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To obtain the eigenmodes of the electromagnetic field at a periodically corrugated metamaterial we
consider the analytic extension to the complex plane of the solution to the boundary-value problem
for a metamaterial grating. We build a proper Riemann sheet for these eigenmodes and we present
numerical examples illustrating their propagation characteristics. Particularly, we pay special attention
toregimes corresponding to ideally transparent metamaterials with a negative index of refraction, where
the eigenmodes can radiate into the metamaterial medium.
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1. Introduction

A surface electromagnetic wave is a confined mode of propa-
gation along an interface separating two media. These modes are
obtained as a solution to the so-called homogeneous problem, in
other words, they are a solution to Maxwell’s equations and appro-
priate boundary conditions with no incident wave. The simplest
case of a surface mode is that of a plane interface separating two
isotropic media with constitutive parameters &1, 11 (medium 1)
and &;, (1, (medium 2). In the ideal lossless case (&1, (41, &2 and u;
real) these surface modes are known as Fano’s modes [1,2]. Interest
in this subject has long been motivated by surface plasmons|[3], sur-
face modes with p polarization that appear when the media have
dielectric permittivities ¢; and &, with opposite signs, since only
these surface modes can exist in conventional isotropic media (pos-
itive magnetic permeabilities). In addition to surface modes with p
polarization, a plane surface can also support surface modes with
s polarization when the media have magnetic permeabilities with
opposite signs [4]. The recent advent of artificial media [5-8] with
negative refractive index (constitutive parameters simultaneously
negative in the same frequency range) has aroused new interest in
the study of the homogeneous problem of a surface. Solutions with
novel characteristics, such as negative phase velocity opposed to
group velocity, have been reported in Refs. [4,9,10].
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The effect of media losses on the propagation characteristics
of the eigenmodes in a plane interface has been studied by Ishi-
maru et al. [11]. In this case, the surface modes are also known as
Zenneck’s propagation modes. Since the constitutive parameters
of media with losses are complex numbers, the propagation con-
stant of a surface wave is also complex and the surface mode loses
energy as it propagates. While it could be argued that losses in an
absorbent medium could be an obstacle for surface mode prop-
agation, this is not always so. For example, Yang et al. [12] have
found long-range modes (that is, modes with a propagation con-
stant having a small imaginary part) in a slab of a non-magnetic
material, with a real part of the electric permittivity much smaller
than its imaginary part. In these modes, which appear when the
slab thickness is much smaller than the wavelength of the surface
mode, the imaginary part of the propagation constant is inversely
proportional to the imaginary part of the dielectric permittivity of
the material.

Unlike Fano’s modes, which exist even in the ideal case of non-
absorbent media [2], media losses are essential for the existence of
other surface modes. This is the case of Brewster-Zenneck’s (BZ)
modes [13] and CSW modes (acronym for complex surface wave)
[14,15]. If one of the media is vacuum (e1=1=1), BZ modes appear
when 0 <Regy <1 and Ime; > Reey [(1+Reey)/(1 - Reez)]l/z.
while CSW modes appear when Ree; > 0 and Ime, > 1. Both
modes play a key role in the extraordinary transmission phe-
nomenon [13-15].

When focusing on the key aspects of the propagation, ideal loss-
less materials are usually assumed, although the dispersive nature
of the media necessarily implies the existence of dissipation. In
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these cases, the propagation constant for a flat surface is real. Fur-
thermore, since the field amplitudes decrease exponentially with
the distance to the surface, the propagation constant must be larger
than the absolute value of the photon’s wave vector in both media.
This condition prevents the excitation of a surface mode with a
plane wave in a plane surface, as the phase velocity of the surface
mode is always lower than the speed of light in the media sepa-
rated by the surface. Therefore, in order to excite and detect surface
modes, we must resort to special phase-coupling techniques, in
which the simple configuration of a single plane interface must
necessarily be abandoned. The most popular coupling techniques
[2,3] are based on the use of attenuated total reflection or the use
of a diffraction grating. It should be noted that in these cases, the
coupling can be observed because the change of geometry modifies
the propagation constant. This means that, in the case of lossless
media, its imaginary part is no longer null. Once the surface mode
has been excited, this imaginary part produces radiation losses, and
the radiated energy can significantly modify the response of the
surface as compared with the non-excitation case, thus allowing
the detection of the surface mode.

