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Bose-Hubbard model in a ring-shaped optical lattice with high filling factors
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The high-barrier quantum tunneling regime of a Bose-Einstein condensate confined in a ring-shaped optical
lattice is investigated. By means of a change of basis transformation, connecting the set of “vortex” Bloch states
and a Wannier-like set of localized wave functions, we derive a generalized Bose-Hubbard Hamiltonian. In
addition to the usual hopping rate terms, such a Hamiltonian takes into account interaction-driven tunneling
processes, which are shown to play a principal role at high filling factors, when the standard hopping rate
parameter turns out to be negative. By calculating the energy and atomic current of a Bloch state, we show
that such a hopping rate must be replaced by an effective hopping rate parameter containing the additional
contribution an interaction-driven hopping rate. Such a contribution turns out to be crucial at high filling factors,
since it preserves the positivity of the effective hopping rate parameter. Level crossings between the energies per
particle of a Wannier-like state and the superfluid ground state are interpreted as a signature of the transition to
configurations with macroscopically occupied states at each lattice site.
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I. INTRODUCTION

The study in the last decade of ultracold bosonic atoms in
optical lattices has enabled the realization of an active and
fruitful convergence of atomic and condensed matter physics.
Particularly, the analogy of such systems with a solid material,
where the bosons play the role of the superconducting electron
pairs and the laser beams act as the ionic crystal, became
the leitmotiv of numerous applications [1,2]. In their seminal
experiment, Greiner et al. [3] showed that by increasing the
lattice potential depth in a three-dimensional (3D) optical
lattice, a quantum phase transition from a superfluid state
to a Mott insulating state can be achieved. This had been
predicted by Jaksch et al. [4], who accurately described such
a transition within a Bose-Hubbard model at filling factors of
the order of unity. Actually, most research has so far been
focused on optical lattices with such a low filling factor,
whereas the high filling factor domain appears scarcely treated.
Such high filling configurations are expected to be noticeably
affected by the on-site interaction between bosons, as the
Wannier single-particle ground-state wave function in every
site should be replaced by a macroscopic wave function [5]. A
suitable configuration to experimentally investigate this type
of condensate could be given by a ring-shaped lattice, where
a toroidal trap becomes symmetrically divided by a number
of potential barriers radiating away from the trap center [6].
In fact, apart from presenting the ideal geometry to sustain
persistent currents, such a lattice would also exhibit a perfect
azimuthal periodicity for any number of lattice sites. This
would permit one to achieve extremely high filling factors
within the present experimental possibilities for the maximum
number of particles in the whole condensate. The effect of
raising a single barrier across a long-lived persistent current in
a toroidal condensate, has recently been investigated as the first
realization of an elementary closed-loop atom circuit [7]. The
generalization of such experiments to ring lattices has shown to
be quite attainable in light of the works of Amico et al. [8] and
Henderson et al. [9]. In fact, while the former have thoroughly
discussed the experimental setup for realizing a ring lattice,
such a system was actually generated by the latter, utilizing

a rapidly moving laser beam that “paints” a time-averaged
optical dipole potential, transforming a toroidal condensate
into a ring lattice.

From a theoretical viewpoint, recent investigations have
analyzed the effect of rotation on the ground-state properties
of bosonic atoms confined in a one-dimensional ring lattice at
low filling factors [10]. A nonrotating ring lattice, on the other
hand, has been predicted to sustain persistent currents [11]
if the phase difference between adjacent sites takes certain
values [6]. In addition, the buildup of a winding number in
the phase transition from Mott insulator to superfluid driven
by a tunneling rate increase, has been shown to proceed
through the so-called Kibble-Zurek mechanism, except for
very slow quench times [12]. In the present work we will
concentrate our attention on such nonrotating configurations
with high barriers and high filling factors. The starting point
of a theoretical approach to this kind of system should consist
of exploring an adequate variant of the Bose-Hubbard (BH)
model, which should be expected to exhibit occupation-
dependent parameters [13,14]. As usual, the main ingredient
to derive such a BH Hamiltonian consists in finding a suitable
set of orthogonal Wannier-like functions, for which a number
of variational schemes have been proposed [14–18]. Here,
rather than resorting to such methods, we shall obtain our set
of Wannier-like functions simply as a “basis change” from
the orthogonal set of stationary “vortex” Bloch states [19,20].
Then, it will be shown that such functions possess the main
properties of the single-particle Wannier functions, except for
their dependence on the filling factor, and thus they become
the adequate tool to study the slightly perturbed Bloch states
arising from small occupation number imbalances, or from
small changes in the relative phase between adjacent sites.
Under such conditions, a generalized BH Hamiltonian that
takes into account interaction-driven tunneling processes will
be derived. Such contributions, which were previously in-
vestigated for double- and triple-well configurations [21–23],
will be shown to play a principal role at high filling factors.
Finally, by considering the level crossing between the energies
per particle of a Wannier-like state and the superfluid ground
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state, we will discuss the transition to configurations with a
macroscopic occupation at each site.

