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In recent years much has been learned about how a
single computational processing step is implemented
in the brain. By contrast, we still have surprisingly little
knowledge of the neuronal mechanisms by which mul-
tiple such operations are sequentially assembled into
mental algorithms. We outline a theory of how individ-
ual neural processing steps might be combined into
serial programs. We propose a hybrid neuronal device:
each step involves massively parallel computation that
feeds a slow and serial production system. Production
selection is mediated by a system of competing accu-
mulator neurons that extends the role of these neurons
beyond the selection of a motor action. Productions
change the state of sensory and mnemonic neurons
and iteration of such cycles provides a basis for mental
programs.

The Turing Machine metaphor of the brain
In their quest for a universal computing machine (see
Glossary), the founders of modern computer science cir-
cumstantially inquired about the organization of human
cognition [1–3]. Indeed, Alan Turing’s classical paper intro-
duces the Turing machine as a metaphor of ‘a man in the
process of computing a real number’ and whose ‘human
memory is necessarily limited’ ([2], p. 231). One source of
inspiration for Turing’s device was the observation of his
own conscious thought. In the present paper we propose
that, although many aspects of nonconscious cerebral pro-
cessing seem opposite to serial computers, Turing
machines remain adequate models of the conscious brain,
and raise important novel issues for neuroscience.

Initially, the program launched by Turing had a major
influence in cognitive psychology and philosophy that used
the computer metaphor to model brain function. Among
neuroscientists, however, this metaphor quickly fell into
disrepute because it neglected aspects of the architecture
of the brain that do not resemble those of a classical Turing

device [4]. First, with a hundred billion processors, the
architecture of the brain supports massive parallel proces-
sing [5]. Second, individual neurons exhibit complex and
gradual behavior unlike the digital circuits of a Turing
machine, and populations of cells can operate with entire
probability distributions [6]. Third, the brain is an evolved
learning system whose architecture adapts at multiple
timescales [7].

Despite these profound differences in architecture, the
human brain can be surprisingly slow and serial in execut-
ing certain tasks (Box 1). Hence, although many aspects of
the brain do not resemble a Turing machine, an emergent
aspect of cognition, the conscious rational thought that was
at the root of Turing’s insight, seems to act as a serial
Turing machine. Previous work has used notions of Turing
devices to map macroscopic brain states (derived from
quantitative dynamic noninvasive human imaging mea-
sures) to information processing theory [8–10]. Here we
investigate which neural architectures could implement a
Brain Turing Machine.

The architecture of mental programs
The Turing notion that computational power derives from
the sequential execution of relatively simple computational
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Glossary

ACT-R: cognitive architecture based on the parallel matching/serial firing of

production rules. The condition part of the production refers to the content of

specific memory buffers. These buffers interact with different modules

(declarative memory, perceptual, motor, goal and imaginal). ACT-R has been

used to model human behavior in a wide variety of tasks from children’s

learning of algebra to air traffic control. More recently, it has been used to

make predictions about the blood-oxygen-level dependent response in human

functional magnetic resonance imaging experiments.

Global Neuronal Workspace model (GNW): cognitive model according to

which conscious access occurs when incoming information is made globally

available to multiple brain systems through a network of neurons with long-

range axons densely distributed in prefrontal, parietotemporal and cingulate

cortices.

Production: rule consisting of a condition and an action.

Universal computing machine: computational machine that can simulate any

other computational machine acting on arbitrary input.
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steps has inspired influential theories of cognitive architec-
ture such as SOAR [11], ACT-R [12] and EPIC [13] that rely
on the concept of ‘productions’ to factorize complex cognitive
tasks into a discrete sequence of operations. A production is
essentially equivalent to the action performed by a Turing
machine ina single step [14]: it examines if a given condition
is verified in the currentmemory state and, if the production
is selected,modifies the stateof thememory.The selection of
productions is determined by the contents of working mem-
ory, which plays the role of the tape in the Turing machine,
and which is in turn altered by the productions themselves.
Iteration of the cycle of production selection and action
constitutes the basis of Turing-like programs.