In a recent work [16] we have used the grating coupling tech-
nique to study the resonant detection of the surface modes of a
metamaterial illuminated by a plane wave. Although the findings
obtained in this work give an idea of how corrugation modifies the
propagation of surface waves, the homogeneous problem must be
solved in order to carry out a thorough study. This homogeneous
problem is, in many aspects, formally similar to the one considered
in [16], although it does present additional difficulty related to the
analytic continuation of certain physical quantities in the complex
plane. Analytic continuation is inevitable, even in the case of media
with no intrinsic losses, since corrugation modifies the propagation
constant of the surface wave and may generate non-null imaginary
parts. Specifically, it is essential to determine the branches of Rie-
mann surface for the function that gives the propagation constant
perpendicular to the surface in terms of the propagation constant
parallel to the surface.

Although the cuts which determine the different branches of a
multivalued function are arbitrary in principle, the choice of the
most adequate cut depends on the specific physical problem. More
than one cut has been suggested in the literature for the study of
proper modes. In references [11,17-19], the cut lines are chosen
so that the imaginary parts of the propagation constants perpen-
dicular to the surface are zero, while the branches of the square
root function are chosen so that the field of the proper mode is
bound to the surface. This is the cut chosen by Ishimaru et al. [11]
to extend the homogeneous problem of the plane interface of a
metamaterial with arbitrary refractive index considered in [4,9,10]
to media with losses. However, with the cuts described in Ref. [20],
the proper modes are those whose propagation constants parallel
to the surface have a larger real part than the photon’s wave vector
in each of the media (non-radiative modes).

The aim of this paper is to clarify the most adequate selection cri-
teria to study how the propagation characteristics of surface modes
change when the plane surface between a conventional dielec-
tric material and a metamaterial with negative refractive index is
periodically perturbed. Particularly, we will only consider proper
modes whose existence does not require intrinsic losses (Fano’s
modes). In Section 2 we discuss the cuts proposed in [11] and show
that these cuts are not adequate to determine the proper modes
of the problem of a periodically corrugated surface, since they do
not provide the expected radiation field for certain values of the
wavelength to period ratio. We also show that the adequate cuts to
describe the problem must be similar to those proposed in refer-
ences [20,23]. In Section 3, we obtain the proper modes for the case
of a metamaterial with negative refractive index. We demonstrate
that the surface mode loses energy only through radiation and that
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Fig. 1. (a) Plane surface y = 0 separating an ideal dielectric material with constitu-
tive parameters &1, 41 from another material with constitutive parameters &;, ;.
(b) Periodically corrugated boundary represented by y = f(x). The spatial harmonic
m = 0 is nonradiative, while harmonics m = —1 and m = —2 radiate into medium 1.

this energy can be radiated towards either the dielectric material or
the medium. As a result, a power flux normal to the mean plane of
the surface appears. Depending on the propagation characteristics
of the surface wave, this can be an incoming or an outgoing flux.

2. Determining the Riemann physical surface

Let us consider the plane surface y = 0 (Fig. 1a) which sepa-
rates an ideal dielectric material with constitutive parameters &1,
141, both real and positive, from another material with constitutive
parameters €,, (o with real parts arbitrarily assigned and imagi-
nary parts much smaller than the absolute value of the real part. If
¢(x,y) represents the z component of the total magnetic field for
the p polarized mode or the total electric field for the s polarized
mode, the field on either side of this surface is written as

P(x,y) = Relex-Bm) -y 5 o (1)
d(x,y) = Telex=F2 <o, )

where R and T are complex amplitudes, « is the propagation con-
stant parallel to the surface and () and B(?) are the transverse
components of the wave vector in each media. In terms of the
dimensionless propagation parameter k, & = 27/ ik, where A is the
wavelength in medium 1 and

g =20y, 3)

1/2
)

(4)

with n = /&5 /12 / /€141 being the relative refractive index. The
bivalued nature of functions BU) (j =1, 2) requires determining
those branches which have physical sense. To ensure the radiation
conditions in the infinity when « is real, these branches are chosen

O = w2 - 2)
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by imposing conditions
Im %) > 0, (5)

so that, in their respective complex planes, functions f%(«) always
move along the curves 8U) represented by dotted lines in Fig. 2b
and d. When « is a complex number, curve §0) must fall in the
region of the complex plane corresponding to the physical branch
of function Y (k) and, therefore, this branch must satisfy condition
(5) for complex «.

