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23 I. INTRODUCTION

24 Since all the fundamental electronic properties including the
25 energy can be expressed as expectation values of one- and two-
26 electron operators, they can be determined from a mathematical
27 object which only depends on the variables of two electrons, the
28 second-order reduced density matrix (2-RDM).5-9 The quest
29 for a method of studying the structure of electronic systems by
30 directly determining the 2-RDM without any use of the wave
31 function dates from the fifties.10-13 A difficulty in this approach is
32 that theN-representability condition,14,15 which collects the con-
33 ditions imposed by theN-fermion antisymmetry properties upon
34 the RDMs, is still not completely known.5-9,16 This problem has
35 greatly hindered the progress on the field. However, in the search
36 for a method of solving the second-order contracted Schr€odinger
37 equation (2-CSE),6-9 a set of approximated construction algo-
38 rithms for the RDMs were recently devised.2,3,17-28 These
39 algorithms jointly with the conditions imposed by the system
40 Hamiltonian and those N-representability conditions which are
41 known, lead to a direct determination of the 2-RDM without a
42 previous computation of the wave function.6-9

43 The 2-CSEwas initially derived in 1976 in first quantization by
44 Cho,29 Cohen and Frishberg,30 and Nakatsuji31 and deduced
45 later on in second quantization by Valdemoro32 through the
46 contraction of the matrix representation of the Schr€odinger
47 equation into the two-electron space. This equation was shown
48 to be equivalent to the Schr€odinger equation (by the necessary
49 and sufficient condition) within the N-representable space of

50RDMs.31 The drawback of this very attractive equation is that it is
51operationally indeterminate.33 This is due to the fact that the
522-CSE depends not only upon the 2-RDM but also upon the 3-
53and 4-RDMs. In 1992 Valdemoro proposed a method to
54approximate the 2-RDM in terms of the 1-RDM,22 which was
55extended in order to approximate the 3- and 4-RDM in terms of
56the lower-order matrices.23 In 1994 Colmenero and Valdemoro17

57applied these approximate constructing algorithms to avoid the
58indeterminacy problem and solved iteratively the 2-CSE. These
59authors reported also in this same paper17 the compact as well as
60the explicit form of the hypervirial of the 2-electron density ope-
61rator (2-HV)17,23,32-36 which they identified with the antiher-
62mitian part of the 2-CSE and used as a mean to assess the accu-
63racy of the results obtained with the 2-CSE. This started a successful
64line of work which has been mainly developed by the groups led by
65Valdemoro, Nakatsuji, and Mazziotti.7,8,18-21,24-28,37-53

66A significant step forward was recently made byMazziotti.54,55

67This author proposed an iterative method54,55 for solving only
68the antihermitian part of the 2-CSE, the 2-HV, which he called
69the antihermitian contracted Schr€odinger equation (ACSE).54

70He applied his methodology to several electronic systems ob-
71taining excellent results.1,27,28,53-61 The main advantages of this
72approach are that the ACSE does not depend on the 4-RDM and
73that the N-representability properties of the 2-RDM are practically
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11 ABSTRACT: Highly accurate descriptions of the correlated
12 electronic structure of atoms and molecules in singlet states
13 have recently been directly obtained within the framework of
14 the G-particle-hole hypervirial (GHV) equation method,
15 without any reference to the wave function. Here, the GHV
16 method is optimized and applied to the direct study of doublet and triplet atomic and molecular states. A new set of spin-
17 representability conditions for triplet states has been derived and is also reported here. The results obtained with this optimized
18 version of the GHV method are compared with those yielded by several standard wave function methods. This analysis shows that
19 the GHV energies are more accurate than those obtained with a single-double excitation configuration interaction as well as with a
20 coupled-cluster singles and doubles treatment. Moreover, the resulting 2-body matrices closely satisfy a set of stringentN- and spin-
21 representability conditions.
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74 preserved during the iterative process. Motivated by this
75 author’s work, some of the authors of this manuscript have
76 recently studied the properties of the hypervirial of the two-
77 body correlation operator or, equivalently, the G-particle-hole
78 hypervirial (GHV) equation.1-4 The particular interest of this
79 approach lies in that satisfying the GHV equation implies that the
80 ACSE is also fulfilled while solving the ACSE does not guarantee
81 that the GHV equation is also satisfied; that is, the GHV equation
82 is a more demanding condition than the ACSE.1,2,4

83 Following the ideas reported by Kutzelnigg for the solution of
84 the hypervirials of density operators34,62,63 and by Mazziotti for
85 the solution of the ACSE,54-56 a very efficient iterative method
86 for solving the GHV equation has been developed.1,3,4 The accu-
87 racy of the results obtained with this method when studying singlet
88 ground- and excited-states with weak to moderate multiconfi-
89 gurational character of a set of atoms andmolecules was excellent
90 compared to the equivalent full configuration interaction (FCI)
91 quantities.1,3,4 The purpose of the current work is to investigate
92 the behavior of the GHV methodology in the study of high-spin
93 doublet and triplet states occurring in a variety of systems. It must
94 be noted that an alternative approach for treating these systems
95 has been reported within the framework of the ACSE.60,61