Classes of neurons of the Brain Turing Machine
At present, only a handful of neurophysiological studies
have investigated how information is transferred between
successive operations [15–17] providing plausible experi-
mental benchmarks to investigate the assemblage of neural
operations into programs. Our goal is to narrow the gap
between psychological theories of mental programs and
neurophysiological research by proposing a tentative hy-
pothesis as to how a serial multistep computation can be
carried out by massively parallel brain circuits. Here we
review three classes of neurons which, based on their tem-
poral profiles, could play key roles in the constitution of
mental programs.

Single decision making by evidence accumulation

Decisions based on noisy information can be improved by
accumulating evidence over time [18]. Integration of evi-
dence has been observed in cortical neurons, mostly in the
parietal and prefrontal cortex, matching predictions of
diffusion/race models [19,20]. Imaging studies in human
subjects show that, in a perceptual categorization task,
activity in category-related areas increases gradually with
sensory evidence [21]. Some authors have suggested that
accumulators might also activate circuits that are not
directly involved in motor actions [22–24]. Shadlen and
Gold [25] showed that monkeys can learn a random-dot
motion discrimination task even when the specific motor

response that needs to be given is unknown at the moment
of the decision; their finding indicates that neurons could
accumulate evidence towards a memory state predictive of
future actions, not merely an action itself.

Phasic winner-take-all ignition events that map

continuous integration into a discrete decision

Converting the analog decision variable computed by evi-
dence accumulation neurons into a single discrete action or
procedure requires a highly nonlinear operation. Parts of
the basal ganglia sensitive to both reward and movement
have been proposed as possible substrates for this opera-
tion [26]. Alternatively, the evidence accumulation neu-
rons and the action cells (that signal the selection of a
production) might be found in the same brain areas and
even at different phases of the response of a single neuron
(e.g. in the frontal eye fields (FEF) [27,28]). Several motor
actions, archetypically eye movements, are discrete and
require analog-to-digital conversion by phasic neurons. In
mental programs, discretizing an analog quantity could
play a role in a noise correction mechanism required in
logical computations involving multiple steps [3,29].

Information transfer and working memory by the

persistent activity of neurons in various brain areas

In neuronal programs, the outcome of the decision has to be
stored in memory so that it can be used by subsequent
operations. The brain can store temporary values with
sustained firing rate of groups of neurons [30]. Neurons
with sustained firing activity have been found ubiquitously
in the cortex for different types of task-relevant informa-
tion, such as stimulus attributes [31,32], categories of
stimuli associated with a particular behavioral response
[33] and abstract rules [34].

Note that both empirical [27,28] and theoretical [35,36]
observations indicate that the same neuron can switch
dynamically between these different classes.

A neuronal architecture of conscious rational thought
Several cognitive architectures [11,12] share three funda-
mental characteristics that are inherited by our framework:

Box 1. Psychological evidence for serial mental operations

Psychological experiments demonstrate an intrinsic serial limitation

on certain mental operations. Two of the most widely studied

experimental setups are the Psychological Refractory Period (PRP)

[59] and the Attentional Blink (AB) [52]. In the PRP, two tasks that

could be potentially performed in parallel – because they are logically

independent and involve different sensory modalities and motor

effectors – are executed as fast as possible. The seriality of the mental

operation is evident as a systematic delay in the time to complete the

second task if it has to be initiated while the first task is still in

progress [23]. When the second target is masked, as in the AB,

identification of the first target hinders the detection of the second

target in a time window comparable to the PRP effect [52,60]. AB and

PRP are tightly related phenomena that can be obtained within the

same paradigm. Strong masks result in a blinked trial. With weaker

masks the second target becomes visible but is processed with a

delay [61]. The inability to consciously report the second target in AB

is paralleled by the inability to introspect about the slowness of Task 2

during the PRP [62]. These findings indicate a direct relation between

serial processing and conscious verbal reportability [29], and explain

why Alan Turing was able to use conscious introspection into his own

mathematical performance to conceive of the serial Turing machine.