This paper is organized as follows. In Sec. II, we describe
the ring lattice and remaining condensate parameters. In
Sec. III, we analyze the main properties of Bloch and
Wannier-like states. In Sec. IV, we derive the generalized BH
Hamiltonian from which the energies of the Bloch states are
calculated, and the continuity equation at a given lattice site
and the corresponding atomic current are extracted. Finally,
in Sec. V we discuss our numerical results for the tunneling
parameters and level crossings, while in Sec. VI we present
our summary and main conclusions.

II. RING-SHAPED LATTICE AND CONDENSATE
PARAMETERS

We consider a Bose-Einstein condensate of rubidium
atoms confined by an external trap Vtrap, consisting of a
superposition of a toroidal term Vtoro and a lattice potential
VL formed by radial barriers. Similarly to the trap utilized in
recent experiments [24,25], the toroidal trapping potential in
cylindrical coordinates reads

Vtoro(r,z) = M

2

[
ω2

r r
2 + ω2

zz
2
] + V0 exp(−2 r2/ λ2

0), (1)

where ωr and ωz denote the radial and axial frequencies,
respectively, and M denotes the atom mass. We have set ωz >>

ωr to suppress excitation in the z direction. In particular, we
have chosen ωr/(2π ) = 7.8 Hz and ωz/(2π ) = 173 Hz, while
for the laser beam we have set V0 = 100 h̄ωr and λ0 = 6 lr ,
with lr = √

h̄/(Mωr ). On the other hand, the lattice potential
is formed by Nc Gaussian barriers of width λb and amplitude
Vb, located at equally spaced angular positions θk = 2πk/Nc,
where −[[(Nc − 1)/2]] � k � [[Nc/2]] with [[·]] denoting the
integer part,

VL(x,y) = Vb

[[Nc/2]]∑
k=−[[(Nc−1)/2]]

�[sin(θk) y + cos(θk) x]

× exp

{
− [cos(θk) y − sin(θk) x]2

λ2
b

}
, (2)

where � denotes the Heaviside function.
In the mean-field approximation, the stationary states are

solutions of the Gross-Pitaevskii (GP) equation [26]:[
− h̄2

2M
∇2 + Vtrap(r) + g N |ψ(r)|2

]
ψ(r) = μψ(r), (3)

where N , μ, and ψ(r), respectively, denote the number of
particles, the chemical potential, and a two-dimensional (2D)
order parameter normalized to one [27]. The effective 2D
coupling constant g = g3D

√
Mωz/2πh̄ is written in terms of

the 3D coupling constant between the atoms g3D = 4πah̄2/M ,
where a = 98.98 a0 denotes the s-wave scattering length of
87Rb, a0 being the Bohr radius.