Branches Im 8(1) > 0 and Im 8() > 0 define the proper sheet
(also known as physical sheet) on the Riemann surface in the
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Fig. 2. (a) Cut lme L, divides regions I} (dark grey) and I (light grey). (b) Branch
of function BV(x): Im BV > 0. Curve 8V (dotted lines) represents 8V values for
real values OfK (c) Cut llne Lz divides regions 2, (dark grey) and 2 (light grey).
(d) Branch of function 82)(k): Im 8@ > 0. Curve 8 (dotted lines) represents 52
values for real values OfK

complex space x. The Riemann surface also includes three other
sheets (called improper sheets because they do not represent
physically acceptable waves) corresponding to the following
choice of branches: Im8%) < 0 forj=1,2, ImB1) < 0yIm B2 >
0, Im B > 0andIm B) < 0. The four sheets (one proper and
three improper sheets) are separated from each other by condition
Im BY) = 0, which can be explicitly rewritten as:

K —nl? = _q, (6)

with real and positive a and where n(1) =1 and n(® = n. Eq. (6)
defines the cut lines in the complex space k shown with symbol
L; in Fig. 2a and c. Each line divides the complex plane « into two
regions. As shown in Fig. 23, line L; divides regions I'; (dark grey)
and [ (light grey). Analogously, line L, (see Fig. 2c) divides regions
€ (dark grey) and 2y (light grey).

We now proceed to perturb the plane surface with a small peri-
odical corrugation represented by function y = f(x) (see Fig. 1b). In
this case, the field ¢(x,y) can be developed as a series of spatial
harmonics (or orders)

+00
ox,y) = Z R ellemxtBiy), y > max{f(x)}, (7)
m=-—o00
P(x.y) = Z T elem Ay < min (f(0), (8)
m=—oo
where
2w h 2m
Um = —-K (X) +7m, (9)

is the x component of the wave vector of the m th spatial harmonic,
his the corrugation height, «(h/))is the dimensionless propagation
constant corresponding to m = 0 and d is the corrugation period.
The y component of the wave vector of the m th spatial harmonic

=20 ) (10)
2 =T )" an

As the surface wave propagates along the surface, the spatial har-
monics can radiate energy towards medium 1 as long as condition
IRe km| < 1 is verified. The number of radiative spatial harmonics
depends on the A/d relation.

In Fig. 1b, we have outlined a situation with two propagating
orders. Our aim is to see whether the cut defined for the case of
a plane surface correctly describes this situation. Unlike the case
of a flat surface, we now have an infinite set of Riemann physical
sheets, one for each spatial harmonic corresponding to Eq. (8). This
set constitutes the Riemann’s physical sheet of the homogeneous
problem of a corrugated surface. If the cut given by Eq. (6) is gen-
eralized to the complex plane «r, of each spatial harmonic, and if
branches of functions ﬂ(n’f are chosen in a similar way to that used
for the case of a plane surface, they satisfy the following condition

imaY > o. (12)

With this generalization, both the cut lines in the complex plane
corresponding to the spatial harmonic «,; as well as the branches
of functions ,3(’ are identical to those shown in Fig. 2, except that «
must now be replaced with «,; and 89) must be replaced with ﬂ(nﬁ .
The infinite set of planes x whose image through functions /3%)
is determined by conditions (12) constitutes the Riemann physical
sheet of the problem. We shall see that this choice does not show
the expected radiation mechanism for the surface wave, even in
the case of a metallic surface. In this case, it is well known that the
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Fig. 3. (a) Cut line L,, drawn from the branch points x,;, = &1 according to condition
(13). The cut line divides regions I (dark grey) and I (light grey). Vectors 5 and
i represent the propagation and decay directions respectively, corresponding to
radiative spatial harmonics. (b) ¥ = B{I(L; ). The branch of f{(«) is in the region
located above curve y(D. Curve 81) (dotted lines) represents A values for real
values of k. (c) Cut line L, divides regions €2; (dark grey) and €2j (light grey). (d)
y@ = B(L,). Curve 5@ (dotted lines) represents A2 values for real values of .

