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To obtain the eigenmodes of the electromagnetic field at a periodically corrugated metamaterial we
consider the analytic extension to the complex plane of the solution to the boundary-value problem
for a metamaterial grating. We build a proper Riemann sheet for these eigenmodes and we present
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numerical examples illustrating their propagation characteristics. Particularly, we pay special attention
to regimes corresponding to ideally transparent metamaterials with a negative index of refraction, where
the eigenmodes can radiate into the metamaterial medium.

© 2010 Elsevier GmbH. All rights reserved.
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egative refraction

. Introduction

A surface electromagnetic wave is a confined mode of propa-
ation along an interface separating two media. These modes are
btained as a solution to the so-called homogeneous problem, in
ther words, they are a solution to Maxwell’s equations and appro-
riate boundary conditions with no incident wave. The simplest
ase of a surface mode is that of a plane interface separating two
sotropic media with constitutive parameters ε1, �1 (medium 1)
nd ε2, �2 (medium 2). In the ideal lossless case (ε1, �1, ε2 and �2
eal) these surface modes are known as Fano’s modes [1,2]. Interest
n this subject has long been motivated by surface plasmons [3], sur-
ace modes with p polarization that appear when the media have
ielectric permittivities ε1 and ε2 with opposite signs, since only
hese surface modes can exist in conventional isotropic media (pos-
tive magnetic permeabilities). In addition to surface modes with p
olarization, a plane surface can also support surface modes with
polarization when the media have magnetic permeabilities with
pposite signs [4]. The recent advent of artificial media [5–8] with
egative refractive index (constitutive parameters simultaneously
egative in the same frequency range) has aroused new interest in
Please cite this article in press as: M. Cuevas, R.A. Depine, The homogen
tivity and permeability: Choosing the proper Riemann surface, Optik -

he study of the homogeneous problem of a surface. Solutions with
ovel characteristics, such as negative phase velocity opposed to
roup velocity, have been reported in Refs. [4,9,10].

∗ Corresponding author.
E-mail addresses: cuevas@df.uba.ar (M. Cuevas), rdep@df.uba.ar (R.A. Depine).
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The effect of media losses on the propagation characteristics
of the eigenmodes in a plane interface has been studied by Ishi-
maru et al. [11]. In this case, the surface modes are also known as
Zenneck’s propagation modes. Since the constitutive parameters
of media with losses are complex numbers, the propagation con-
stant of a surface wave is also complex and the surface mode loses
energy as it propagates. While it could be argued that losses in an
absorbent medium could be an obstacle for surface mode prop-
agation, this is not always so. For example, Yang et al. [12] have
found long-range modes (that is, modes with a propagation con-
stant having a small imaginary part) in a slab of a non-magnetic
material, with a real part of the electric permittivity much smaller
than its imaginary part. In these modes, which appear when the
slab thickness is much smaller than the wavelength of the surface
mode, the imaginary part of the propagation constant is inversely
proportional to the imaginary part of the dielectric permittivity of
the material.

Unlike Fano’s modes, which exist even in the ideal case of non-
absorbent media [2], media losses are essential for the existence of
other surface modes. This is the case of Brewster–Zenneck’s (BZ)
modes [13] and CSW modes (acronym for complex surface wave)
[14,15]. If one of the media is vacuum (ε1=�1=1), BZ modes appear
when 0 ≤ Re ε2 < 1 and Im ε2 > Re ε2 [(1 + Re ε2)/(1 − Re ε2)]1/2,
while CSW modes appear when Re ε2 > 0 and Im ε2 > 1. Both
eous problem for a corrugated metamaterial of arbitrary permit-
Int. J. Light Electron Opt. (2010), doi:10.1016/j.ijleo.2009.12.010

modes play a key role in the extraordinary transmission phe-
nomenon [13–15].

When focusing on the key aspects of the propagation, ideal loss-
less materials are usually assumed, although the dispersive nature
of the media necessarily implies the existence of dissipation. In

dx.doi.org/10.1016/j.ijleo.2009.12.010
dx.doi.org/10.1016/j.ijleo.2009.12.010
http://www.sciencedirect.com/science/journal/00304026
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hese cases, the propagation constant for a flat surface is real. Fur-
hermore, since the field amplitudes decrease exponentially with
he distance to the surface, the propagation constant must be larger
han the absolute value of the photon’s wave vector in both media.
his condition prevents the excitation of a surface mode with a
lane wave in a plane surface, as the phase velocity of the surface
ode is always lower than the speed of light in the media sepa-

ated by the surface. Therefore, in order to excite and detect surface
odes, we must resort to special phase-coupling techniques, in
hich the simple configuration of a single plane interface must
ecessarily be abandoned. The most popular coupling techniques
2,3] are based on the use of attenuated total reflection or the use
f a diffraction grating. It should be noted that in these cases, the
oupling can be observed because the change of geometry modifies
he propagation constant. This means that, in the case of lossless

edia, its imaginary part is no longer null. Once the surface mode
as been excited, this imaginary part produces radiation losses, and
he radiated energy can significantly modify the response of the
urface as compared with the non-excitation case, thus allowing
he detection of the surface mode.