96 However, this ACSE study of the multiplet states is achieved
97 by spin coupling the open-shell molecules to one or more hydro-
98 gen atoms to form auxiliary singlet composite systems which can
99 be solved by existing ACSE algorithms, and, to our knowledge,
100 the direct approach for calculating multiplet states here reported
101 has not yet been carried out.
102 The paper is organized as follows: In the next section the
103 notation, definitions and general theoretical background of
104 the GHV methodology are given. A set of new theoretical
105 results aiming at optimizing the GHV method accuracy are
106 described in section III. The results obtained in a set of
107 applications of the method are reported in section IV. These
108 calculations show that the correlation energies accounted for
109 lie within 97.6% and 102.1% of the FCI one. It is also found
110 that the calculated two-body matrices describing the correla-
111 tion effects satisfy closely a set of N- and Spin-representability
112 stringent conditions.39,50,64-66 The results are compared with
113 those obtained with traditional wave function methods such as
114 single and double excitation configuration interaction, coupled-
115 cluster singles-doubles, and FCI. Finally, a brief description of the
116 conclusions of this work is given in the last section.

117 II. THEORETICAL OUTLINE

118 A. General Notation. In what follows, we will consider
119 pairwise-interacting systems composed of fixed number of
120 electrons, N, whose Hamiltonian may be written within second
121 quantization formalism67 in the occupation number representa-
122 tion as9

Ĥ ¼ 1
2
∑

p, q, r, s
0Hrs;pqa

†
pa

†
qasar ð1Þ

123 where ap
† and ar are second quantization creation and annihi-

124 lation operators, the indices refer to members of a finite basis
125 set of 2K real orthonormal spin-orbitals, and the second-
126 order matrix 0H collects the 1- and 2-electron integrals over
127 the basis set.

128In this formalism an element of a p-RDM, pD, corresponding
129to a N-electron stateΦ describing the system may be defined as

p!PDi1 i2::ip;j1 j2::jp ¼ ÆΦja†i1a†i2 ::::a†ip ajp :::::aj2aj1 jΦæ

� ÆΦjpΓ̂i1 i2::ip;j1 j2::jp jΦæ ð2Þ
130where PΓ̂ is a p-electron density operator. That is, a p-RDM is the
131expectation value of PΓ̂ in the state Φ considered.
132Through the application of the fermion algebra several differ-
133ent, although equivalent, decompositions of a p-RDM can be
134obtained. Here we focus on the decomposition leading to an
135expression combining matrices whose labels coincide with those
136of the p-RDM being decomposed.1-4,7,25,26,28,38,39,41,43-46,50,52

137Let us consider the decomposition of the 2-RDMwhich provides
138the simplest example:

2!2Dij;kl ¼ 1Di;k
1Dj;l - δj, k

1Di;l þ 2Cij;kl ð3Þ
139Thematrix 2C is the second-order correlationmatrix.25,26,38,39,41,46,52

140This matrix, which describes two-body correlation effects in the
141state Φ, is defined as

2Cij;kl ¼ ∑
Φ0 6¼Φ

ÆΦja†i akjΦ0æÆΦ0ja†j aljΦæ

� ÆΦja†i akP̂a†j aljΦæ ð4Þ
142where P̂ is the projection operator upon the complementary
143space to |ΦæÆΦ|.When the elements of the 2Cmatrix are ordered
144in such a way that the resulting matrix is a Hermitian, one has the
145well-known G-particle-hole matrix.15,68 Thus

2Cij;kl � 2Gik;lj � ÆΦj2Ĝik;lj jΦæ ð5Þ
146where 2Ĝ is the G-particle-hole operator. Both the correlation
147andG-particle-holematrices play relevant roles in RDMs theory
148and GHV methodology.1,25,26,35,36,38,39,44-46,50,52,65

149B. Form of the Hypervirial Equation for the G-Particle-
150Hole Operator. The GHV methodology is centered on the
151solution of the G-particle-hole hypervirial equation, whose
152compact form is1-4

ÆΦj½2 Ĝim;lj , Ĥ�jΦæ ¼ 0, ", i, j, l, m ð6Þ
153154When developed, this equation is a hierarchy equation, which
155depends not only on 2-electron matrices—such as the 2-RDMor
156the 2C—but on the 3-RDM or the third-order correlation matrix
157

(3;2,1)C whose elements are defined as

ð3;2;1ÞCtvj;rsl ¼ ÆΦja†t a†v asarP̂a†j aljΦæ ð7Þ
158The explicit form of the G-particle-hole hypervirial equation in
159term of these third-order correlation matrix elements is1