surface waves (surface plasmons) described in Eq. (8) can actually
propagate with x(h/d) very similar to the propagation constant «(0)
corresponding to the plane surface. It is always possible to choose
a value of A/d (for example, by adequately choosing the period of
the grating) so that the plasmon has two radiative orders, both of
them with outgoing power fluxes in the direction +y, as outlined
in Fig. 1b. If Rex > 0, the main harmonic (m = 0) propagates in the

direction +x, and therefore, Im« > 0. In this situation, the power
flux associated with the spatial harmonic m = —1 has a component
in the direction +x (0 < x_q < 1) while the power flux associated
with the spatial harmonic m = —2 has a component in the direc-
tion —x (—1 < xk_y < 0). Although the criterion (12) for choosing
cuts correctly predicts the radiation direction associated with the
spatial harmonic m = —2, this is not the case for the spatial har-
monic m = —1. This is due to the fact that with this criterion «_;
falls in region I} of Fig. 2a, and then ,391) falls in region B(/7) of
Fig. 2b.In thisregion, Re ﬁ(_lf < 0(the correct direction of the power

flux is not reproduced) and Im ﬂ(_11) > 0 (the field associated with
the harmonic m = —1 becomes confined to the surface), and so we
must conclude that criterion (12) for choosing the cuts of ﬂg)(/c) is
not physically adequate to deal with the homogeneous problem of
corrugated surfaces.

The above example evidences that the adequate cuts to describe
physical situations as the one outlined in Fig. 1b must handle spatial
harmonics with |Re k| > 1 differently from those with |Re k1| < 1.
This is why the cuts must be similar to the one proposed in [20,2] for
the case of conventional media and used by [24] to determine the
characteristics of surface waves, both radiative and non-radiative,
in a metallic plane slab. Since the cut lines depend on the char-
acteristics of the refractive index of medium 2, we analyze two
situations: (A) when medium 2 is reactive (refractive index with
a significant imaginary part, waves do not penetrate the medium)
and (B) when medium 2 is transparent, with a negative refractive
index (negative real part, small imaginary part, waves penetrate
the medium).

2.1. When medium 2 is reactive

When medium 2 is reactive, Re &5 Re iy < 0, the surface wave
can only radiate into medium 1. This situation includes p polarized
plasmons that can propagate along conventional metallic media
(Regy < 0,Re 4y > 0) and s polarized surface waves that can prop-
agate along metamaterials with Ree; > 0 and Re u; < 0. In the
previous example, cut (12) assigns Re ,B(jl) < 0 when Rex_1 < 1,
leading to an inadequate result, i.e. the spatial harmonic m = —1
cannot radiate into medium 1. To avoid this problem, the cut line
must be chosen so that ﬁg) changes its sign when kp, crosses the
line Re ki, = 1. One of the simplest cuts to correctly describe the
physical situation outlined in Fig. 1b is to define the vertical lines
drawn from the branch pointsk,; = +1 as cut lines, according to the
condition:

Rexm =+1, Rekplmipy > 0. (13)

Fig. 3 shows cut lines (13) represented by the symbol L; and Fig. 3b
shows the image of this line y(1) = ﬂg)(Lﬂ in the complex plane
,BE,}). The analytic continuation of function ,BETP(/() requires that its
branch include the image of the real axis of plane k;, represented
by the symbol 8(1) in Fig. 3b. To do this, the branch of function 84 («)
must match the region located above curve Y(1). In the limit Im « <«
1,as is the case for a small intrinsic loss of the medium, curve () in
Fig. 3b can be approximated by a straight line Re ﬂﬁ,l) +Im ﬂg) =0,
which is a procedure used in the cuts proposed in Refs. [20,2] for
the study of plasmons. In this approximation, the branch of the
function is

Re ) + 1m () > 0, (14)
while the cut line (pre-image of line Re ﬁﬁ,}) +Im ’3(1) =0) can be
approximated by the expression:

2

k;m —1=1ia, where aisreal and positive. (15)

Please cite this article in press as: M. Cuevas, R.A. Depine, The homogeneous problem for a corrugated metamaterial of arbitrary permit-
tivity and permeability: Choosing the proper Riemann surface, Optik - Int. ]. Light Electron Opt. (2010), doi:10.1016/j.ijle0.2009.12.010



dx.doi.org/10.1016/j.ijleo.2009.12.010

G Model
IJLEO-51052; No.of Pages9

Similarly, the cut line for the function ﬁg) can be chosen:

K2 —n=ia,

where ais real and positive, (16)
and, consequently, the branch of the function 5(2) becomes
Reﬂfﬁ)+lmﬂ§§)20. (17)

Since the relative refractive index is almost imaginary, « does not
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cross these cut lines because they are too far away from the real
axis. Therefore, condition (17) can be replaced with the branch of
the function corresponding to the plane case:

Imﬂfﬁ)zo. (18)

The infinite set of planes k; whose image through functions ﬂ%) is
determined by conditions (14) and (17) or (14) and (18) constitutes
the Riemann physical sheet of the problem. In Fig. 3a, we have rep-
resented the propagation direction 5 and the decay direction u for
spatial harmonics with «p, in regions I and I, with |Rekp| < 1
and Im« > 0, in accordance with the branch of the parameter ﬂ%p
represented in Fig. 3b. It should be noted that this branch provides
the correct radiation direction in medium 1, outlined in Fig. 1b.
Fig. 3¢ shows that x,; belongs to regions €2j; or 2j;;. Consequently,
Im ,357?) > 0, and so the spatial harmonics become confined to the
surface.

2.2. When medium 2 has a negative refractive index

In this case, surface waves can also radiate into medium 2, a
novel characteristic that makes them different from surface waves
in conventional materials. In the dispersion problem (real ), the
parameters ﬁg) must be chosen in accordance with conditions [22]
to satisfy the radiation condition at infinity

imgZ >0, (19)

and thus function 82 moves along the curve 8 represented by
a dotted line in Fig. 4d. With this condition, and in the ideal loss-
less case, the spatial harmonics in medium 2 are radiative, with the
power flux in the —y direction when n < kym < —n and ﬁsﬁ) is real
and negative, or non-radiative, with fields confined to the surface
when |k;| > —n and ﬁgﬁ) is a positive imaginary number. To gen-
eralize condition (19) to complex values of xp, the cut line can be
drawn from the branch points k = +n, just as we did for condition
(13)

Rekm = £Ren, RekyImky, <Renlmn. (20)

In this cut line definition, we have considered the most general
case, in which the medium has a small loss. Fig. 4c and d show cut
line L, and its image in the ,35,? plane, represented by the symbol
¥(2). The analytic continuation of function ﬂg)(/cm) requires that its
branch include condition (19). Therefore, the branch of the func-
tion must be chosen as the region of the plane above curve y(2).
If k1 is almost a real number, curve y(2) can be approximated by
the straight line —Re ,35,3) +Im 55,3) = 0. In this approximation, the
branch of the function can be written as

—Re A2 +1m B2 > 0, (21)
and the equation corresponding to the cut line becomes
k2, —n? = —ia, where ais real and positive. (22)

To show the Riemann physical sheet corresponding to the disper-
sion problem of the corrugated interface when medium 1 is anideal
dielectric, we have incorporated Fig. 4a and b showing cut lines L;
from the branch points «;; = 1 and the branches of the function
,391). In the ideal limit, the cut represented by Eq. (22) coincides with

(b=
\\.\ ﬁm(r ) o ﬂm(j—;'ﬂ‘)

A 2n/n
i |
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Fig. 4. (a) Cut line L;, drawn from the branch points k;; = +1 according to condi-
tion Eq. (20). The cut line divides regions I (dark grey) and I (light grey). Vectors
s and u represent the propagation and decay directions respectively, correspond-
ing to radiative spatial harmonics. (b) y1) = (L, ). The branch of B)(«) is in the
region located above curve y(). Curve 8() (dotted lines) represents A\ values for
real values of «. (c) Cut line L, drawn from the branch points «;, = £n according to
condition Eq. (20). The cut line divides regions I (dark grey) and I (light grey).
Vectors § and il represent the propagation and decay directions respectively, corre-
sponding to radiative spatial harmonics. (d) @ = B2)(L,). Curve 52 (dotted lines)
represents A2) values for real values of k.
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that proposed in [23]. In this limit, the surface wave can radiate
energy into medium 2 (in the —y direction) through those spatial
harmonics satisfying n < Rekpy, < —n.