III. BLOCH AND WANNIER-LIKE STATES

We shall restrict our treatment to the case of high enough
barrier heights, where quantum tunneling between sites turns
out to be the dominant dynamical process. Such a regime arises

when the ground-state chemical potential becomes smaller
than the minimum of the effective potential barrier dividing
two lattice sites [6]. The most general solution of the GP
equation (3) is given by a Bloch state of the form [19,20],

ψm(r,θ ) = eimθ fm(r,θ ) , (4)

where fm(r,θ ) is invariant under rotations in 2π/Nc and the
winding number m plays the role of an “angular” pseudo-
momentum satisfying the constraint −[[(Nc − 1)/2]] � m �
[[Nc/2]]. Such a constraint arises from the fact that all
possible solutions can be reduced to those existing in the
first Brillouin zone in pseudomomentum space [20]. We shall
restrict ourselves to Bloch states of the lowest energy (i.e., to
the ground “vortex” states [6]). In the language of crystal
lattices, we would say that we shall restrict our treatment
to the subspace of Bloch states of the “ground band.” In
such a context, the orthogonality of a pair of Bloch states,
ψm and ψn, can be easily proven as follows. First, the
corresponding integral may be split into separate integrals over
each site, where we make the change of variable θ ′ = θ − θk .
Then, taking into account the rotational symmetry of the
corresponding functions fm and fn, along with the equality,∑

k

exp[i(m − n)θk] = δm,nNc , (5)

the orthogonality can be demonstrated.
Now, taking into account the periodicity of a Bloch state

in the reciprocal lattice, ψm+jNc
= ψm, it must have a Fourier

series expansion with “wave vectors” θ ′
k = (θk + θk+1)/2 =

θk + π/Nc in the direct lattice as follows [28]1:

ψm(r,θ) = 1√
Nc

∑
k

wk(r,θ) eiθkm , (6)

where the Fourier coefficients in (6) are given by the inversion
formula2,

wk(r,θ) = 1√
Nc

∑
n

ψn(r,θ ) e−inθk , (7)

with the summation over the angular pseudomomentum n

being restricted to the first Brillouin zone. Replacing (4) in (7)
and taking into account the symmetry of fn, we may realize
that the Fourier coefficients arise from a single function w(r,θ )
as follows,

wk(r,θ ) = w(r,θ − θk) = 1√
Nc

∑
n

fn(r,θ − θk) ein(θ−θk ) .

(8)

Thus, pushing forward with the analogy to crystal lattices, we
could name the function,

w(r,θ ) = w0(r,θ ) = 1√
Nc

∑
n

ψn(r,θ ), (9)

1Note in Eq. (6) that the phase factor exp(−imπ/Nc) has been
absorbed into the expression of the Bloch wave function.

2The inversion formula (7) can be readily checked by taking into
account Eq. (5).
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FIG. 1. Isocontours of the ground-state wave function density |ψ0|2 (left panels) and of the Wannier-like function density w2 (right panels).
The rotation of the coordinate system denoted by dashed lines in the top right panel makes the Wannier-like function symmetric with respect to
the angular variable θ . The condensate parameters are Vb/h̄ωr = 10, N = 103 (top), and Vb/h̄ωr = 80, N = 105 (bottom), while the number
of lattice sites and the Gaussian barrier width are given by Nc = 16 and λb/ lr = 0.5, respectively.

the “Wannier” function of the ground band [28]. Although we
shall see that it shares many formal properties with the well-
known Wannier functions, we shall also show that it presents
a remarkable difference. So, we feel it is more appropriate
to speak in the following of a Wannier-like function. Let
us first show the similarities. Taking into account that the
Bloch “vortex” states [20] fulfill ψ∗

n = ψ−n, while the ground
and highest states, ψ0 and ψNc/2 (Nc even), respectively, are
real, it is easy to show that w(r,θ ) given by (9) must be a
real function. Also, from the orthonormality of the Bloch
wave functions and Eq. (5), one may readily check that the
set of Wannier-like functions centered on different k sites,
w(r,θ − θk), form indeed an orthonormal basis of the subspace
of Bloch states of the ground band. In addition, given that the
Bloch “vortex” states fulfill ψn(r, − θ ) = ψ∗

n (r,θ ), it is easy
to show that w(r,θ ) turns out to be an even function of θ

for odd Nc. On the other hand, by considering the rotation
of the coordinate system in π/Nc shown in Fig. 1, which
makes the Bloch wave function ψNc/2(r,θ ) an even function
of θ , the same parity property may be readily extended to
the case of Nc even. Finally, by replacing the numerical