Each individual decision or processing step, by contrast, is typically

massively parallel and opaque to introspection [63].

Finer-grained studies indicate, however, that the Turing view of

strict seriality might only be a first-degree approximation of proces-

sing in the human brain [29,64,65]. In single-task performance,

perceptual systems can transmit information about an easily

discriminable stimulus attribute and at the same time continue

processing other attributes of the same stimulus [66], and perceptual

processes can continue even after a commitment to a decision has

been made [67]. When performing serial calculation, such as adding 2

to a number and then comparing the outcome to 5, subjects seem to

start comparing before they have finished adding [29]. The partial

resource sharing model [65] suggests that, although one operation

always dominates at a given time, others can still be partially

processed simultaneously in the background. Indeed, while perform-

ing one task, subliminal cues can partially activate the cortical

network for another one [68]. The framework that we propose views

the activation of tasks as an accumulation process governed by

winner-take-all dynamics. It can therefore account for these partial

activation effects as well as the fast transition towards essentially all-

or-none neural and mental states [60].
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(i) the coexistence of a massive parallel system informing
and feeding a system of productions, (ii) a serial selection of
productions (or of their actions [11]) and (iii) a capacity for
selected productions to change the state of sensory and
memory systems thus starting a new iteration of the cycle.
Here we capitalize on these ideas and propose a plausible
neural implementation.

First we note that there is an architectonic correspon-
dence between ACT-R [12] and the global neuronal work-
space model (GNW) [37,38]. Both assume that the
production selection process occurs in parallel, under the
converging influence of broadly distributed sensory and
memory sources of constraints, but that only one produc-
tion is eventually selected at a time. Selection is mediated
by a competition between alternative productions; this is
implemented bymutually inhibiting neurons that increase
their activity until a threshold is reached resulting in the
‘ignition’ of a single outcome. The GNW has been used

mostly as a theory to explain conscious access of a single
piece of information, and provides plausible neuronal
mechanisms engaged in such process. In a complementary
manner, ACT-R has described the heuristics of human
reasoning with a production system. The effort described
here can be viewed as a synthesis of these two theoretical
initiatives.

Production systems present numerous advantages.
First, as described above, they instantiate the accumula-
tion of evidence in the conscious access of a single step.
Second, productions are often independent of each other
and thus complex programs can be developed incremen-
tally [39,40]. Third, the success of Soar and ACT-R in
modeling complex cognitive tasks indicates that serial
production systems can provide adequatemodels of human
cognition. Fourth, production selection resembles single
decision making. Hence the known properties of neurons
and neural circuits involved in decision making can be[(Figure_1)TD$FIG]
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Figure 1. From mental programs to neural circuits

(a) Schematic description of a Turing machine. The machine is supplied with a tape (the analog of paper) divided into squares each capable of bearing a symbol. The

possible behavior of the machine at any moment is determined by the machine state qn and the scanned symbol S. (b) Electrophysiological research has concentrated on

understanding the neural circuits involved in the resolution of single mental operations. This literature has revealed the existence of cells with qualitatively different

dynamics: (i) neurons whose responses are largely determined by the properties of incoming sensory stimuli, (ii) mnemonic neurons that maintain information in memory,

(iii) neurons capable of progressively accumulating evidence to reach a decision and (iv) neurons that respond transiently before motor actions. (c) Our model assigns new

roles to neurons with different temporal profiles in the execution of mental programs. Productions are selected based on the pattern of activity in sensory and memory

neurons (sketched in green and blue, respectively). Races are implemented by groups of competing neurons (red and brown traces) that integrate this information until a

threshold is reached. Attainment of the threshold is signaled by bursting neurons (yellow trace) that produce the effects of the selected production in motor and nonmotor

structures. (d) Schematic description of the sequencing of two operations in the proposed neuronal framework. Groups of neurons with sustained activity (blue circles)

control the progression of the task by gating the action of specific sensory neurons onto the neurons that do the ramping. The two productions with higher inputs are

shown in red and brown (left) and the selected production is shown in yellow (center). The winning production writes its result to memory, biasing the production selection

process at the next step of the program (right).
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adapted to the control of multistep cognition without the
need to postulate new mechanisms. Last, production sys-
tems could also capture aspects of nonconscious parallel
processing: sensory and memory activations that are too
weak to fire a production could still result in subthreshold
changes that affect subsequent productions (reminiscent of
crosstalk or subliminal priming effects) (Box 1).