∑
t, v, r, s

0Hrs;tv
ð3;2;1ÞCtvj;rsl

1Di;m - ∑
t, v, r, s

0Hrs;tv
ð3;2;1ÞCtvm;rsi

1Dj;l

þ 2 ∑
t, v, r

0Hjr;tv
ð3;2;1ÞClrm;tvi þ 2 ∑

t, v, r
0Hvr;tl

ð3;2;1ÞCvrm;jti

þ 2 ∑
t, v, r

ð3;2;1ÞCtvj;mrl þ 2 ∑
t, v, r

0Hvr;tm
ð3;2;1ÞCitj;vrl ¼ 0 ð8Þ

160Because of the symmetry properties which interrelate the ele-
161ments of the third-order cumulant matrix,24,69 3Δ, it is simpler
162and hence more convenient to express relation 8 in terms of
163this matrix.1,3 To this aim, in our present version of the
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164 computational code, the (3;2,1)C elements are replaced by the
165 following expression:1,3,4

ð3;2;1ÞCtvj;rsl ¼ 21Dt;l
1Dv;s

1Dj;r -
1Dt;l

1Dv;r
1Dj;s -

1Dt;s
1Dv;l

1Dj;r

- 21Dt;l
1Dv;sδj;r þ 1Dt;lδv;r

1Dj;s þ 1Dt;s
1Dv;lδj;r

- 1Dt;lδv;s
1Dj;r þ 1Dt;l

1Dv;rδj;s

þ1Dt;lδv;sδj;r -
1Dt;rδv;rδj;s

þ1Dt;r
2Cvj;sl þ 1Dv;s

2Ctj;rl -
1Dj;s

2Ctv;rl

- 1Dv;l
2Ctj;rs -

1Dt;s
2Cvj;rl -

1Dv;r
2Ctj;sl

þ1Dt;l
2Cvj;rs þ 1Dj;r

2Ctv;sl

- δj;r
2Ctv;sl þ δj;s

2Ctv;rl þ 3Δtvj;rsl ð9Þ

166
167 The next question—to construct the third-order cumulant
168 matrix in terms of the second-order one—is analyzed in the
169 following section.
170 C. Solution of the G-Particle-Hole Hypervirial Equation.
171 A very efficient procedure for solving the GHV equation has been
172 developed.1,3,4 This approach, whose general lines follow the
173 exponential formulation of successive unitary transformations of
174 trial functions (or RDMs) aiming at enforcing the vanishing of
175 the hypervirials of p-electron density operators proposed by
176 Kutzelnigg in refs 34, 62, and 63 and the continuous formulation
177 for solving theACSEproposed byMazziotti in ref 54, is based on the
178 stationary condition of the eigenstates of the Hamiltonian against
179 unitary transformations. Thus, eq 6 implies a relation linking RDMs
180 and correlation matrices. It is fulfilled for the exact eigenstates of the
181 Hamiltonian.1 But, for approximatematrices, its lhs does not vanish.
182 It provides ameasure of the deviations from those associatedwith an
183 eigenstate of the Hamiltonian and gives the error of the approxima-
184 tion. The error diminishes as the matrices approach those of an
185 eigenstate. A unitary operator modifies either the wave functionΦ
186 and the elements of the RDMs or, alternatively, since the G-
187 particle-hole operator is related toΦ, the commutator of 2Ĝ and
188 Ĥ. Such a unitary operator can be written as eλB̂ provided that B̂ is
189 antihermitian. The real parameter λ expresses the extent of the
190 transformation. The transformation operator becomes an identity as
191 the B̂ operator or the λ-parameter vanish.
192 The 2-electron density operator transforms as

2
Γ̂0
ij;kl ¼ eλB̂

2
Γ̂0
ij;kl e

-λB̂

193 whereas the transformation of theG-particle-hole operator is of
194 the form

2Ĝ0
im;lj ¼ eλB̂2Ĝil;mje

-λB̂

195
196 The 2-RDM and the G-particle-hole matrix elements are
197 transformed accordingly. The first-order variation of any of their
198 elements

d2Dim;lj

dλ
¼ ÆΨj½B̂, 2Γ̂ ij;kl �jΨæλ ð10Þ

d2Gim;lj

dλ
¼ ÆΨj½B̂, 2Ĝim;lj �jΨæλ ð11Þ

199 is the expectation value of the commutator of the corresponding
200 operator with B̂.
201 Now the problem is 2-fold: Propose an adequate antihermitian B̂
202 operator andfindanumerical solution to thedifferential equation11.

203Here, the B̂ operator has been chosen in a way similar to that used
204by Mazziotti54 for solving the ACSE. Both, Mazziotti’s and the
205relation here proposed, can be traced back at least to the work of
206Kutzelnigg34 in 1979. In that paper, the author makes use of a
207Newton-Raphson-type method to generate a transformation
208leading to the vanishing of the hypervirials of the density
209operators.