To see the characteristics of the power flux radiated by the sur-
face wave, let us assume that the spatial harmonic m belongs to
the radiative area contained in region Qy; (Fig. 4c). In this case,
conditions 0 < Rexy < —n, Imk > 0, or n < Rekm <0, Imk < 0
are verified, and so ﬂfﬁ) falls in region ,35?(9”1) of Fig. 4d. In this
region, Re ,35,%) < 0, therefore the power flux associated with this
spatial harmonic is in the —y direction (¢; < 0, u, < 0). Besides,
each spatial harmonic m verifies the dispersion relation

o2 + B = (%)zsm. (23)

Since the imaginary part of this equation is zero, Re o Im oty +
Re B Im By = 0 and therefore the direction of the power flux radi-
ated into medium 2 is perpendicular to the attenuation direction.
Fig. 4c shows the radiation and attenuation direction with vectors
s and u respectively. To represent vector i, we have taken into
account the sign of Im k;, and the sign of Im ,35,%). A similar analysis
enables us to infer the radiation and attenuation direction repre-
sented in Fig. 4c, for ky belonging to region €2;. In the ideal limit,
the power flux radiated into medium 2 has the same characteristics
as the flux radiated into medium 1 when the surface wave propa-
gates along a metallic corrugation. The scheme of vectors s and u
shown in Fig. 4a and cillustrates how the surface wave loses energy
through radiation - into medium 1 and medium 2 — when it prop-
agates along the corrugated surface. The spatially transient wave
characteristic of the radiation field is also characteristic of the field
radiated by surface plasmons in plane slabs [24,25].

3. Dispersion relation

To find the surface wave characteristics of the periodically cor-
rugated surface, we have developed a perturbative method valid
for weak corrugation (h/A «1) and similar to the one presented
in [21] for magnetic media with positive refractive index. Tak-
ing into account that for h = 0 the surface wave is described by
the spatial harmonic with m = 0, the amplitude corresponding to
this harmonic results O(1) in the weak corrugation limit, while the
amplitudes for harmonics with m # 0 are at least O(h/A). By retain-
ing the first-order terms in the series (8) the dispersion relation for
the spatial harmonic m = 0 is written as:

Moo = B + 0B}’

Mom M
==Y =R - BB - B NENm)P, (24)
Mmm
m=+0
where o = ¢ for p polarization and o = u for s polarization. The
matrix

(am + ooty )(otm — otn)
B

and £1)(m) is m th Fourier coefficient of function f(x). To calculate
k(h/X) with Eq. (24) it is essential to use the analytic continua-
tion developed in the previous section. We apply the formalism in
the regions of constitutive parameters ¢ — u where the flat surface
supports surface waves and we observe how the propagation char-
acteristics are modified when the surface is sinusoidally perturbed.
If the surface is reactive (relative refractive index mostly imagi-
nary), the solution to Eq. (24) must be found in the proper Riemann
sheet defined in Fig. 3, whereas if the medium is transparent (rel-
ative refractive index mostly real), the solution to Eq. (24) must be
found in the proper Riemann sheet defined in Fig. 4. Here we restrict
ourselves to obtaining the proper modes for regimes in which the

Mimn = B2 + o)) + , (25)
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Fig.5. Real (a) and imaginary (b) parts of the propagation constant « as a function of
h/d. Constitutive parameters corresponding to regime A (¢ = —0.176, u = —1.135)
and \/d = 2.2.

medium is transparent. These regimes are described in Refs. [9,10]
and correspond to constitutive parameters characterized by the
following conditions:

e Regime A: ¢ > -1, u < —1,eu < 1, s polarization
® Regime B: ¢ > —1, u < -1, e > 1, p polarization
e Regime C: ¢ < —1, u > —1, e > 1, s polarization
e Regime D: & < —1,u > —1,eu < 1, p polarization

Given that regimes C and D are obtained from regimes A and B
by interchanging the constitutive parameters ¢ < p as well as the
polarization p < s, we will show the effect of corrugation on the
surface wave characteristics in regions A and B.