solutions of the GP equation, ψn(r,θ), in Eq. (9), we have
shown that our Wannier-like function is indeed a well-localized
one, as seen in Fig. 1. However, there is a most remarkable
difference between such a localized function and a “true”
Wannier function, which consists in that only the former turns
out to depend on the filling factor (i.e., the average number
of particles at each site), as clearly observed in Fig. 1. In
fact, only for noninteracting bosons our Wannier-like function
would not depend on the filling factor. We have performed a
calculation of the overlap between the Wannier-like function
given by (9) and the corresponding Wannier-like function
for noninteracting bosons (i.e., with a vanishing coupling
constant g = 0), which yielded 1.00, 0.98, and 0.48, for
filling factors 5, 62.5, and 6250, respectively. Particularly,
the last two values correspond to the filling factors of the
top and bottom panels of Fig. 1, respectively. Therefore,
we may conclude that only for filling factors below ∼60,
the Wannier-like functions should be almost independent
of the average occupation number. We will have more to
say about this filling factor dependence in the following
sections.
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To conclude it is instructive to rewrite Eq. (6) as

ψm(r,θ) = 1√
Nc

∑
k

w(r,θ − θk) eimθk , (10)

and notice that the above representation will be accurate to the
extent that each site presents an almost uniform phase, which
is consistent with a tight-binding scenario of high barriers with
a low particle current [6].

IV. BOSE-HUBBARD MODEL

The above similarities between the Wannier-like function
and the “true” Wannier functions, offer the adequate frame-
work to establish a BH model for our ring-shaped optical
lattice. As usual [2,4,29], the starting point is the second-
quantized Hamiltonian,

Ĥ =
∫

d 2r 	̂†(r)

[
− h̄2

2M
∇2 + Vtrap(r)

]
	̂(r)

+ g

2

∫
d 2r 	̂†(r)	̂†(r)	̂(r)	̂(r), (11)

where 	̂(r) is the boson field operator. We are interested
in slightly perturbed Bloch states, which could be given
by, for example, a small relative imbalance between the
average population of two neighboring sites. Then, for low
enough temperatures, such configurations will be conveniently
described by expanding the field operators in our Wannier-like
basis of the ground band,

	̂(r) =
∑

k

w(r,θ − θk) âk, (12)

where the operator âk destroys a particle in the k-Wannier state
and satisfies the usual Bose commutation relations. Here we
remark that a possible dependence of the operators âk on the
filling factor should, under the above conditions, be negligible.
In fact, in the previous section we have seen that this is actually
the case for filling factors below ∼60, while for higher fillings,
only configurations that present small population imbalances
should be taken into consideration.

Then, replacing the field operators in (11) through Eq. (12)
and assuming the tight-binding limit, where only the coupling
to the nearest neighboring states of any given Wannier-like
state is taken into account, we obtain the following BH
Hamiltonian:

ĤBH = ε
∑

k

â
†
kâk − J

∑
k

(â†
kâk+1 + â

†
k+1âk)

− J ′

2

∑
k

[â†
kâ

†
kâk(âk+1 + âk−1)

+ (â†
k+1 + â

†
k−1)â†

kâkâk] + U

2

∑
k

â
†
kâ

†
kâkâk, (13)

with

ε =
∫

d2r w(r,θ )

[
− h̄2

2M
∇2 + Vtrap(r)

]
w(r,θ ), (14)

J=−
∫

d2r w(r,θ )

[
− h̄2

2M
∇2 +Vtrap(r)

]
w(r,θ ± 2π/Nc),

(15)

J ′ = −2 g

∫
d2r w3(r,θ ) w(r,θ ± 2π/Nc), (16)

U = g

∫
d2r w4(r,θ ), (17)

where the equivalence between the “±” expressions at the
right-hand side of (15) stems from the reality of the Wannier-
like functions, while the corresponding equivalence in (16)
results from the parity property of such functions. In addition to
the usual tunneling terms proportional to the standard hopping
rate J , we have also retained in (13) interaction terms up to the
first order in the product of adjacent Wannier-like functions,
which are proportional to the tunneling parameter J ′3. Later
we will show that such interaction terms may constitute the
most significant contribution to the tunneling rate at high filling
factors. The case of two sites Nc = 2 is somewhat special since
it is the only configuration presenting a single neighbor for
each site. Then, the expression (13) reduces to