In a recent work [16] we have used the grating coupling tech-
ique to study the resonant detection of the surface modes of a
etamaterial illuminated by a plane wave. Although the findings

btained in this work give an idea of how corrugation modifies the
ropagation of surface waves, the homogeneous problem must be
olved in order to carry out a thorough study. This homogeneous
roblem is, in many aspects, formally similar to the one considered

n [16], although it does present additional difficulty related to the
nalytic continuation of certain physical quantities in the complex
lane. Analytic continuation is inevitable, even in the case of media
ith no intrinsic losses, since corrugation modifies the propagation

onstant of the surface wave and may generate non-null imaginary
arts. Specifically, it is essential to determine the branches of Rie-
ann surface for the function that gives the propagation constant

erpendicular to the surface in terms of the propagation constant
arallel to the surface.

Although the cuts which determine the different branches of a
ultivalued function are arbitrary in principle, the choice of the
ost adequate cut depends on the specific physical problem. More

han one cut has been suggested in the literature for the study of
roper modes. In references [11,17–19], the cut lines are chosen
o that the imaginary parts of the propagation constants perpen-
icular to the surface are zero, while the branches of the square
oot function are chosen so that the field of the proper mode is
ound to the surface. This is the cut chosen by Ishimaru et al. [11]
o extend the homogeneous problem of the plane interface of a

etamaterial with arbitrary refractive index considered in [4,9,10]
o media with losses. However, with the cuts described in Ref. [20],
he proper modes are those whose propagation constants parallel
o the surface have a larger real part than the photon’s wave vector
n each of the media (non-radiative modes).

The aim of this paper is to clarify the most adequate selection cri-
eria to study how the propagation characteristics of surface modes
hange when the plane surface between a conventional dielec-
ric material and a metamaterial with negative refractive index is
eriodically perturbed. Particularly, we will only consider proper
odes whose existence does not require intrinsic losses (Fano’s
odes). In Section 2 we discuss the cuts proposed in [11] and show

hat these cuts are not adequate to determine the proper modes
f the problem of a periodically corrugated surface, since they do
ot provide the expected radiation field for certain values of the
Please cite this article in press as: M. Cuevas, R.A. Depine, The homogen
tivity and permeability: Choosing the proper Riemann surface, Optik -

avelength to period ratio. We also show that the adequate cuts to
escribe the problem must be similar to those proposed in refer-
nces [20,23]. In Section 3, we obtain the proper modes for the case
f a metamaterial with negative refractive index. We demonstrate
hat the surface mode loses energy only through radiation and that
Fig. 1. (a) Plane surface y = 0 separating an ideal dielectric material with constitu-
tive parameters ε1, �1 from another material with constitutive parameters ε2, �2.
(b) Periodically corrugated boundary represented by y = f (x). The spatial harmonic
m = 0 is nonradiative, while harmonics m = −1 and m = −2 radiate into medium 1.

this energy can be radiated towards either the dielectric material or
the medium. As a result, a power flux normal to the mean plane of
the surface appears. Depending on the propagation characteristics
of the surface wave, this can be an incoming or an outgoing flux.

2. Determining the Riemann physical surface

Let us consider the plane surface y = 0 (Fig. 1a) which sepa-
rates an ideal dielectric material with constitutive parameters ε1,
�1, both real and positive, from another material with constitutive
parameters ε2, �2 with real parts arbitrarily assigned and imagi-
nary parts much smaller than the absolute value of the real part. If
�(x, y) represents the z component of the total magnetic field for
the p polarized mode or the total electric field for the s polarized
mode, the field on either side of this surface is written as

�(x, y) = R ei(˛x+ˇ(1)y), y > 0 (1)

�(x, y) = T ei(˛x−ˇ(2)y), y < 0, (2)

where R and T are complex amplitudes, ˛ is the propagation con-
stant parallel to the surface and ˇ(1) and ˇ(2) are the transverse
components of the wave vector in each media. In terms of the
dimensionless propagation parameter �, ˛ = 2�/��, where � is the
wavelength in medium 1 and

ˇ(1) = 2�

�
(1 − �2)

1/2
, (3)

ˇ(2) = 2�

�
(n2 − �2)

1/2
, (4)
eous problem for a corrugated metamaterial of arbitrary permit-
Int. J. Light Electron Opt. (2010), doi:10.1016/j.ijleo.2009.12.010

with n = √
ε2

√
�2/

√
ε1�1 being the relative refractive index. The

bivalued nature of functions ˇ(j) (j = 1, 2) requires determining
those branches which have physical sense. To ensure the radiation
conditions in the infinity when � is real, these branches are chosen

dx.doi.org/10.1016/j.ijleo.2009.12.010
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y imposing conditions

m ˇ(j) ≥ 0, (5)

o that, in their respective complex planes, functions ˇ(j)(�) always
ove along the curves ı(j) represented by dotted lines in Fig. 2b

nd d. When � is a complex number, curve ı(j) must fall in the
Please cite this article in press as: M. Cuevas, R.A. Depine, The homogen
tivity and permeability: Choosing the proper Riemann surface, Optik -

egion of the complex plane corresponding to the physical branch
f function ˇ(j)(�) and, therefore, this branch must satisfy condition
5) for complex �.