The Brain Turing Machine
The first and most important assumption of our proposed
framework of a Brain Turing Machine is that ramping
neurons (found broadly in the parietal and frontal cortex)
represent competing productions. We postulate that com-
petition is driven by inputs from sensory and memory
neurons (Figure 1), as well as spontaneous activity in
the production network, thus possibly triggering ignition
of productions even in the absence of deterministic input
and injecting variability to the selection process that is
important for exploration.

As in one-step decision making [41], the race between
productions concludes when neurons encoding one produc-
tion reach a decision threshold after which the selected
production ignites. The ignition of a production can be
globally broadcasted to distant regions and can have sev-
eral simultaneous effects. It can: (i) trigger motor actions,
(ii) change the state of working memory to initiate a new
processing step starting from a different memory state, (iii)
activate and broadcast information that was in a ‘latent’
state (such as sensory traces and synaptic memories
[36,42]) and (iv) activate peripheral processors capable of
performing specific functions (such as change the focus of
attention, segregate a figure from its background or trace a
curve). Neurons that trigger productions are expected to be
broadly distributed because productions can have a wide
range of effects, and neuronal correlates of decision pro-
cesses occur simultaneously inmultiple areas. Virtually all
neurons, even those in primary sensory areas, behave in a
task-dependent manner [43,44]. It is therefore expected
that a production can transiently change the properties of a
specific subset of cortical areas [45].

Memorized information, including goals and expected
outcomes, also influences the production selection process.
We assume that it is represented by the sustained activity
of groups of neurons in prefrontal and other cortices (e.g.
[32,46]) and biases the competition towards productions
that are likely to lead to reward in the present context. The
role of rewards is to modify the strength of synaptic con-
nections with an appropriate credit assignment [47] such
that the probability of selecting a production that has been
useful in the past is increased if similar situations are
encountered in the future [48] (Box 4).

Although the framework presented here remains at the
conceptual level, a recent computer simulation using spik-
ing neurons [49] has implemented a sequence of two inde-
pendent tasks in considerable detail, including the
coexistence of massive parallel units feeding to competing
ramping neurons that upon igniting change the state of the
network. This network exhibits parallel processing at sen-
sory levels and a functional serial bottleneck at the re-
sponse selection level. Sensory information is held in a
memory buffer, with temporal characteristic times deter-
mined by top-downmodulation of cortical circuits [36]. This
architecture accounts in great quantitative detail for error
patterns and response time distributions in a wide range of
interference experiments such as iconic memory decay
[50], masking [51], attentional blink [52] and psychological
refractory period [53] (Box 1). It constitutes a first step
towards the implementation of a Brain Turing Machine
exercising executive control over many massively parallel
cortical processors. In Box 2 and Box 3 we sketch concrete
implementations of our framework applied to extensions of
classic experimental paradigms in neuroscience: chained
perceptual decisions (Box 2) and the implementation of
visual routines (Box 3).

Predictions of the proposed framework
The proposed scheme leads to several novel neurophysio-
logical predictions that could be tested in humans or in
awake animals trained to perform appropriately complex
tasks:

Box 2. Modeling of a two-step motion discrimination task

We introduce a motion decision task with two steps. Participants have

to make a saccade in the direction of motion of a patch, the location of

which is itself indicated by the direction of motion of the central

patch. Thus, a first decision (central patch motion: up or down?)

informs on which subset of perceptual space (top or bottom patch)

should inform the second decision (Figure Ia).

We sketch how our architecture can implement this task (Figure Ib)

and how it thereby makes predictions for neurophysiology (Figure Ic).