B̂ ¼ ∑
p, q, r, s

Bpr;sq
2Ĝpr;sq ð12Þ

210where the coefficients

Bpr;sq ¼ ÆΨj2Ĝpr;sq , ĤjΨæ ð13Þ
211In that way the B̂ operator is antihermitian by construction.
212The coefficients Bpr;sq become smaller as residual in GHV equa-
213tion, the lhs of eq 6, vanishes, and the unitary transformation
214eλB̂ becomes an identity one.
215As has been discussed,1 this exponent of the transformation
216operator can be considered to represent an effective or mean
217G-particle-hole hypervirial operator since it includes an opera-
218tional trace over one electron variable. This approximation con-
219stitutes a very powerful operative procedure which renders
220feasible the calculations in terms only of 3-order and lower-order
221matrices while preserving the essence of the theory and causing
222the enforcement of the GHV stationary condition.
223Although the B̂ operator has been calculated in the form
224described above, in order to take advantage of the antisymmetry
225properties under permutation of indices of the RDMs, eq 10 has
226been preferred over eq 11 for the numerical solution. At this
227point, it must be noted that Mazziotti’s continuous formulation
228proposed in ref 54 differs from the one reported here, as it uses a
229different algorithm than the one given by eqs 12 and 13.
230For the integration of the differential equation eq 10 an adaptive
231variable step method due to Fehlberg70 has been used.3 The
232integration of the differential equation is carried out until either
233the least-squares error of the GHV equation, or the least-squares
234error of its contraction into the 1-electron space, the first-order
235contracted Schr€odinger equation,32,38 ceases to decrease.1,3

236The computational efficiency of the GHV method has recently
237been significantly enhanced through the use of sum factorization
238and matrix-matrix multiplication at computational costs of K6 in
239floating point operations andK4 in storage, whereK is the number
240of orbitals forming the basis set.3 For the sake of com-
241parison, MP2, CCSD, and CCSD(T) methods scale in floating
242point operations asK5,K6, andK7, respectively. At present, solving
243the GHV equations is slower than solving the CCSD ones because
244the present CCSD codes only compute excitations from a single-
245reference wave function which lowers the computational cost.

246III. NEW THEORETICAL RESULTS AND SPIN-REPRESEN-
247TABILITY CONDITIONS

248Recently we have realized that the performance of the con-
249struction algorithms for the third-order cumulants, 3Δ, used pre-
250viously for studying singlet states was not sufficiently accurate
251for doublet and triplet states. This motivated our search for an
252improved version of these algorithms which would prove ade-
253quate in the treatment of high spin-multiplicity states. This set of
254new constructing algorithms is reported here. Another new
255theoretical result presented in this section concerns the explicit
256expression of the spin-representability conditions that aG-particle-
257hole matrix corresponding to a triplet state must satisfy.
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258 A. Constructing Algorithms Suitable for Multiplet States.
259 There are several suitable approaches for constructing the third-
260 order cumulant matrices, 3Δ, in terms of the second-order
261 ones3,18,23,25-27 when the electronic state has weak to moderate
262 multiconfigurational character and is well approximated by a single
263 Slater determinant. Here we report a new algorithm for approx-
264 imating 3Δ when treating high-spin doublet and triplet states. This
265 new algorithm is a modified version of the Nakatasuji-Yasuda one18

266 and is here denoted as m-NY. It has the following form:

3Δ
ijk;pqr

� Â ∑
t

2Δ
ik;pt

ð1Dð�Þ
t;t -

1Dð�Þ
t;t Þ2Δjt;qr

þ Â 0∑
t

2Δij;pt ð1Dð�Þ
t;t -

1Dð�Þ
t;t Þ2Δtk;qr

3Δ
ijk;pqr

� Â ∑
t

2Δij;tqð1Dð�Þ
t;t -

1Dð�Þ
t;t Þ2Δtk;pr

þ Â 0∑
t

2Δ
jk;tq

ð1Dð�Þ
t;t -

1Dð�Þ
t;t Þ2Δit;pr ð14Þ

267 where the bar over an index indicates that the spin-orbital has a β
268 spin, Â and Â0 are antisymmetrizer operators, 1D(*) and 1Dh(*)

269 are the 1-RDM and the first-order hole RDM (1-HRDM)14

270 corresponding to a Hartree-Fock reference calculation, and 2Δ is
271 the second-order cumulant matrix,24,69 which is related to the
272 second-order correlation matrix as follows:25

2Δij;kl ¼ -Dj, k
1Di;l þ 2Cij;kl ð15Þ

273 The remaining elements of 3Δ are set to zero.
274 B. TheG-Particle-HoleMatrix Spin-Representability Con-
275 ditions. The G-particle-hole matrix corresponding to a state
276 with a given S and Sz spin quantum-numbers can be decom-
277 posed52,65 in terms of different spin components, ðS0;Sz0Þ2G, result-
278 ing from the splitting of the P̂ operator in eq 4. These spin-
279 componentmatrices have to be positive, and in some cases negative,
280 semidefinite.65 It is important to realize that the well-known N-
281 representability condition, which imposes that 2G g 0,15 does not
282 necessarily imply that the necessary properties of the spin-compo-
283 nents of the G-particle-hole matrix are satisfied.65 In other words,
284 the constraints imposed on the separate spin-components are far
285 more demanding than those imposed on the whole matrix.
286 a. A New Set of Necessary Spin-Representability Conditions
287 for Triplet States. From the relations reported in refs52 and,65 we
288 have derived the following necessary conditions linking the differ-
289 ent spin-components of the G-particle-hole matrix when the
290 state is a triplet with Sz = 1