Branches Im ˇ(1) ≥ 0 and Im ˇ(2) ≥ 0 define the proper sheet
also known as physical sheet) on the Riemann surface in the

ig. 2. (a) Cut line L1 divides regions �I (dark grey) and �II (light grey). (b) Branch
f function ˇ(1)(�): Im ˇ(1) ≥ 0. Curve ı(1) (dotted lines) represents ˇ(1) values for
eal values of �. (c) Cut line L2 divides regions ˝I (dark grey) and 	II (light grey).
d) Branch of function ˇ(2)

m (�): Im ˇ(2) ≥ 0. Curve ı(2) (dotted lines) represents ˇ(2)

alues for real values of �.
 PRESS
ik xxx (2010) xxx–xxx 3

complex space �. The Riemann surface also includes three other
sheets (called improper sheets because they do not represent
physically acceptable waves) corresponding to the following
choice of branches: Im ˇ(j) < 0 for j = 1, 2, Im ˇ(1) < 0 y Im ˇ(2) >
0, Im ˇ(1) > 0 and Im ˇ(2) < 0. The four sheets (one proper and
three improper sheets) are separated from each other by condition
Im ˇ(j) = 0, which can be explicitly rewritten as:

�2 − n(j)2 = −a, (6)

with real and positive a and where n(1) = 1 and n(2) = n. Eq. (6)
defines the cut lines in the complex space � shown with symbol
Lj in Fig. 2a and c. Each line divides the complex plane � into two
regions. As shown in Fig. 2a, line L1 divides regions �1 (dark grey)
and �II (light grey). Analogously, line L2 (see Fig. 2c) divides regions
	I (dark grey) and 	II (light grey).

We now proceed to perturb the plane surface with a small peri-
odical corrugation represented by function y = f (x) (see Fig. 1b). In
this case, the field �(x, y) can be developed as a series of spatial
harmonics (or orders)

�(x, y) =
+∞∑

m=−∞
Rm ei(˛mx+ˇ(1)

m y), y > max{f (x)}, (7)

�(x, y) =
+∞∑

m=−∞
Tm ei(˛mx−ˇ(2)

m y), y < min {f (x)}, (8)

where

˛m = 2�

�
�
(

h

�

)
+ 2�

d
m, (9)

is the x component of the wave vector of the m th spatial harmonic,
h is the corrugation height, �(h/�) is the dimensionless propagation
constant corresponding to m = 0 and d is the corrugation period.
The y component of the wave vector of the m th spatial harmonic
is

ˇ(1)
m = 2�

�
(1 − �2

m)
1/2

(10)

ˇ(2)
m = 2�

�
(n2 − �2

m)
1/2

. (11)

As the surface wave propagates along the surface, the spatial har-
monics can radiate energy towards medium 1 as long as condition
|Re �m| < 1 is verified. The number of radiative spatial harmonics
depends on the �/d relation.

In Fig. 1b, we have outlined a situation with two propagating
orders. Our aim is to see whether the cut defined for the case of
a plane surface correctly describes this situation. Unlike the case
of a flat surface, we now have an infinite set of Riemann physical
sheets, one for each spatial harmonic corresponding to Eq. (8). This
set constitutes the Riemann’s physical sheet of the homogeneous
problem of a corrugated surface. If the cut given by Eq. (6) is gen-
eralized to the complex plane �m of each spatial harmonic, and if
branches of functions ˇ(j)

m are chosen in a similar way to that used
for the case of a plane surface, they satisfy the following condition

Im ˇ(j)
m ≥ 0. (12)

With this generalization, both the cut lines in the complex plane
corresponding to the spatial harmonic �m as well as the branches
of functions ˇ(j)

m are identical to those shown in Fig. 2, except that �

must now be replaced with �m and ˇ(j) must be replaced with ˇ(j)
m .
eous problem for a corrugated metamaterial of arbitrary permit-
Int. J. Light Electron Opt. (2010), doi:10.1016/j.ijleo.2009.12.010

