
Inertial forces and dissipation on accelerated boundaries

C.D. Fosco,1 F. C. Lombardo,2 and F. D. Mazzitelli2
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We study dissipative effects due to inertial forces acting on matter fields confined to accelerated

boundaries in 1þ 1, 2þ 1, and 3þ 1 dimensions. These matter fields describe the internal degrees of

freedom of ‘‘mirrors’’ and impose, on the surfaces where they are defined, boundary conditions on a

fluctuating ‘‘vacuum’’ field. We construct different models, involving either scalar or Dirac matter fields

coupled to a vacuum scalar field, and use effective action techniques to calculate the strength of

dissipation. In the case of massless Dirac fields, the results could be used to describe the inertial forces

on an accelerated graphene sheet.
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I. INTRODUCTION

In what is one of the most startling manifestations of
the quantum nature of the electromagnetic (EM) field,
the dynamical Casimir effect (DCE) predicts that, in the
presence of an accelerated mirror, the quantum vacuum
evolves to an excited state (i.e., one with a nonvanishing
number of photons). As a consequence, the mirror will
experience a dissipative force. Both the dissipation and
the number of created photons are rather small for a
single accelerated mirror. However, the effect can be en-
hanced in electromagnetic cavities with time-dependent
length or, more generally, with time-dependent electro-
magnetic properties (see the reviews in [1], and references
therein).

In this paper we consider an effect that, although of a
different nature than the DCE, may nevertheless arise
under fairly similar conditions: acceleration of the mirrors.
The main difference with the DCE is that we shall consider
the ‘‘inertial’’ dissipation that results from the transfer of
energy to the matter fields inside the mirror, rather than to
the EM field.

Effects due to the inertial forces in accelerated media are
known, and usually described in terms of induced time-
dependent polarizations or currents, like in the Barnett and
Stewart-Tolman effects [2]. More generally, there will be
inertial forces as long as there is energy transfer from the
collective coordinates of the mirrors that specify their
position and shape as a function of time, to their internal
degrees of freedom.

Contrary to the vacuum friction effects considered up to
now [1–4], the inertial effects described in this paper will
exist even when the internal degrees of freedom are not
coupled to the EM field. Our aim in this work is to evaluate
these effects using specific models for the matter fields,
allowing for mirrors with a quite general space and time
dependence.

II. THE MODEL

Let us begin by considering a scalar model, described by
an Euclidean action S with the structure

S ¼ Sf þ Sm þ SI; (1)

where Sf describes the vacuum field dynamics in the

absence of mirrors. It will be assumed to be a free field
theory in dþ 1 dimensions (d ¼ 1, 2, or 3). Sm is the free
part of the matter field action, i.e., it ignores the coupling to
the vacuum field; this coupling is instead contained in the
last term, SI.
Both Sm and SI have support on M, the d-dimensional

spacetime manifold swept by �ð�Þ, the space occupied by
the mirrors at the time �, in the course of their time
evolution.
The vacuum field ’ is assumed to be a scalar, equipped

with the action

Sfð’Þ ¼ 1

2

Z
ddþ1x@�’ðxÞ@�’ðxÞ: (2)

In this scalar model, the matter degrees of freedom are
described by �, also a real scalar field, but living on M, a
curved d-dimensional manifold. To make this more ex-
plicit, we introduce d variables: �0; �1; . . .�d�1, such that
�0 is the time coordinate; M can then be parametrized by
dþ 1 functions y�, � ¼ 0; 1; . . . ; d, as follows:

M : � ! y�ð�0; . . . ; �d�1Þ; (3)

such that y0 ¼ �0 � x0 � � and yj ¼ yjð�; �1; . . . ; �d�1Þ
(j ¼ 1; . . .d), is a parametrization of �ð�Þ (for each �).
Note that M may denote either one or more than one
mirror. When dealing with more than one mirror, we shall
introduce an alternative, more explicit notation, obtained
by using a different parametrization for each connected
piece in M.
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We assume the scalar matter field action to be given by

Smð�;MÞ ¼ 1

2

Z
dd�

ffiffiffiffiffiffiffiffiffiffi
gð�Þ

q
½g��ð�Þ@��ð�Þ@��ð�Þ

þ�2�2ð�Þ�; (4)

where g��ð�Þ is the induced metric on M:

g��ð�Þ ¼ @�y
�ð�Þ@�y�ð�Þ; � ¼ 0; 1; . . . ; d� 1;