ĤBH = εN̂ −
[
J + (N̂ − 1)

Nc

J ′
]

(â†
0â1 + â

†
1â0)

+ U

2
(â†

0â
†
0â0â0 + â

†
1â

†
1â1â1), (18)

where, for a fixed number of bosons N , the particle number
operator N̂ = â

†
0â0 + â

†
1â1 may be replaced by a c number.

Thus, we may see that the only difference with the standard
two-mode BH Hamiltonian consists in that the standard
hopping rate J is replaced by an effective hopping rate,

Jeff = J + (N − 1)

Nc

J ′, (19)

which includes the additional contribution of an interaction-
driven hopping rate N−1

Nc
J ′ stemming from boson interactions.

Here it is worth noticing that an extended two-mode approach,
which includes terms in the BH Hamiltonian beyond the
present approximation, has been recently investigated [21,30].

Next we obtain the mean value of the BH Hamiltonian
〈N,m|ĤBH |N,m〉, where |N,m〉 represents the quantum state
of N bosons condensed in the Bloch state (4) of the winding
number m [19,20]. To calculate such a matrix element, we may
change to the Bloch basis in (13) by means of the expansion
[cf. (7)],

â
†
k = 1√

Nc

∑
n

α̂†
n e−inθk , (20)

where the operator α̂
†
n creates a particle in the corresponding

Bloch state. Then, a straightforward calculation yields

Em ≡ 〈N,m|ĤBH|N,m〉/N = ε + (N − 1)

Nc

U

2
− νJeff cos(2πm/Nc), (21)

where ν denotes the number of neighbors (ν = 2 (ν = 1) for
Nc > 2 (Nc = 2)). We note that the above expression coincides
with our previous result [6] in the limit N 
 1.

3We have ignored in (13) nearest-neighbor repulsion terms [33]
because they are of second order in the product of adjacent Wannier-
like functions.
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It is instructive to analyze the continuity equation for the
kth site of a lattice with Nc > 2,

d

dt
(â†

kâk) = i

h̄
[ĤBH,â

†
kâk] = Ĵk−1→k − Ĵk→k+1, (22)

where Ĵk→k+1 denotes the current operator for atoms that move
from site k to site k + 1,

Ĵk→k+1 = i

h̄

(
â
†
k+1Ĵ

(k)
eff âk − â

†
kĴ

(k)
eff âk+1

)
, (23)

which has been written in terms of the hopping operator
between sites k and k + 1 defined by

Ĵ
(k)
eff = J + J ′

2
(â†

kâk + â
†
k+1âk+1). (24)

The mean value of the current operator (23) for a condensate
of N particles in the Bloch state of the winding number m

reads

〈N,m|Ĵk→k+1|N,m〉 = 2Jeff
N

Nc

sin(2πm/Nc), (25)

which does not depend on the site we are considering, as
expected. Note that analogously to the mean value of the
angular momentum [6], the current turns out to be a sinusoidal
function of the winding number. Note also its proportionality
to the effective hopping rate Jeff , whereas for the standard
BH model such a current turns out to be proportional to the
standard hopping rate J [31].

The value of the BH model parameters (14)–(17) can be
easily extracted from the mean-field energy of Bloch states
Em (see Appendix A). Particularly, from the single value of
energies of the ground state E0 and the highest excited state
ENc/2 (Nc even) one obtains

ε = 1

2

(
E0

Nc/2 + E0
0

)
, (26)

U = Nc

N − 1

(
E int

Nc/2 + E int
0

)
, (27)

J = 1

2ν

(
E0

Nc/2 − E0
0

)
, (28)

J ′ = Nc

2ν(N − 1)

(
E int

Nc/2 − E int
0

)
, (29)

where, according to Appendix A, the superscripts “int” and
“0” denote interacting and noninteracting contributions to the
energy, respectively.