The infinite set of planes �m whose image through functions ˇ(j)
m

is determined by conditions (12) constitutes the Riemann physical
sheet of the problem. We shall see that this choice does not show
the expected radiation mechanism for the surface wave, even in
the case of a metallic surface. In this case, it is well known that the

dx.doi.org/10.1016/j.ijleo.2009.12.010
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Fig. 3. (a) Cut line L1, drawn from the branch points �m = ±1 according to condition
(13). The cut line divides regions �I (dark grey) and �II (light grey). Vectors s̄ and
ū represent the propagation and decay directions respectively, corresponding to
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 = ˇm (L1). The branch of ˇm (�) is in the region
ocated above curve 
 (1). Curve ı(1) (dotted lines) represents ˇ(1)

m values for real
alues of �. (c) Cut line L2 divides regions 	I (dark grey) and 	II (light grey). (d)
(2) = ˇ(2)

m (L2). Curve ı(2) (dotted lines) represents ˇ(2)
m values for real values of �.

urface waves (surface plasmons) described in Eq. (8) can actually
ropagate with �(h/d) very similar to the propagation constant �(0)
Please cite this article in press as: M. Cuevas, R.A. Depine, The homogen
tivity and permeability: Choosing the proper Riemann surface, Optik -

orresponding to the plane surface. It is always possible to choose
value of �/d (for example, by adequately choosing the period of

he grating) so that the plasmon has two radiative orders, both of
hem with outgoing power fluxes in the direction +y, as outlined
n Fig. 1b. If Re � > 0, the main harmonic (m = 0) propagates in the
 PRESS
ik xxx (2010) xxx–xxx

direction +x, and therefore, Im � > 0. In this situation, the power
flux associated with the spatial harmonic m = −1 has a component
in the direction +x (0 < �−1 < 1) while the power flux associated
with the spatial harmonic m = −2 has a component in the direc-
tion −x (−1 < �−2 < 0). Although the criterion (12) for choosing
cuts correctly predicts the radiation direction associated with the
spatial harmonic m = −2, this is not the case for the spatial har-
monic m = −1. This is due to the fact that with this criterion �−1

falls in region �I of Fig. 2a, and then ˇ(1)
−1 falls in region ˇ(�I) of

Fig. 2b. In this region, Re ˇ(1)
−1 < 0 (the correct direction of the power

flux is not reproduced) and Im ˇ(1)
−1 > 0 (the field associated with

the harmonic m = −1 becomes confined to the surface), and so we
must conclude that criterion (12) for choosing the cuts of ˇ(1)

m (�) is
not physically adequate to deal with the homogeneous problem of
corrugated surfaces.

The above example evidences that the adequate cuts to describe
physical situations as the one outlined in Fig. 1b must handle spatial
harmonics with |Re �m| > 1 differently from those with |Re �m| < 1.
This is why the cuts must be similar to the one proposed in [20,2] for
the case of conventional media and used by [24] to determine the
characteristics of surface waves, both radiative and non-radiative,
in a metallic plane slab. Since the cut lines depend on the char-
acteristics of the refractive index of medium 2, we analyze two
situations: (A) when medium 2 is reactive (refractive index with
a significant imaginary part, waves do not penetrate the medium)
and (B) when medium 2 is transparent, with a negative refractive
index (negative real part, small imaginary part, waves penetrate
the medium).

2.1. When medium 2 is reactive

When medium 2 is reactive, Re ε2 Re �2 < 0, the surface wave
can only radiate into medium 1. This situation includes p polarized
plasmons that can propagate along conventional metallic media
(Re ε2 < 0, Re �2 > 0) and s polarized surface waves that can prop-
agate along metamaterials with Re ε2 > 0 and Re �2 < 0. In the
previous example, cut (12) assigns Re ˇ(1)

−1 < 0 when Re �−1 < 1,
leading to an inadequate result, i.e. the spatial harmonic m = −1
cannot radiate into medium 1. To avoid this problem, the cut line
must be chosen so that ˇ(1)

m changes its sign when �m crosses the
line Re �m = 1. One of the simplest cuts to correctly describe the
physical situation outlined in Fig. 1b is to define the vertical lines
drawn from the branch points�m = ±1 as cut lines, according to the
condition:

Re �m = ±1, Re �mIm �m ≥ 0. (13)

Fig. 3 shows cut lines (13) represented by the symbol L1 and Fig. 3b
shows the image of this line 
 (1) = ˇ(1)

m (L1) in the complex plane
ˇ(1)

m . The analytic continuation of function ˇ(1)
m (�) requires that its

branch include the image of the real axis of plane �m, represented
by the symbol ı(1) in Fig. 3b. To do this, the branch of function ˇ(1)

m (�)
must match the region located above curve 
 (1). In the limit Im � �
1, as is the case for a small intrinsic loss of the medium, curve 
 (1) in
Fig. 3b can be approximated by a straight line Re ˇ(1)

m + Im ˇ(1)
m = 0,

which is a procedure used in the cuts proposed in Refs. [20,2] for
the study of plasmons. In this approximation, the branch of the
function is