ð2;2Þ
2G

il;mj
¼ 2G

il;mj ð16aÞ

ð2;0Þ
2G

il;mj
¼ 1

6
2Gil;mj ð16bÞ

ð1;1Þ
2Gil;mj ¼ -

1
4ð2;2Þ

2Gil;mj þ 1Di;l
1Dj;m - 1Di;mδj;l - 2!2Dij;lm

ð16cÞ

ð1;1Þ
2Gil;mj ¼ þ 1

4ð2;2Þ
2Gil;mj - ð2;2Þ

2Gjl;mi þ 1Di;l
1Dj;m ð16dÞ

ð1;1Þ
2G

il;mj
¼ þ 1

4ð2;2Þ
2Gil;mj - ð2;2Þ

2G
im;lj

þ 1D
i;l
1Dj;m ð16eÞ

ð1;1Þ
2G

il;mj
¼ -

1
4ð2;2Þ

2Gil;mj þ 1D
i;l
1Dj;m - 1Di;mδj;l - 2!2D

ij;lm

ð16fÞ

ð1;0Þ
2G

il;mj
¼ 1

2
ðð1;1Þ2Gil;mj - ð1;1Þ

2Gil;mj - ð1;1Þ
2G

il;mj
þ ð1;1Þ

2G
il;mj

Þ

þ 1
2
ð1Di;l -

1D
i;l
Þð1Dj;m - 1Dj;mÞ ð16gÞ

291and

ð0;0Þ
2G

il;mj
¼ 2G

il;mj
- ð1;0Þ

2G
il;mj

- ð2;0Þ
2G

il;mj ð16hÞ

292
293All the spin-components can be obtained in terms of the
294G-particle-hole matrix spin-blocks. The resulting spin-repre-
295sentability conditions which these components must satisfy are:

ð1;1Þ
2G g 0 ð1;0Þ

2GRβ;Rβ g 0 ð2;2Þ
2GβR;βR g 0 ð0;0Þ

2GRβ;Rβ g 0

ð17Þ

b. The Spin-Representability Conditions Taken into Account
in the Calculations Here Reported. The conditions that the

296spin-components of the G-particle-hole matrix have to fulfill in
297the doublet case have been already described and analyzed66 in
298detail. This previously published set of conditions, which for
299brevity are not recalled here, are applied in the calculations
300reported in the following section.
301The new triplet spin-representability conditions collected in
302eq 17 jointly with the doublet ones just mentioned constitute an
303essential set of very stringent spin-representability conditions
304aimed at testing (but not constraining) the resulting G-particle-
305hole matrices calculated with the GHV methodology.

Table 1. Energy Errors, in Units of Eh, of Various High-Spin Doublet Ground States from GHVMethodology (m-NY Algorithm)
Compared with Those from Several Standard ab Initio Methodsa

system state ROHF SDCI CCSD CCSD(T) GHV FCI

B 2S 1.277� 10-2 5.000� 10-8 5.000� 10-8 5.000� 10-8 -1.100� 10-6 -24.1143052

Cþ 2S 1.250� 10-2 5.000� 10-8 5.000� 10-8 5.000� 10-8 -1.200� 10-6 -36.5565514

N2þ 2S 1.237� 10-2 5.000� 10-8 5.000� 10-8 5.000� 10-8 2.500� 10-6 -51.6147425

OH 2Π 1.010� 10-1 3.494� 10-3 8.743� 10-4 3.157� 10-4 2.423� 10-4 -75.4628553

NH2
2B1 1.050� 10-1 4.395� 10-3 1.276� 10-3 3.636� 10-4 6.196� 10-4 -55.6351826

CH3
2A2

0 0 9.925 � 10-2 4.310� 10-3 1.359� 10-3 3.146� 10-4 8.675� 10-4 -39.6426085

CH 2Π 6.740� 10-2 2.480� 10-3 1.078� 10-3 3.002� 10-4 7.682� 10-4 -38.3175616

NO 2Π 2.386� 10-1 1.997� 10-2 7.844� 10-3 2.214� 10-3 -5.020� 10-3 -129.407249b

a Errors are measured relative to FCI. b Frozen core approximation: The two lowest doubly occupied molecular orbitals frozen.
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306 IV. RESULTS

307 The GHV methodology has been used for the study of the
308 electronic structure of several atoms and simple molecules in
309 both neutral and ionic forms, including B, Bþ, Cþ, C2þ, N2þ,
310 N3þ, O, OH, NH2, CH3, CH, NO, NH, CH2, B2, and O2. Only
311 the lowest lying doublet- or triplet-states of a given symmetry
312 have been studied. In all cases, the studied state is the leading
313 member of the multiplet, Sz = S, which generally has the weakest
314 multiconfigurational character. In that way, the state is well
315 approximated by a single Slater determinant and the algorithms
316 for the construction of higher-order matrices perform well. The
317 one-electron basis sets for the B, C, and N atoms have been
318 double-ζ quality s-type GTOs proposed by Huzinaga and
319 Dunning.71,72 The calculations on the O atom and on the mole-
320 cular systems OH, NH2, CH3, CH, NO, NH, CH2, B2, and O2