According to the Hamiltonian (13), the energy per particle
in a Wannier-like state (i.e., neglecting tunneling processes) is
given by

EW = ε + U

2

(
N

Nc

− 1

)
. (30)

It is interesting to compare the above energy to the energy per
particle of the superfluid ground state E0. Then, from Eqs. (21)
and (30) we obtain

EW − E0 = νJeff −
(

Nc − 1

Nc

)
U

2
. (31)

The existence of a superfluid to Mott-insulator transition
requires the above difference to be positive for low barrier
heights (superfluid regime), and negative for high barrier

heights (Mott-insulator state). Thus, the level crossing at
an intermediate barrier height arising from (31), should be
representing a transition to configurations where the system is
well described by Nc macroscopically occupied states. We may
utilize the above expression to obtain the value at such a level
crossing, ηcr, of the dimensionless scaling parameter [2,29]

η = U

νJeff
, (32)

relevant to the superfluid to Mott-insulator transition. Thus,
assuming EW = E0 in (31), we obtain

ηcr = 2Nc/(Nc − 1). (33)

We may compare the above result with theoretical estimates
focusing on critical values of the parameter U/J . In fact,
it has been pointed out that the superfluid to Mott-insulator
transition in a one-dimensional BH model can be described
by the (1 + 1)D O(2) model, which gives [1]

(U/J )cr = 2.2 n̄ (34)

for filling factors n̄ 
 1. The above proportionality to the
filling factor is also predicted from the mean-field Gutzwiller
ansatz, which yields (U/J )cr = 2 (

√
n̄ + √

n̄ + 1)2 � 8 n̄ for
n̄ 
 1 [10]. However, we must recall that mean-field theories
only provide a qualitative analysis in 1D systems. We must also
remark that the result (34) arises from a BH Hamiltonian that
does not take into account the contribution of the interaction-
driven tunneling terms proportional to J ′. So, such an estimate
should only be reliable for Jeff � J [i.e., for J 
 n̄J ′ (n̄ 

1)]. However, we shall see in the following section that
such conditions are difficult to reach within our condensate
parameters. Moreover, we shall show that the standard hopping
rate J becomes negative above a certain filling factor, which
means that the parameter U/J should actually increase with
the average occupation number until becoming divergent and
meaningless above such a filling factor.

V. NUMERICAL RESULTS

In the BH model for linear lattices it is common to measure
energies in units of the recoil energy ER = h̄2k2

B/2M , where
the Bragg momentum kB corresponds to a lattice potential of
the form ∼sin2(kB x). To adapt this definition to the present
case, we first note that a lattice potential ∼sin2(Nc θ/2) would
have the required angular periodicity of 2π/Nc. Then, recalling
that without barriers the excitation energy per particle of
a Bloch state of angular pseudomomentum m reads Km2,
where [6]

K = πh̄2

M

∫
1

r
[ψ0(r)]2dr, (35)

we may realize that our “recoil energy” should be written

ER = K(Nc/2)2. (36)

We have performed numerical simulations for three particle
numbers, N = 80, 103, and 105; given that the corresponding
recoil energies turned out to be 0.743 h̄ωr , 0.740 h̄ωr , and
0.713 h̄ωr , respectively, showing figures that approximate the
harmonic energy quantum h̄ωr , we decided, for the sake of
simplicity, to keep such a value as our energy unit in all cases.
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TABLE I. Level crossings arising from Eq. (31); see text for
explanation.