Re ˇ(1)
m + Im ˇ(1)

m ≥ 0, (14)
eous problem for a corrugated metamaterial of arbitrary permit-
Int. J. Light Electron Opt. (2010), doi:10.1016/j.ijleo.2009.12.010

while the cut line (pre-image of line Re ˇ(1)
m + Im ˇ(1)

m = 0) can be
approximated by the expression:

�2
m − 1 = i a, where a is real and positive. (15)

dx.doi.org/10.1016/j.ijleo.2009.12.010
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Fig. 4. (a) Cut line L1, drawn from the branch points �m = ±1 according to condi-
tion Eq. (20). The cut line divides regions �I (dark grey) and �II (light grey). Vectors
s̄ and ū represent the propagation and decay directions respectively, correspond-
ing to radiative spatial harmonics. (b) 
 (1) = ˇ(1)

m (L1). The branch of ˇ(1)
m (�) is in the

region located above curve 
 (1). Curve ı(1) (dotted lines) represents ˇ(1)
m values for

real values of �. (c) Cut line L2 drawn from the branch points �m = ±n according to
condition Eq. (20). The cut line divides regions �I (dark grey) and �II (light grey).
Vectors s̄ and ū represent the propagation and decay directions respectively, corre-
sponding to radiative spatial harmonics. (d) 
 (2) = ˇ(2)

m (L2). Curve ı(2) (dotted lines)
represents ˇ(2)

m values for real values of �.
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imilarly, the cut line for the function ˇ(2)
m can be chosen:

2
m − n = i a, where a is real and positive, (16)

nd, consequently, the branch of the function ˇ(2) becomes

e ˇ(2)
m + Im ˇ(2)

m ≥ 0. (17)

ince the relative refractive index is almost imaginary, � does not
ross these cut lines because they are too far away from the real
xis. Therefore, condition (17) can be replaced with the branch of
he function corresponding to the plane case:

m ˇ(2)
m ≥ 0. (18)

he infinite set of planes �m whose image through functions ˇ(j)
m is

etermined by conditions (14) and (17) or (14) and (18) constitutes
he Riemann physical sheet of the problem. In Fig. 3a, we have rep-
esented the propagation direction s̄ and the decay direction ū for
patial harmonics with �m in regions �I and �III , with |Re �m| < 1
nd Im � > 0, in accordance with the branch of the parameter ˇ(1)

m

epresented in Fig. 3b. It should be noted that this branch provides
he correct radiation direction in medium 1, outlined in Fig. 1b.
ig. 3c shows that �m belongs to regions 	II or 	III . Consequently,
m ˇ(2)

m ≥ 0, and so the spatial harmonics become confined to the
urface.

.2. When medium 2 has a negative refractive index

In this case, surface waves can also radiate into medium 2, a
ovel characteristic that makes them different from surface waves

n conventional materials. In the dispersion problem (real �m), the
arameters ˇ(2)

m must be chosen in accordance with conditions [22]
o satisfy the radiation condition at infinity

mˇ(2)
m ≥ 0, (19)

nd thus function ˇ(2)
m moves along the curve ı(2) represented by

dotted line in Fig. 4d. With this condition, and in the ideal loss-
ess case, the spatial harmonics in medium 2 are radiative, with the
ower flux in the −y direction when n < �m < −n and ˇ(2)

m is real
nd negative, or non-radiative, with fields confined to the surface
hen |�m| > −n and ˇ(2)

m is a positive imaginary number. To gen-
ralize condition (19) to complex values of �m, the cut line can be
rawn from the branch points � = ±n, just as we did for condition
13)

e �m = ±Re n, Re �m Im �m ≤ Re n Im n. (20)

n this cut line definition, we have considered the most general
ase, in which the medium has a small loss. Fig. 4c and d show cut
ine L2 and its image in the ˇ(2)

m plane, represented by the symbol
(2). The analytic continuation of function ˇ(2)

m (�m) requires that its
ranch include condition (19). Therefore, the branch of the func-
ion must be chosen as the region of the plane above curve 
 (2).
f �m is almost a real number, curve 
 (2) can be approximated by
he straight line −Re ˇ(2)

m + Im ˇ(2)
m = 0. In this approximation, the

ranch of the function can be written as

Re ˇ(2)
m + Im ˇ(2)

m ≥ 0, (21)

nd the equation corresponding to the cut line becomes

2
m − n2 = −i a, where a is real and positive. (22)
Please cite this article in press as: M. Cuevas, R.A. Depine, The homogeneous problem for a corrugated metamaterial of arbitrary permit-
tivity and permeability: Choosing the proper Riemann surface, Optik - Int. J. Light Electron Opt. (2010), doi:10.1016/j.ijleo.2009.12.010

o show the Riemann physical sheet corresponding to the disper-
ion problem of the corrugated interface when medium 1 is an ideal
ielectric, we have incorporated Fig. 4a and b showing cut lines L1
rom the branch points �m = ±1 and the branches of the function
(1)
m . In the ideal limit, the cut represented by Eq. (22) coincides with

dx.doi.org/10.1016/j.ijleo.2009.12.010
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hat proposed in [23]. In this limit, the surface wave can radiate
nergy into medium 2 (in the −y direction) through those spatial
armonics satisfying n < Re �m < −n.