(5)

gð�Þ its determinant, and � the mass of the field.
For the SI piece, on the other hand, we shall consider a

term of the form

SIð’; �;MÞ ¼ �i�
Z

dd�
ffiffiffiffiffiffiffiffiffiffi
gð�Þ

q
�ð�Þ’½yð�Þ�; (6)

where � denotes the coupling constant.
The action S can be considered as a toy model for the

interaction between the EM field (’ in the toy model) and
charged degrees of freedom living on the mirrors (de-
scribed by �), although, as it shall be evident below, it is
unnecessary to have a coupling between the internal de-
grees of freedom and the vacuum field for dissipation to
arise. It is nevertheless interesting to consider models
where that coupling exists, in order to compare ‘‘inertial’’
and DCE dissipations.

The scalar nature of the matter field is appropriate to the
field configuration describing an ‘‘internal’’ (charge) de-
gree of freedom.We shall also consider the case of a Dirac-
like matter field, but we shall not dwell with vectorlike
matter fields, which could account for phononlike excita-
tions, and certainly also exhibit inertial dissipation.

To take into account the effects of the internal degrees of
freedom, we introduce �mð’Þ, the effective action due to
the matter fields, defined as follows:

e��mð’;MÞ �
Z

D�e�Smð�;MÞ�SIð’;�;MÞ; (7)

which also encompasses the dependence on the geometry
of M.

Because of their quite different properties, we split �m

into two contributions, as follows:

�mð’;MÞ ¼ �iðMÞ þ �bð’;MÞ; (8)

where

�iðMÞ � �mð’;MÞj’¼0;

�bð’;MÞ ¼ �mð’;MÞ � �mð’;MÞj’¼0:

Each one of these terms is relevant to different effects:
�iðMÞ can induce dissipative effects, while �bð’;MÞ is
responsible for the emergence of boundary conditions on
’. Our focus shall be the calculation of �iðMÞ, although
we shall also derive the form of �bð’;MÞ for the sake of
completeness.

It is quite straightforward to see that

�iðMÞ ¼ 1
2 Tr lnK; (9)

where K is the operator

K ¼ �@�½g1=2g��@�� þ g1=2�2 ¼ g1=2ð��M þ�2Þ;
(10)

and �M � g�1=2@�½g1=2g��@�� is the Laplacian corre-

sponding to the induced metric on M. Note that the
operator K is Hermitian for the scalar product ðf1; f2Þ ¼R
dd�ðf1ð�ÞÞ�f2ð�Þ.
Besides, the boundary interaction term �bð’;MÞ, is

given by

�bð’;MÞ

¼�2

2

Z
dd�g1=2ð�Þ

�
Z
dd�0g1=2ð�0Þ’½yð�Þ�K�1ð�;�0Þ’½yð�0Þ�: (11)

Expressions (9) and (11), properly interpreted, are valid for
one or more than one mirrors. If there is just one mirror,
their interpretation is immediate: one needs to know a
parametrization of its surface, then all the objects involved
in (9) and (11) are derived from it and the free scalar field
propagator. When there are N > 1 mirrors, we introduce a
discrete index a, and use a different notation for the
functions that parametrize each mirror: y

�
a , a ¼ 1; . . . ; N

(which can be, for example, restrictions of the parametri-
zation ofM). Then, since the action for the matter fields is
localized on each mirror, we see that the effective action
becomes the sum of the contributions due to each mirror:

�iðMÞ ¼ XN
a¼1

�iðMaÞ; �bð’;MÞ ¼ XN
a¼1

�bð’;MaÞ;

(12)

where Ma is the world volume of each mirror.
In other words, quantum effects of the matter fields are,

for this model, additive with respect to the mirrors. Thus, in
the rest of this paper we shall only calculate �i and �b for
single mirrors. Before presenting the results of the evalu-
ation of those contributions for different numbers of di-
mensions, we check that, in the limit when the microscopic
degrees of freedom do not propagate, the boundary inter-
action term reduces to the standard one. Indeed, keeping
just the leading term in a large-� expansion:

K�1ð�;�0Þ ���2g�1=2ð�Þ�ð�� �0Þ; (13)

so that for the leading behavior of the boundary interaction
term we have the following expression:

�bð’;MÞ � 	

2

Z
dd�g1=2ð�Þ’2½yð�Þ�; (14)
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where 	 � ð��Þ2. This is the usual �-like potential that has
been used to analyze the Casimir effect with imperfect
boundary conditions [5].