Nc N N/Nc Vb/h̄ωr Vmin/μ0 μ/μ0 ηcr Vb/h̄ωr [1]

16 80 5 10.4 1.29 1.05 2.17 14.1
103 62.5 15.4 1.39 1.08 2.18 30
105 6250 95.4 1.72 1.25 2.23

8 80 10 4.65 1.11 1.01 2.29 8.2
103 125 10.1 1.23 1.03 2.30 15.2
105 12500 81.4 1.53 1.11 2.32

4 80 20 2.95 1.06 1.00 2.23 5.8
103 250 8.93 1.20 1.01 2.68
105 25000 77.1 1.47 1.05 2.48

We have numerically evaluated the BH parameters through
Eqs. (26)–(29) for the above particle numbers and three
numbers of lattice sites, Nc = 16, 8, and 4. In Table I,
we display our numerical estimates for the level crossings
for the different condensates and a Gaussian barrier width
λb/lr = 0.5. Apart from the dependence of the barrier height
parameter Vb, it is interesting to compare the minimum of the
effective potential barrier dividing two lattice sites Vmin [6],
with the ground-state chemical potential μ. Recall that in
Ref. [6] we have identified the lower bound of the quantum
tunneling regime as Vmin/μ � 1. To scale out the dependence
of the barrier height for different particle numbers, we have
represented Vmin and μ in units of the chemical potential at
zero barrier μ0 for each particle number. Compare also the
numerical estimates for ηcr shown in Table I to those given
by the expression (33), namely ηcr = 2.13, 2.29, and 2.67 for
Nc = 16, 8, and 4, respectively. Here it is worthwhile pointing
out that a similar agreement was found for wider Gaussian
barriers (λb/lr = 1). Finally, the last column of Table I shows
the critical estimate for the barrier height parameter Vb arising
from Eq. (34). The absence of data for filling factors above 125
corresponds to the negative values obtained for the hopping
rate J . Note also that such critical barrier heights turn out to
be always higher than those of the fourth column, as expected.

In Figs. 2 and 3 we depict the standard hopping rate J

(15) computed from Eq. (28), the tunneling parameter N−1
Nc

J ′
(16) computed from Eq. (29), and their sum Jeff , as functions
of the barrier height. Particularly, Fig. 2 shows that while the
interaction component N−1

Nc
J ′ turns out to be almost negligible

for 80 particles and Nc = 16 (filling factor = 5), for fewer
lattice sites it shows a relative increase until becoming of the
same order of the hopping rate J for Nc = 4 (filling factor =
20). The larger filling factors of N = 103 yield an interaction
component that turns out to be always larger than the standard
hopping rate, to such an extent that J eventually becomes
negative for Nc = 4. Note that such a dramatic change of sign
occurs in between fillings of 125 and 250 particles (Table I).
Negative values of J were also predicted by Ananikian et al. for
large atom numbers in a double-well condensate [21]. Finally,
the extremely high fillings of N = 105 yield again a negative
J , as expected, while a sort of saturation in the relative weights
of the interaction component and the negative hopping rate is
observed. This is reflected through the quite similar plots of
Fig. 3, despite the vertical shift for varying Nc, which arises
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c
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FIG. 2. Standard hopping rate J , interaction-driven hopping rate
N−1
Nc

J ′, and effective hopping rate Jeff , as functions of the barrier
height Vb for the condensates of 80 particles (left) and 103 particles
(right). All quantities are given in units of h̄ωr . In panel (c) the
standard hopping rate J turns out to be negative for 103 particles
(right), so we have depicted its absolute value |J |.

from a decrease of the probability of tunneling events as the
number of barriers is lowered.

To conclude this section, we display in Fig. 4 the dimension-
less scaling parameter η = U/(νJeff) versus the barrier height,
for each number of particles and Nc = 16. Notice that quite
similar ranges of η are obtained irrespective of the barrier
height interval, and this behavior repeats for the remaining
values of Nc.

VI. SUMMARY AND CONCLUDING REMARKS

We have analyzed the high-barrier quantum tunneling
regime of a Bose-Einstein condensate confined in a ring-
shaped optical lattice. Representing the orthogonal set of “vor-
tex” Bloch states through a basis of well-localized Wannier-
like functions, we were able to formulate a variant of the
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FIG. 3. Absolute value of the standard hopping rate |J |,
interaction-driven hopping rate N−1

Nc
J ′, and effective hopping rate

Jeff , as functions of the barrier height Vb for the condensate of 105

particles. All quantities are given in units of h̄ωr .