A network of production neurons integrates sensory information

during different processing phases of the task. Neurons in the upper

layer are ramping neurons connected in a winner-take-all circuit. We

expect these neurons to be distributed broadly in the brain in a

frontoparietal network.

When a production fires (yellow circles), it changes the state of the

memories and thereby influences the interactions between the

memory and the production system. Crucially, the memory system

stores representations of individual processing steps. We refer to

neurons storing these representations as task-setting neurons

(shown in blue in Figure Ib). For instance, when the production

‘compute bottom-patch’ fires (yellow circle on the left side of the

network), a cascade of effects ensues: (i) It triggers the corresponding

task-setting neurons changing the current state of the program. (ii)

Task-setting neurons have excitatory connections to MT neurons with

receptive fields overlapping with the upper-patch, selectively increas-

ing tonic responses in MT neurons relevant to the current state of the

task. (iii) The efficacy of the connections between these neurons and

the production system increases. (iv) A new set of productions

compete at the next step.

In our architecture, the connections between MT neurons and

parieto-frontal networks that integrate evidence are always present.

However, only a subset of these connections is effective at any one

time. Note that silent connections (labeled in gray) allow evidence in

favor of a right or left saccade to be partially accumulated prior to the

ignition of a specific production, reflecting some partial parallel

integration.

There are three important aspects of the architecture that should be

addressed in future theoretical and empirical investigations (Box 4): (i)

How are specific connections between the production and the sensory

systems learned? (ii) What are the specific biophysical mechanisms by

which silent task-specific connections between the sensory and the

production system are made effective? (iii) How can the production

system encode a virtually infinite number of possible productions?
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Figure I. A program of two chained perceptual decisions

(a) Sketch of the experiment described in Box 2. Green arrows indicate the direction of motion of the dots in each patch. The blue arrow shows the eye movement

trajectory in a correct trial. (b) Each circle represents a population of neurons with similar response properties. Ramping neurons in the upper layer are connected in a

winner-take-all circuit. Motion selective neurons are shown in green, with arrows indicating directional selectivity. Task-setting (memory) neurons are shown in blue.

Neurons that do not have high activity during a specific stage of the program are shown with empty circles. Ineffective synapses, which do not trigger a spiking

response in the efferent neuron, are shown in gray. (c) Predicted time course of neuronal activity. Time courses are shown in the center; the lateral panels are legends to

identify the role of each population in the network. Sensory neurons (i.e. from visual area MT) respond strongly to motion onset and maintain high levels of activity

while the stimulus is present. Activity of motion selective neurons irrelevant for the task are shown with a dotted line.

Box 3. Sequential cognitive operations indexed by primary visual cortex (area V1) neurons

Sequential tasks can be monitored by recording neuronal activity in

the macaque visual cortex [15,17]. Consider the task in Figure I.

Monkeys fixate a point (FP) and they then trace a curve that connects

the FP to a marker that is either red or green. The color of this marker

is also the color of a larger disc that has to be found in a subsequent

visual search (T-Disc). Thus the monkeys first have to trace the curve

and then search for a disc with the same color as the marker at the

end of the traced curve.

Recordings [17] indicate that the neuronal activity in area V1 is first

dominated by the appearance of the new stimulus on the screen, at a

latency of �41 msec (grey in Figure Ib). Curve-tracing influences the

neuronal responses at a later phase: at �192 msec the target curve
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and the T-marker have been labeled by enhanced neuronal activity

(attentional modulation: blue shading in Figure Ib) so that the correct

color for the subsequent search has been identified. In a yet later

phase (�435 msec), neuronal activity in area V1 evoked by the target

disc with the green color begins to increase (attentional modulation,

red shading in Figure Ib). Thus, the sequential application of two

visual operations, ‘tracing’ and ‘search’, can be identified in visual

cortex. These results support Ullman’s visual routine theory that

proposes that visual programs can be assembled by arranging visual

operations into sequences [45,69]. They also show how early visual

areas act as a cognitive blackboard that contributes to working

memory. The first tracing operation indexes the marker with the

green color that is stored by color selective cells to act as the target

color in the subsequent search. The visual cortex thus helps to

transfer information from one operation (tracing) to the next (search).

