. An extinction occurs when the value qr D
is a zero of the Bessel function. It is clear what happens for
an arbitrary value of l: the main contribution close to R = 0
arises from the states differing by l in their orbital angular
momentum.

Another interesting situation arises when the beam carries
no OAM, i.e. l = 0 in equation (19)—we refer to
this as the plane-wave situation. In figure 5 we analyze
[Jm′−m(qr D)Jm′−m(qrr0)]2. As expected, when the beam is
centered on the nanoparticle, the only allowed transitions are
vertical, i.e. {vα} → {cα}; however, when the beam axis
is displaced, non-vertical transitions become allowed. An
important difference arises with respect to the l 	= 0 case;
since the function [Jm′−m(qr D)Jm′−m(qrr0)]2 is symmetric on
m ′ − m, the probability for transitions in a pair m ′ − m = ±δ,
with δ an natural number, is the same, and in most situations
there will be no net transfer of orbital angular momentum.
However, this symmetry can be broken by the application of
a magnetic field, which detunes one of the possible final states,
e.g. the m ′ − m = δ compared to the m ′ − m = −δ. Also, this
symmetry is broken (even without an applied magnetic field)
if the initial population of valence-band states is asymmetric
with respect to the quantum number m. The peculiar effects
that we predict are the result of the finite waist of the beam and
the fact that, to treat it adequately, we have gone beyond the
dipole-moment approximation.

The relative size of QR to beam waist impacts on the
response of QRs differing in their radii r0, but lying at the
same distance D from the beam axis—this situation may arise,
for example, due to the statistical nature of the fabrication
process of an ensemble of nanoparticles. As a consequence of
the factor Jm′−m(qrr0) in equation (19), the various electronic
transitions are enhanced and inhibited to some degree, and this
results in a different evolution of the electronic states in each
QR.

We now make some final comments regarding the general
characteristics of the interaction of twisted light with solids,
which apply also to the situations analyzed here. Interband

5
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optical transitions induced by twisted light in semiconductors
are affected in the usual way by whether the energy gap of
the material is direct or indirect. A direct gap, like that of
GaAs, is of course more desirable than an indirect one, like
that of Si, since the latter presents a reduced joint density of
states which severely limits the optical-transition probabilities.
The finite value of the lateral momentum of the twisted light
(the parameter qr in equation (2)) does not modify this general
feature of interband optical transitions significantly since its
magnitude is negligible compared to the momentum difference
between the extrema of the bands involved in the transition.

Another issue worth remarking on is the fact that we
employ a semiclassical treatment in which the electrons are
treated quantum mechanically and the light is treated using
classical electromagnetism. This approach is completely
justified in the usual optical experiments not involving
electromagnetic cavities. If the quantum rings or dots
were enclosed in a cavity it would be essential to adopt
a fully quantum electrodynamical (QED) approach to treat
the interplay between electrons and cavity photons. QED
studies of twisted light have already been reported in the
literature [12, 15, 16].

4. Conclusions

We have theoretically investigated the effect that an
inhomogeneous light beam, such as plane waves (l = 0)
with a finite waist or twisted light beams (l 	= 0), has on
semiconductor-based nanostructures when the symmetry axes
of the beam and the nanoparticle do not coincide.

The problem was analytically solved for the general case
of twisted light with l = 0, 1, 2, . . . by writing the off-centered
beam as a superposition of twisted light beams centered at the
position of the nanoparticle. This decomposition allowed us to
study the possible electronic transitions in terms of the problem
of a centered beam illuminating a nanoparticle, which we have
already investigated in previous works.

We showed that different transitions between states in
the nanoparticle are switched on and off as a function of the
distance from the beam to the nanoparticle axes. In addition,
the strength of the transition is determined by the relative
size of the nanostructure to the beam waist. Our results also
predict that a plane-wave beam with a finite waist will induce
both vertical and non-vertical transitions, depending on the
displacement of the axes.

Our study indicates that, under several experimental
conditions, care must be taken when interpreting the results of
light–nanoparticle interaction. For example, if an ensemble of
nanostructures is illuminated in normal incidence using a beam
whose waist is roughly of the same size or smaller than the
ensemble, each nanoparticle will respond in a different way,
irrespective of the beam being a plane wave or twisted light.
In a situation where the experiment is carried out on a single
nanostructure, we saw that the precise positioning of the TL
axis is crucial to know what transitions are being excited.

The issue of experimental detection of the transfer of
orbital angular momentum from TL beams to semiconductors
and semiconductor nanostructures is a challenging one.

Detection of the effects mentioned in this paper could possibly
be achieved through measurement of the ultrafast magnetic
fields generated when OAM is transferred [9] to a given
quantum dot, but the effect is small and would require a
very sensitive and highly positionable magnetic-field probe.
The ultrafast aspect of the phenomenon (momentum relaxation
washes out the electronic currents generated by the photo-
excitation) makes time-resolved approaches more desirable,
and time-resolved Faraday rotation is a possible candidate in
this sense. Stimulated emission of the off-centered quantum
dots and rings [17] could also be used as a probe of the
transferred angular momentum, which would be different from
that of the photons of the beam.
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