3.1. Regime A

In this section, we implement the formalism developed in the
previous sections. Specifically, we determine the Riemann physical
sheet for transparent media. This sheet allows us to find the propa-
gation constant k which solves Eq.(24) and has a physical sense. The
graphic representation of each radiative spatial harmonic k,, Fig. 4a
and c, offers valuable insight into the novel propagation proper-
ties of surface waves in this regime. To illustrate these properties,
we consider a sinusoidal surface with relative constitutive parame-
ters € = —0.176, u = —1.135 (n = —0.447). We choose the relation
A/d = 2.2. For the case h = 0 the surface wave has s polarization
and the net power flux is in the same direction as the propa-
gation parameter x(0). For this reason, the surface waves in this
regime are also called forward surface polaritons [9,10]. Fig. 5a and
b shows respectively the real and imaginary parts of x as a func-
tion of h. Starting with the value corresponding to the plane surface
k(0) = 1.9433, the values of Re x(h/d) and Im «(h/d) increase with
h/d and consequently, the power flux radiated also increases. Since
the media have no intrinsic losses, the non zero value of Im«(h/d)
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is explained by the fact that the surface wave radiates energy as it
propagates along the surface. Fig. 5b shows that this value increases
with h/d, and consequently the radiated power flux also increases.

Fig. 6a shows the flux lines and the absolute value of the Poynt-
ing vector, illustrated here with a color pallet for h/d = 0.012. Near
the surface, the characteristics of the surface wave are similar to
the case h = 0: the flux lines are almost parallel to the surface, in
the +x direction in medium 1 and in the —x direction in medium
2. This is due to the fact that the amplitudes R;; with m # 0 in Eq.
(8)are O(h/X), whereas R is O(1). Therefore, the field near the sur-
face is quite similar to the field corresponding to the plane surface,
except that in the latter case the propagation constant is real, and
so the surface wave does not lose energy when it propagates.

The perturbation induces a radiative spatial harmonic with
m=-1(-1 < Rek_; < 0)(Eq. (8)) which is manifested in the flux
shown in Fig. 6a by the radiation lines in the outgoing direction.
This is due to the fact that x_; falls in region Iy of Fig. 4a, with
Imx > 0, and then ﬁ(j]) falls in region ,B(jl)(l“m) of Fig. 4b. In this

region, Re B(1) > 0 (the radiated power flux is in the +y direction).
Furthermore, x_1 falls inregion €2; of Fig. 4c withIm x > 0, and then
,3(_21) fallsinregion ﬂ(_zl)(Q, )of Fig. 4d. Therefore Re ,8(_21) < O(theradi-
ated power flux is in the —y direction in medium 2). Since this flux
results from the energy loss of the surface wave, it does not present
the same characteristics as the flux of a plane wave, as its intensity
decreases in the +x direction (Im« > 0). To understand the spatial
characteristics of the radiation flux, we should observe Fig. 4, which
shows the radiation direction S and the attenuation direction u for
k_1 belonging to the radiative regions I; and ; withIm«k_; > 0.
Since these directions are perpendicular to one another, the abso-
lute value of the Poynting vector (intensity) remains constant along
each radiation line shown in Fig. 6a. Because the x component of u

(a) 4
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2

1

y/d

(b) 00151

x/d

Fig. 6. (a) Flux lines and modulus of the Poynting vector (illustrated with a color
pallet) for h/d = 0.012. (b) Flux lines and modulus of the Poynting vector near
the surface. Constitutive parameters corresponding to regime A (¢ = —0.176, u =
—1.135)and A/d =2.2.
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Fig. 7. Real (a) and imaginary (b) parts of the propagation constant « as a function
of h/d for constitutive parameters corresponding to regime B (¢ = —0.8, u = —2.5)
and \/d = 2.2.

is positive, this intensity decreases from one line to another in the
+x direction. These two assertions have been numerically verified.
Note that the flux lines radiated into medium 1 and medium 2 do
not emerge on the same side of the y axis.

Fig. 6b shows the flux lines and the absolute value of the Poynt-
ing vector near the surface. As in the case of the plane surface, the
energy is mostly concentrated on medium 1, in agreement with the
forward nature of the surface wave in this regime. However, con-
trary to the case of h = 0, we observe that the flux lines penetrate
the surface. This is due to the fact that the surface wave loses energy
in the +x direction and, as a result, a net flux in the —y direction
appears. The colored map in Fig. 6b clearly shows that the intensity
decreases in the +x direction. This decrease (and consequently the
flux normal to the surface) also appears in the h = 0 case when a
lossy medium is considered.