Bose-Hubbard model, adequate for slightly perturbed Bloch
states at any filling factor. In addition to the usual hopping rate
terms, such a Hamiltonian contains interaction-driven tunnel-
ing terms, which are shown to play its most important role
when the standard hopping rate parameter becomes negative
at high filling factors. In fact, by calculating the energy and
atomic current of a Bloch state, we have shown that the stan-
dard hopping rate parameter must be replaced by an effective
hopping rate containing the additional contribution from the
interaction-driven tunneling terms in the BH Hamiltonian. We
remark the importance of such an interaction-driven hopping
rate parameter, since it is shown to preserve the positivity of the
effective hopping rate at high filling factors. A quite similar
behavior for such hopping rates was recently predicted for
large atom numbers in a two-well configuration [21].

We have found that, as the barrier height is increased,
the energies per particle of a Wannier-like state and the

20 40 60 80 100 120

1

10

ω
r

 N=80
 N=103

 N=105

η

V
b
 /

FIG. 4. Dimensionless scaling parameter η = U/(νJeff ) as a
function of the barrier height Vb for Nc = 16 and the condensates
of 80, 103, and 105 particles. The vertical lines correspond to values
in the fourth column of Table I.

condensate ground state exhibit a level crossing, which is
interpreted as a signature of the transition to configurations
with macroscopically occupied states at each lattice site.
It is also shown that the dimensionless scaling parameter,
relevant to the superfluid to Mott-insulator transition, takes
a remarkably simple expression at the level crossing, which
only depends on the number of lattice sites.

Finally, we would like to point out that a future direction
of the present studies will consist of exploring the Boson
Josephson–junction dynamics described by a generalized Nc-
mode GP equation [21,22,32].
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APPENDIX: ALTERNATIVE CALCULATION OF THE BH
MODEL PARAMETERS

An alternative calculation of the BH model parameters
(14)–(17), which avoids changing to a smaller numerical
grid to deal with the tiny regions where the integrands of
the tunneling parameters (15) and (16) are nonvanishing,
proceeds as follows. The method rests on the calculation of the
mean-field energies of the Bloch states Em, which are obtained
by numerically solving the GP equation (3) for the order
parameters ψm [6], in order to evaluate the integral yielding
the energy per particle,

Em =
∫ (

h̄2

2M
|∇ψm|2 + Vtrap |ψm|2 + 1

2
Ng |ψm|4

)
dx dy,

(A1)

where we may distinguish noninteracting and interacting
contributions,

E0
m =

∫ (
h̄2

2M
|∇ψm|2 + Vtrap |ψm|2

)
dx dy, (A2)

and

E int
m =

∫
1

2
Ng |ψm|4dx dy, (A3)
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respectively. In the context of this paper (i.e., for large barrier
heights), the above GP energies (A2)–(A3) must coincide
with those given by the corresponding contributions in (21)
with Jeff replaced from (19). Then, by calculating (A2)–(A3)
for any two Bloch states and equating such results to the
corresponding terms in (21), one can construct a linear system
of four equations from which we may obtain the BH model
parameters (14)–(17). For instance, the simplest choice for
Nc even corresponds to the winding numbers m = 0 and
m = Nc/2, which yields the following set of equations:

E0
0 = ε − νJ, (A4)

E int
0 = (N − 1)

Nc

(U/2 − νJ ′), (A5)

E0
Nc/2 = ε + νJ, (A6)

E int
Nc/2 = (N − 1)

Nc

(U/2 + νJ ′), (A7)

and the solution of such a system is given by the expressions
(26)–(29).

Finally, a similar calculation for Nc odd yields

ε = [
E0

(Nc−1)/2 + E0
0 cos(π/Nc)

]
/[1 + cos(π/Nc)], (A8)

U = 2Nc

N − 1

[
E int

(Nc−1)/2 + E int
0 cos(π/Nc)

]
/[1 + cos(π/Nc)],

(A9)

J = 1

2

[
E0

(Nc−1)/2 − E0
0

]
/[1 + cos(π/Nc)], (A10)

J ′ = Nc

2(N − 1)

[
E int

(Nc−1)/2 − E int
0

]
/[1 + cos(π/Nc)].

(A11)
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