To see the characteristics of the power flux radiated by the sur-
ace wave, let us assume that the spatial harmonic m belongs to
he radiative area contained in region 	III (Fig. 4c). In this case,
onditions 0 < Re �m < −n, Im� > 0, or n < Re �m < 0, Im� < 0
re verified, and so ˇ(2)

m falls in region ˇ(2)
m (	III) of Fig. 4d. In this

egion, Re ˇ(2)
m < 0, therefore the power flux associated with this

patial harmonic is in the −y direction (ε2 < 0, �2 < 0). Besides,
ach spatial harmonic m verifies the dispersion relation

2
m + ˇ2

m =
(

ω

c

)2
ε2�2. (23)

ince the imaginary part of this equation is zero, Re ˛m Im ˛m +
e ˇm Im ˇm = 0 and therefore the direction of the power flux radi-
ted into medium 2 is perpendicular to the attenuation direction.
ig. 4c shows the radiation and attenuation direction with vectors

¯ and ū respectively. To represent vector ū, we have taken into
ccount the sign of Im �m and the sign of Im ˇ(2)

m . A similar analysis
nables us to infer the radiation and attenuation direction repre-
ented in Fig. 4c, for �m belonging to region 	I . In the ideal limit,
he power flux radiated into medium 2 has the same characteristics
s the flux radiated into medium 1 when the surface wave propa-
ates along a metallic corrugation. The scheme of vectors s̄ and ū
hown in Fig. 4a and c illustrates how the surface wave loses energy
hrough radiation – into medium 1 and medium 2 – when it prop-
gates along the corrugated surface. The spatially transient wave
haracteristic of the radiation field is also characteristic of the field
adiated by surface plasmons in plane slabs [24,25].

. Dispersion relation

To find the surface wave characteristics of the periodically cor-
ugated surface, we have developed a perturbative method valid
or weak corrugation (h/� �1) and similar to the one presented
n [21] for magnetic media with positive refractive index. Tak-
ng into account that for h = 0 the surface wave is described by
he spatial harmonic with m = 0, the amplitude corresponding to
his harmonic results O(1) in the weak corrugation limit, while the
mplitudes for harmonics with m /= 0 are at least O(h/�). By retain-
ng the first-order terms in the series (8) the dispersion relation for
he spatial harmonic m = 0 is written as:

M00 = ˇ(2)
0 + �ˇ(1)

0

= −
∑
m /= 0

M0m Mm0

Mmm
(ˇ(1)

m − ˇ(2)
0 ) (ˇ(1)

0 − ˇ(2)
m )|(1)(m)|2, (24)

here � = ε for p polarization and � = � for s polarization. The
atrix

mn = ˇ(2)
n + �ˇ(1)

m + (˛m + �˛n)(˛m − ˛n)

ˇ(1)
m − ˇ(2)

n

, (25)

nd (1)(m) is m th Fourier coefficient of function f (x). To calculate
(h/�) with Eq. (24) it is essential to use the analytic continua-
ion developed in the previous section. We apply the formalism in
he regions of constitutive parameters ε − � where the flat surface
upports surface waves and we observe how the propagation char-
cteristics are modified when the surface is sinusoidally perturbed.
f the surface is reactive (relative refractive index mostly imagi-
Please cite this article in press as: M. Cuevas, R.A. Depine, The homogen
tivity and permeability: Choosing the proper Riemann surface, Optik -

ary), the solution to Eq. (24) must be found in the proper Riemann
heet defined in Fig. 3, whereas if the medium is transparent (rel-
tive refractive index mostly real), the solution to Eq. (24) must be
ound in the proper Riemann sheet defined in Fig. 4. Here we restrict
urselves to obtaining the proper modes for regimes in which the
Fig. 5. Real (a) and imaginary (b) parts of the propagation constant � as a function of
h/d. Constitutive parameters corresponding to regime A (ε = −0.176, � = −1.135)
and �/d = 2.2.

medium is transparent. These regimes are described in Refs. [9,10]
and correspond to constitutive parameters characterized by the
following conditions:

• Regime A: ε > −1, � < −1, ε � < 1, s polarization
• Regime B: ε > −1, � < −1, ε � > 1, p polarization
• Regime C: ε < −1, � > −1, ε � > 1, s polarization
• Regime D: ε < −1, � > −1, ε � < 1, p polarization

Given that regimes C and D are obtained from regimes A and B
by interchanging the constitutive parameters ε ↔ � as well as the
polarization p ↔ s, we will show the effect of corrugation on the
surface wave characteristics in regions A and B.