3.2. Regime B

If h = 0, the direction of the net power flux of surface waves is
antiparallel to the propagation direction. This is why the proper
modes are also known as backward surface polaritons [9,10]. To
observe substantial changes in these proper modes when the sur-
face is slightly corrugated, we choose the constitutive parameters
&=-0.8, u = —2.5(n = —1.414) and the same A/d relation as the
previous case. Fig. 7a shows that the real part of the propagation
constant increases with the corrugation amplitude. Starting from
the value «(0) = 1.9436, we observe that the value of Rex(h/d)
increases as in the previous case. Since the surface wave radiates
energy as it propagates along the surface, |Im «(h/d)| also increases,
except that now Im«(h/d) is negative. The negative value of the
product RexImk is a characteristic of the backward regime, also
present in the case of h = 0 when lossy media are considered [11].

Fig. 8a shows the flux lines and the absolute value of the Poynt-
ing vector for h/d = 0.012. As in the previous case, the flux lines
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y/d

Fig. 8. (a) Flux lines and modulus of the Poynting vector (illustrated with a color
pallet) for h/d = 0.012. (b) Flux lines and modulus of the Poynting vector near the
surface. Constitutive parameters corresponding to regime B (¢ = —0.8, u = —2.5)
and 1/d = 2.2.

near the surface are almost parallel to the surface: in the +x
directionin medium 1 and in the —x direction in medium 2. The per-
turbation induces a radiative spatial harmonic with m = —1 which
is manifested in the flux lines shown in Fig. 8a. Since the value of
the real part of the propagation constant is almost the same as in
the previous case and the value of A /d is the same for both cases,
the flux lines are radiated into the dielectric medium with almost
the same inclination with the y axis. However, since «_q falls in
the radiative region I with Imx_; < O of Fig. 4a, the attenuation
direction it (which is perpendicular to the radiation direction s) has
a —x component. Furthermore, since x_1 also belongs to region
withImk_; < 0, the flux is radiated into medium 2 in the outgoing
direction s (Fig. 4c).

In Fig. 4c, we can also observe that the attenuation direction u
has an —x component. We have numerically verified that the inten-
sity remains constant for |y/d| > 3 on each radiation line shown in
Fig. 8a and that this intensity decreases from one line to another in
the —x direction. Therefore, the radiated intensity decreases in both
medium 1 and medium 2 in the —x direction, which is opposite to
the propagation direction +x.

Fig. 8b shows the flux lines and the absolute value of the Poynt-
ing vector near the surface. In this case, the highest intensity is
concentrated on the metamaterial side, as opposed to the dielec-
tric side, as in the previous regime. Besides, we can observe flux
lines passing through the surface, except that now the flux is in
the +y direction. This is so because Imk < 0. The same situation
is obtained for the case h = 0, when the negative imaginary part
of the propagation constant results from the intrinsic losses of the
metamaterial medium.

4. Conclusion

We have extended to the complex plane the solution to the
boundary-value problem for a metamaterial grating. We observed
that the cuts chosen to analyze the homogeneous problem associ-
ated with a plane surface are not adequate to solve the problem of a
weakly corrugated surface. We have generalized the cuts proposed
for metallic corrugations to the case of metamaterial media and
we have built the Riemann physical sheet. The changes introduced
by the presence of corrugation in the propagation characteristics
of surface waves have been discussed in terms of the different
regions of the physical sheet. In particular, we have seen that the
presence of a corrugation can induce radiative spatial harmonics,
through which the surface wave loses energy. This energy loss may
be attenuated in the propagation direction (forward surface waves)
or in the opposite direction (backward surface waves). We have
shown that the radiation direction on both sides of the corrugation
do not emerge on the same side of the normal to the mean plane of
the surface, in agreement to the fact that the surface is negatively
refracting.

For forward surface waves, a flux penetrates the metamaterial
medium from the dielectric medium. This flux is a consequence
of the fact that the surface wave loses energy as it propagates. On
the other hand, for backward surface waves, this flux penetrates
the dielectric medium from the metamaterial medium because the
surface wave loses energy in the direction opposite to the prop-
agation direction. Furthermore, we have shown that the forward
surface waves concentrate most of their energy on the dielectric
medium, as is the case of surface plasmons, whereas the backward
surface waves concentrate most of their energy on the metamate-
rial medium.
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