321have been performed under the standard 6-31G basis set. The
322geometries of the molecular systems are the experimental ones.73

323The PSI3 program74 has been used to calculate the integrals
324matrix 0H, the orthonormal MOs, and the initial values of all the
325matrices required for the iterative GHV process.
326A previous ROHF calculation provides the starting point for
327the iterative solution of the GHV equation. For the sake of
328comparison other usual ab initio calculations have been done for
329the states considered. The reported figures include ROHF,
330SDCI, CCSD, CCSD(T), and FCI in addition to the GHV
331results. To render FCI calculation on the largest systems NO and
332O2 feasible, it has been performed within a frozen core approx-
333imation, where the inner core spin-orbitals have been assumed
334to be fully “occupied” in every configuration. Tables 1 T1and 2
335present the energy results for doublet and T2for triplet states,
336respectively. The calculations show that the correlation energies
337which are accounted for within the GHVmethodology lie within

Table 2. Energy Errors, in Units of Eh, of Various High-Spin Triplet Ground States from GHV Methodology (m-NY Algorithm)
Compared with Those from Several Standard ab Initio Methodsa

system state ROHF SDCI CCSD CCSD(T) GHV FCI

Bþ 3S 1.299� 10-2 5.000� 10-8 5.000� 10-8 5.000� 10-8 -3.000� 10-7 -23.6053196

C2þ 3S 1.279� 10-2 5.000� 10-8 5.000� 10-8 5.000� 10-8 2.000� 10-7 -35.3043096

N3þ 3S 1.268 � 10-2 5.000� 10-8 5.000� 10-8 5.000� 10-8 1.200� 10-6 -49.3628128

O 3P 6.117� 10-2 1.256� 10-3 4.449� 10-4 9.380� 10-5 5.490� 10-5 -74.8394081

NH 3Σ- 7.464� 10-2 1.932� 10-3 6.558� 10-4 2.142� 10-4 3.616� 10-4 -55.0130005

CH2
3B1 7.484� 10-2 2.249� 10-3 8.813� 10-4 2.611� 10-4 7.258� 10-4 -38.9811685

B2
3Σg

- 1.631� 10-1 1.952� 10-2 1.338� 10-2 2.846� 10-3 3.983� 10-3 -49.2211366

O2
3Σg

- 2.588� 10-1 1.252� 10-2 7.235� 10-3 3.106� 10-4 -4.607� 10-3 -149.7867936b

a Errors are measured relative to FCI. b Frozen core approximation: The two lowest doubly occupied molecular orbitals frozen.

Table 3. Root-Mean-Square Deviations on Various Quanti-
ties Obtained via GHVMethodology (m-NY Algorithm) from
their Exact (FCI) Counterparts for High-Spin Doublet
Ground States

system state 1-HV 1-CSE 2-HV 2-GHV

B 2S 3.178� 10-6 1.999� 10-6 3.373� 10-5 4.409� 10-5

Cþ 2S 5.064 � 10-6 3.125� 10-6 4.194� 10-5 5.480� 10-5

N2þ 2S 2.399� 10-6 1.493� 10-6 3.745� 10-5 4.895� 10-5

OH 2Π 1.218� 10-4 6.246� 10-4 1.146� 10-4 1.740� 10-4

NH2
2B1 5.495� 10-5 4.899� 10-4 8.806� 10-5 1.297� 10-4

CH3
2A2

0 0 4.396� 10-5 3.252� 10-4 6.431� 10-5 9.303� 10-5

CH 2Π 7.096� 10-5 5.561� 10-4 1.019� 10-4 1.561� 10-4

NO 2Π 1.604� 10-4 2.597� 10-3 1.212� 10-4 2.291� 10-4

Table 5. ÆN̂ræ, ÆN̂βæ, ÆŜ̂zæ and ÆŜ2æ Calculated for the 2-RDM
by the GHV Methodology (m-NY Algorithm) for High-Spin
Doublet Ground States

system state ÆN̂Ræ ÆN̂̂βæ ÆŜzæ ÆŜ2æ

B 2S 3.000 000 2.000 000 0.500 000 0.750 000

Cþ 2S 3.000 000 2.000 000 0.500 000 0.750 000

N2þ 2S 3.000 000 2.000 000 0.500 000 0.750 000

OH 2Π 5.000 075 4.000 023 0.500 026 0.750 350

NH2
2B1 5.000 091 4.000 025 0.500 032 0.750 530

CH3
2A2

0 0 5.000 077 4.000 018 0.500 029 0.750 790

CH 2Π 4.000 063 3.000 032 0.500 016 0.750 270

NO 2Π 8.000 291 7.000 496 0.499 898 0.750 539

Table 4. RootMean SquareDeviations on VariousQuantities
Obtained via GHV Methodology (m-NY Algorithm) from
Their Exact (FCI) Counterparts for High-Spin Triplet
Ground States