3.1. Regime A

In this section, we implement the formalism developed in the
previous sections. Specifically, we determine the Riemann physical
sheet for transparent media. This sheet allows us to find the propa-
gation constant � which solves Eq. (24) and has a physical sense. The
graphic representation of each radiative spatial harmonic �m, Fig. 4a
and c, offers valuable insight into the novel propagation proper-
ties of surface waves in this regime. To illustrate these properties,
we consider a sinusoidal surface with relative constitutive parame-
ters ε = −0.176, � = −1.135 (n = −0.447). We choose the relation
�/d = 2.2. For the case h = 0 the surface wave has s polarization
and the net power flux is in the same direction as the propa-
gation parameter �(0). For this reason, the surface waves in this
regime are also called forward surface polaritons [9,10]. Fig. 5a and
eous problem for a corrugated metamaterial of arbitrary permit-
Int. J. Light Electron Opt. (2010), doi:10.1016/j.ijleo.2009.12.010

b shows respectively the real and imaginary parts of � as a func-
tion of h. Starting with the value corresponding to the plane surface
�(0) = 1.9433, the values of Re �(h/d) and Im �(h/d) increase with
h/d and consequently, the power flux radiated also increases. Since
the media have no intrinsic losses, the non zero value of Im �(h/d)

dx.doi.org/10.1016/j.ijleo.2009.12.010
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s explained by the fact that the surface wave radiates energy as it
ropagates along the surface. Fig. 5b shows that this value increases
ith h/d, and consequently the radiated power flux also increases.

Fig. 6a shows the flux lines and the absolute value of the Poynt-
ng vector, illustrated here with a color pallet for h/d = 0.012. Near
he surface, the characteristics of the surface wave are similar to
he case h = 0: the flux lines are almost parallel to the surface, in
he +x direction in medium 1 and in the −x direction in medium
. This is due to the fact that the amplitudes Rm with m /= 0 in Eq.
8) are O(h/�), whereas R0 is O(1). Therefore, the field near the sur-
ace is quite similar to the field corresponding to the plane surface,
xcept that in the latter case the propagation constant is real, and
o the surface wave does not lose energy when it propagates.

The perturbation induces a radiative spatial harmonic with
= −1 (−1 < Re �−1 < 0) (Eq. (8)) which is manifested in the flux

hown in Fig. 6a by the radiation lines in the outgoing direction.
his is due to the fact that �−1 falls in region �III of Fig. 4a, with
m � > 0, and then ˇ(1)

−1 falls in region ˇ(1)
−1(�III) of Fig. 4b. In this

egion, Re ˇ(1) > 0 (the radiated power flux is in the +y direction).
urthermore, �−1 falls in region 	I of Fig. 4c with Im � > 0, and then
(2)
−1 falls in region ˇ(2)

−1(	I) of Fig. 4d. Therefore Re ˇ(2)
−1 < 0 (the radi-

ted power flux is in the −y direction in medium 2). Since this flux
esults from the energy loss of the surface wave, it does not present
he same characteristics as the flux of a plane wave, as its intensity
ecreases in the +x direction (Im � > 0). To understand the spatial
haracteristics of the radiation flux, we should observe Fig. 4, which
hows the radiation direction s̄ and the attenuation direction ū for
Please cite this article in press as: M. Cuevas, R.A. Depine, The homogen
tivity and permeability: Choosing the proper Riemann surface, Optik -

−1 belonging to the radiative regions �III and 	I with Im �−1 > 0.
ince these directions are perpendicular to one another, the abso-
ute value of the Poynting vector (intensity) remains constant along
ach radiation line shown in Fig. 6a. Because the x component of ū

ig. 6. (a) Flux lines and modulus of the Poynting vector (illustrated with a color
allet) for h/d = 0.012. (b) Flux lines and modulus of the Poynting vector near
he surface. Constitutive parameters corresponding to regime A (ε = −0.176, � =
1.135) and �/d = 2.2.
Fig. 7. Real (a) and imaginary (b) parts of the propagation constant � as a function
of h/d for constitutive parameters corresponding to regime B (ε = −0.8, � = −2.5)
and �/d = 2.2.

is positive, this intensity decreases from one line to another in the
+x direction. These two assertions have been numerically verified.
Note that the flux lines radiated into medium 1 and medium 2 do
not emerge on the same side of the y axis.

Fig. 6b shows the flux lines and the absolute value of the Poynt-
ing vector near the surface. As in the case of the plane surface, the
energy is mostly concentrated on medium 1, in agreement with the
forward nature of the surface wave in this regime. However, con-
trary to the case of h = 0, we observe that the flux lines penetrate
the surface. This is due to the fact that the surface wave loses energy
in the +x direction and, as a result, a net flux in the −y direction
appears. The colored map in Fig. 6b clearly shows that the intensity
decreases in the +x direction. This decrease (and consequently the
flux normal to the surface) also appears in the h = 0 case when a
lossy medium is considered.