We present a simple sketch of how this architecture can be

implemented. The visual machinery capable of performing each

visual routine (trace, extract color and search) has been proposed

elsewhere [70–72]. Here we focus on how these routines are initiated

by a production system and the broadcasting of relevant information

through the cortical circuits, and on the storage of intermediate

results in memory (Figure Ic). A network of production (ramping)

neurons sets the memory system in a specific configuration (as in Box

2). For simplicity, task-setting neurons have not been drawn. During

the trace production, the retinotopic cortex enhances the representa-

tion of the target curve by propagating activity among neighboring

neurons that respond to elements of the same curve so that the

relevant marker and its color is identified (attentional modulation,

blue). Higher cortical regions could control the required lateral

interactions in V1 [43].

The color of the relevant marker is stored by memory activity of a

green-selective neuron in a color map. This neuron provides top-

down guidance during the visual search, eventually labeling the

location of the green disc in retinotopic cortex so that it can be

selected for an eye-movement response (attentional modulation,

in red).
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(b)

(c)

Figure I. Neuronal implementation of a visual routine

(a) The task is to trace a curve connected to the fixation marker, and to search for a disc of the same color as the marker at the end of the traced curve. (b) Time course of

neuronal activity in monkey area V1 during this task. Neurons in the primary visual cortex are activated by the stimulus after 41 msec. After 192 msec the representation

of the trace curve is labeled with enhanced neuronal activity, and after an additional delay of 243 msec the representation of the search disc is enhanced. (c) Sketch of

how the proposed architecture can interact with a simplified visual system to control the sequence of operations required by the trace-and-search task. Adapted with

permission from [17].
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1. Neurons integrating evidence towards a threshold
should be observed even in the absence of an overt
response, for instance in FEFs for the internal
monitoring of a visual routine.

2. Task-related and even spontaneous activity should
consist of a discrete sequence of accumulation process-
es, each followed by transient phasic responses
indexing the ignition of the production. These succes-
sive ignition stages should be indexed cortically by a
sequence of P3-like event-related potentials. At pres-
ent, task-related potentials and spikes, sequentially
organized in steps of�150–250msec (theta rhythm�4–

7 Hz), have been observed in prefrontal and visual
cortex during working memory rehearsal and other
sequential tasks [54,55], and discrete phasic firing has
been observed in monkeys performing sequential tasks
[26,56].

3. Memory neurons should show fast transitions between
metastable states, on average every �100–250 msec,
again a theta-like rhythm (200 msec is the mean time
between successive productions in ACT-R). Changes in
the state of sensory neurons should be correlated with
ignition of productions and expressed as dynamic top-
down modulations of sensory circuits [57].

Concluding remarks
In his 1958 book, The Computer and the Brain, John Von
Neumann asked how the brain, which is analogue, parallel
and error-prone, could perform multistep computations
without being swept away by biological noise [3]. Our
framework proposes a specific set of mechanisms by which
multistep computations can be controlled by neural cir-
cuits, and combine the advantages of parallel and serial
computation. Seriality is the consequence of the competi-
tive selection of productions that transforms noisy and
parallel evidence accumulation steps into an ordered se-
quence of relatively discrete changes in network state.
These discrete steps clean up the noise and enable a logical
flow of the computation. An important conjecture of this
proposal is that the highly parallel nature of production
selection within each step of the computation is powerful
enough to compensate for the long duration of every
processing step (�100–250 msec). Indeed, the resulting
neuronal machine, although approximately equivalent to

a Turing machine, presents several useful features not
present in classical computer architectures. First, each
elementary step represents a complex massively parallel
and nearly statistically optimal process of inference result-
ing in a single decision, and its stochasticity permits the
exploration that is crucial for learning. Second, individual
steps are analog in nature but each is followed by a dis-
cretization step with a threshold that imposes a limit on
error likelihood. Rudiments of this serial analog/digital
architecture are present in other primates but we specu-
late that it is particularly developed, in a differentiated
and hierarchical manner, in the human brain [58].
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