system state 1-HV 1-CSE 2-HV 2-GHV

Bþ 3S 5.750� 10-8 9.948� 10-7 1.299� 10-7 3.973� 10-7

C2þ 3S 2.624� 10-8 6.382� 10-7 7.902� 10-8 2.528� 10-7

N3þ 3S 8.563� 10-8 4.530� 10-7 5.737� 10-8 1.800� 10-7

O 3P 1.830� 10-4 7.290� 10-4 1.621� 10-4 2.503� 10-4

NH 3Σ- 7.267� 10-5 6.579� 10-4 1.365� 10-4 2.026� 10-4

CH2
3B1 5.092� 10-5 4.668� 10-4 9.714� 10-5 1.414� 10-4

B2
3Σg

- 1.247� 10-4 4.350� 10-3 1.551� 10-4 3.154� 10-4

O2
3Σg

- 1.650� 10-4 4.044� 10-3 1.949� 10-4 4.510� 10-4

Table 6. ÆN̂ræ, ÆN̂βæ, ÆŜzæ and ÆŜ2æ Calculated for the 2-RDM
by the GHV Methodology (m-NY Algorithm) for High-Spin
Triplet Ground States

system state ÆN̂Ræ ÆN̂βæ ÆŜzæ ÆŜ2æ

Bþ 3S 3.000 000 1.000 000 1.000 000 2.000 000

C2þ 3S 3.000 000 1.000 000 1.000 000 2.000 000

N3þ 3S 3.000 000 1.000 000 1.000 000 2.000 000

O 3P 5.000 075 3.000 002 1.000 036 2.000 198

NH 3Σ- 5.000 113 3.000 007 1.000 053 2.001 126

CH2
3B1 5.000 114 3.000 001 1.000 053 2.001 656

B2
3Σg

- 6.002 079 4.000 863 1.000 608 2.007 229

O2
3Σg

- 9.000 135 7.000 825 0.999 655 2.003 115
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338 97.6% and 102.1% of the FCI one. Since the GHV methodology
339 is not a variational one, it may happen that a particular result falls
340 slightly below the FCI value; in fact, this is generally due to a
341 slightN- or spin-representability defect of the 2-RDMor 3-RDM.
342 Indeed, theGHVmethodology is dependent on the approximation
343 used when evaluating the higher-order matrices in terms of the
344 lower-order ones. That is why, in the study of states other than
345 singlet states, it was proven necessary, after a detailed analysis,
346 that the new 3Δ approximation algorithm, eq 14, had to be used.
347 Upon convergence, the GHV equation provides excellent
348 results for the energies of the atoms in neutral and ionic form.
349 It must be noted that since only s-type basis sets are used for B, C
350 and N atoms, doublet states of the five-electron atoms are not the
351 ground 2P state but the excited 2S states. For the same reason the
352 triplet states of the four-electron atoms are of the 3S symmetry
353 rather than the 3P. Computationally, as a benchmark for the
354 methodology, such S states are easier to calculate than the P
355 states. The larger systems energies obtained with the GVH, the
356 CCSD and CCSD(T) methods when compared with the FCI
357 ones are in most cases very accurate and clearly much better than
358 the values obtained with the SDCI treatment. Both the CCSD-
359 (T) and GHV yield better results than the CCSD method. The
360 accuracy of the CCSD(T) and GHV results is of the same order,
361 although the CCSD(T)0s errors are in general somewhat lower
362 than the GHV ones. The most unfavorable cases are the triplet
363 O2 and the doublet NO where the GHV error is slightly negative
364 due to deviation from N- and S-representability of the 2-RDM
365 and G-matrix spin-components. These results clearly establish
366 that the iterative solution of the GHV equation is as highly
367 reliable in the study of doublet and triplet states as it has proven
368 to be in the closed-shell singlet case.
369 In order to further assess the accuracy of the results obtained
370 via the solution of the GHV equation, various quantities in
371 addition to the energy have been calculated. Tables 3T3 and 4