3.2. Regime B

If h = 0, the direction of the net power flux of surface waves is
antiparallel to the propagation direction. This is why the proper
modes are also known as backward surface polaritons [9,10]. To
observe substantial changes in these proper modes when the sur-
face is slightly corrugated, we choose the constitutive parameters
ε = −0.8, � = −2.5 (n = −1.414) and the same �/d relation as the
previous case. Fig. 7a shows that the real part of the propagation
constant increases with the corrugation amplitude. Starting from
the value �(0) = 1.9436, we observe that the value of Re �(h/d)
increases as in the previous case. Since the surface wave radiates
energy as it propagates along the surface, |Im �(h/d)| also increases,
except that now Im �(h/d) is negative. The negative value of the
eous problem for a corrugated metamaterial of arbitrary permit-
Int. J. Light Electron Opt. (2010), doi:10.1016/j.ijleo.2009.12.010

product Re � Im � is a characteristic of the backward regime, also
present in the case of h = 0 when lossy media are considered [11].

Fig. 8a shows the flux lines and the absolute value of the Poynt-
ing vector for h/d = 0.012. As in the previous case, the flux lines

dx.doi.org/10.1016/j.ijleo.2009.12.010


ARTICLE ING Model
IJLEO-51052; No. of Pages 9

8 M. Cuevas, R.A. Depine / Opt

Fig. 8. (a) Flux lines and modulus of the Poynting vector (illustrated with a color
pallet) for h/d = 0.012. (b) Flux lines and modulus of the Poynting vector near the
surface. Constitutive parameters corresponding to regime B (ε = −0.8, � = −2.5)
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face waves: comparative analysis of single interfaces, lamellar gratings, and
nd �/d = 2.2.

ear the surface are almost parallel to the surface: in the +x
irection in medium 1 and in the −x direction in medium 2. The per-
urbation induces a radiative spatial harmonic with m = −1 which
s manifested in the flux lines shown in Fig. 8a. Since the value of
he real part of the propagation constant is almost the same as in
he previous case and the value of �/d is the same for both cases,
he flux lines are radiated into the dielectric medium with almost
he same inclination with the y axis. However, since �−1 falls in
he radiative region �I with Im �−1 < 0 of Fig. 4a, the attenuation
irection ū (which is perpendicular to the radiation direction s̄) has
−x component. Furthermore, since �−1 also belongs to region 	III

ith Im �−1 < 0, the flux is radiated into medium 2 in the outgoing
irection s̄ (Fig. 4c).

In Fig. 4c, we can also observe that the attenuation direction ū
as an −x component. We have numerically verified that the inten-
ity remains constant for |y/d| > 3 on each radiation line shown in
ig. 8a and that this intensity decreases from one line to another in
he −x direction. Therefore, the radiated intensity decreases in both

edium 1 and medium 2 in the −x direction, which is opposite to
he propagation direction +x.

Fig. 8b shows the flux lines and the absolute value of the Poynt-
ng vector near the surface. In this case, the highest intensity is
oncentrated on the metamaterial side, as opposed to the dielec-
ric side, as in the previous regime. Besides, we can observe flux
ines passing through the surface, except that now the flux is in
Please cite this article in press as: M. Cuevas, R.A. Depine, The homogen
tivity and permeability: Choosing the proper Riemann surface, Optik -

he +y direction. This is so because Im � < 0. The same situation
s obtained for the case h = 0, when the negative imaginary part
f the propagation constant results from the intrinsic losses of the
etamaterial medium.
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4. Conclusion

We have extended to the complex plane the solution to the
boundary-value problem for a metamaterial grating. We observed
that the cuts chosen to analyze the homogeneous problem associ-
ated with a plane surface are not adequate to solve the problem of a
weakly corrugated surface. We have generalized the cuts proposed
for metallic corrugations to the case of metamaterial media and
we have built the Riemann physical sheet. The changes introduced
by the presence of corrugation in the propagation characteristics
of surface waves have been discussed in terms of the different
regions of the physical sheet. In particular, we have seen that the
presence of a corrugation can induce radiative spatial harmonics,
through which the surface wave loses energy. This energy loss may
be attenuated in the propagation direction (forward surface waves)
or in the opposite direction (backward surface waves). We have
shown that the radiation direction on both sides of the corrugation
do not emerge on the same side of the normal to the mean plane of
the surface, in agreement to the fact that the surface is negatively
refracting.

For forward surface waves, a flux penetrates the metamaterial
medium from the dielectric medium. This flux is a consequence
of the fact that the surface wave loses energy as it propagates. On
the other hand, for backward surface waves, this flux penetrates
the dielectric medium from the metamaterial medium because the
surface wave loses energy in the direction opposite to the prop-
agation direction. Furthermore, we have shown that the forward
surface waves concentrate most of their energy on the dielectric
medium, as is the case of surface plasmons, whereas the backward
surface waves concentrate most of their energy on the metamate-
rial medium.
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