372collect the root-mean-square deviations of the first-order T4density
373hypervirial (1-HV), the first-order CSE (1-CSE), the second-
374order density hypervirial (2-HV) and the second-order correla-
375tion hypervirial, or, equivalently, the second-order G-particle-
376hole hypervirial (2-GHV) matrices from their exact counterpart.
377These deviations are reliable measures of the calculations accuracy.
378Here again, the smaller the system the better the results. The largest
379deviations which have been found for the 1-CSE are due to the fact
380that the approximation of the higher order matrices, although very
381accurate, is not an exact one. The quantities which measure the
382deviations of the resulting one- and two-body matrices from theN-
383and Spin-representability have also been calculated. These quantities
384are reported in Tables 5 T5, 6, 7 and 8. The expectation values of the
385numbers of R and β spin electrons, T6ÆN̂Ræ and ÆN̂βæ, and those of
386the operators Ŝz and Ŝ2, ÆŜzæ and ÆŜ2æ, are T7summarized in
387Tables 7 and 8 for the doublet and triplet states, T8respectively. These
388quantities are correct for atoms and slightly deviate from the exact
389values for molecules, although the present approximate decoupling
390technique does not include any restrictive conditions for the number
391of the electrons and spins. The D and Q N-representability condi-
392tions8,9,15 and the G Spin-representability conditions indicate that the
3932-RDM, the 2-HRDM, and the different spin-components of the
394G-particle-hole matrix must be Hermitian and positive semidefinite.
395The lowest eigenvalues of these matrices provide a measure of the
396fulfillment of those conditions. The relevant eigenvalues are collected
397in Tables 7 and 8 for the doublet and triplets, respectively. In general
398the deviations from thepositivity of thematrices involved is very small.
399The only slightly poor results appear in the ð0;0Þ2G of theNH,CH2, B2,
400andO2 triplet states. It should be pointed out that these latter results
401could easily be optimized by carrying out a N- and Spin-
402representability purification of the 2-RDM.48,50,52,65,66 Although
403we do not report it here, the consistency of the contraction
404into the 1-body space of the 2-RDM, the 2-HRDM and the
405G-particle-hole matrix has also been verified.

Table 7. N- and Spin-Representability Deviations of Two-Body Matrices Obtained via GHVMethodology (m-NY Algorithm) for
High-Spin Doublet Ground States

system state 2-RDM 2-HRDM ð12;12Þ
2G ð12;�1

2Þ
2G ð32;32Þ

2G

B 2S -8.857� 10-10 -1.964� 10-9 -1.079� 10-8 -5.629� 10-10 -2.692� 10-9

Cþ 2S -3.256 � 10-10 -7.811� 10-10 -9.364� 10-10 -1.144� 10-10 -7.474� 10-10

N2þ 2S -1.800� 10-10 -4.556� 10-10 -6.416 � 10-10 -7.117� 10-11 -9.220� 10-11

OH 2Π -5.639� 10-6 -2.575� 10-5 -7.765� 10-4 -4.173 � 10-4 -1.363� 10-6

NH2
2B1 -7.951� 10-6 -8.923� 10-6 -9.267� 10-4 -4.423� 10-4 -7.241 � 10-7

CH3
2A2

0 0 -4.377� 10-6 -6.308 � 10-6 -1.837� 10-3 -7.247� 10-4 -8.470� 10-7

CH 2Π -7.096� 10-5 -1.020 � 10-5 -6.133� 10-4 -2.425� 10-4 -3.327� 10-5

NO 2Π -1.325� 10-3 -9.998 � 10-4 -2.937� 10-3 -9.150� 10-5 -2.342� 10-4

Table 8. N- and Spin-Representability Deviations of Two-Body Matrices Obtained via GHVMethodology (m-NY Algorithm) for
High-Spin Triplet Ground States

system state 2-RDM 2-HRDM ð0;0Þ2G ð1;0Þ2G ð1;1Þ2G ð2;2Þ2G

Bþ 3S -1.941 � 10-9 -1.811� 10-9 -3.356� 10-8 -3.000� 10-10 -2.271� 10-9 -1.728 � 10-9

C2þ 3S -9.367� 10-10 -6.905� 10-10 -2.440� 10-8 -1.202� 10-10 -9.331� 10-10 -7.646 � 10-10

N3þ 3S -6.538� 10-10 -6.223� 10-10 -1.620� 10-7 -5.147� 10-11 -6.882� 10-10 -5.910 � 10-10

O 3P -5.925� 10-5 -3.213� 10-5 -9.385� 10-3 -7.926 � 10-5 -2.093� 10-4 -2.141� 10-6

NH 3Σ- -8.738� 10-5 -4.507� 10-5 -2.464� 10-2 -1.107 � 10-3 -1.657� 10-3 -3.120� 10-6

CH2
3B1 -8.322� 10-5 -6.195� 10-5 -3.128� 10-2 -9.312 � 10-4 -1.484� 10-3 -1.047� 10-6

B2
3Σg

- -2.039� 10-3 -4.067 � 10-3 -2.634� 10-2 -1.940� 10-3 -5.237� 10-3 -2.332� 10-3

O2
3Σg

- -2.322� 10-3 -2.992� 10-3 -3.252� 10-2 -1.573� 10-3 -5.220 � 10-3 -4.784� 10-6
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406 V. CONCLUDING REMARKS

407 The RDMs of a variety of atoms and molecules in doublet and
408 triplet states have been successfully calculated in a direct way by a
409 theoretically and computationally extended version of the GHV
410 methodology and without any use of the wave function. Gen-
411 erally speaking, the quality of the solutions for the studied sys-
412 tems in high-spin doublet and triplet states are similar to those
413 previously reported for systems in singlet states.1,3,4 As seen from
414 the Results, the present method and the solution algorithm,
415 although very good, are not yet complete, and there is need for
416 some future improvement. Nonetheless, the results presented
417 here constitute a landmark within the GHV approach in theore-
418 tical chemistry as they are its first direct application to doublet
419 and triplet states.
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