III. NO INERTIAL DISSIPATION
IN 1þ 1 DIMENSIONS

To gain some insight into the previous expressions, let us
first evaluate the effective action for a case where the
outcome will be that there will be no inertial dissipation,
namely, d ¼ 1. Here the vacuum field is a massless real
scalar field (in 1þ 1 dimensions) while � is a single
quantum mechanical degree of freedom. For the model
we consider, � cannot experience inertial forces, since it
is not spatial (its values belong to an internal space), and
moreover it is only a function of time.

The spacetime manifold M is one-dimensional, a plane
curve which we parametrize as follows: � ! ð�; qð�ÞÞ,
where � is the time and qð�Þ the position of the mirror.
The Sm and SI terms may therefore be written in the form:

Smð�;MÞ ¼ 1

2

Z
d�

�
e�1ð�Þ

�
d�ð�Þ
d�

�
2 þ�2eð�Þ�2ð�Þ

�
;

SIð’; �;MÞ ¼ �i�
Z

d�eð�Þ�ð�Þ’ð�; qð�ÞÞ; (15)

where eð�Þ � ffiffiffiffiffiffiffiffiffi
gð�Þp

, and gð�Þ � 1þ _q2ð�Þ. Then we note
that, by performing the reparametrization: � ! s, such that
ds ¼ eð�Þd�, we get

Smð�;MÞ ¼ 1

2

Z
ds

��
d~�ðsÞ
ds

�
2 þ�2 ~�2ðsÞ

�
;

SIð’; �;MÞ ¼ �i�
Z

ds~�ðsÞ~’ðs; ~qðsÞÞ;
(16)

where we have introduced the notations

~�ðsÞ � �½�ðsÞ�; ~’½s; ~qðsÞ� � ’½�ðsÞ; ~qðsÞ�: (17)

Integrating out the matter field (we assume its path integral
to be invariant under reparametrizations [6]), we see that in
the effective action term �i, the dependence on eð�Þ [hence
on qð�Þ] is completely erased. Thus, no dissipative effects
from this origin may arise in d ¼ 1, as advanced.

Regarding the �b term, we find that

�bð’;MÞ ¼ �2

2

Z
ds

Z
ds0 ~’ðs; ~qðsÞÞ�ðs� s0Þ~’ðs0; ~qðs0ÞÞ;

(18)

with �ðs� s0Þ ¼ e��js�s0j=2�. This boundary interaction
term can be also written in a Fourier representation, so that
it produces a frequency dependent coupling between the
vacuum field and the mirror:

�bð’;MÞ ¼ �2

2

Z d!

2


1

!2 þ�2
jF ð~’Þð!Þj2; (19)

where F denotes Fourier transform with respect to the s
variable. We note that the outcome of this study amounts to
the property that the �b term is, essentially, a reparametri-
zation invariant interaction, which is tantamount to using a
relativistic invariant term. For the nondynamical limit, this
is precisely one of the cases we have studied in [7]. Indeed,
when the matter degrees of freedom do not propagate,

�bð’;MÞ � 	

2

Z
ds½~’ðs; ~qðsÞÞ�2

¼ 	

2

Z
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _q2ð�Þ

q
½’ð�; qð�ÞÞ�2; (20)

with 	 � �2

� , which is identical to Eq. (33) of [7].

In the general, nonlocal case, we can still find the
effective action �½qð�Þ�, for a single mirror, obtained by
performing now the functional integration over the vacuum
field:

e��½qð�Þ� ¼
Z

D’e�Sfð’Þ��bð’;MÞ: (21)

To second order in the mirror departure from its average
position, we get

�½qð�Þ�¼�
Z þ1

�1
d�eð�Þ

Z þ1

�1
d�0eð�0Þqð�ÞFsð���0Þqð�0Þ;

(22)

where

Fsð�� �0Þ ¼
Z d!

2

ei!ð���0Þ ~Fsð!Þ; ~Fsð!Þ

¼ ~Fð!Þ � ~Fð0Þ; (23)

and

~Fð!Þ¼1

4

Z d�

2


�ð�þ!Þ2þ�2

�
þ 1

2j�þ!j
��1j�j: (24)

Although the integral cannot be evaluated exactly, it is
clear that its UV behavior is much improved with respect
to the one corresponding to a local �b, like in [7]. The
physical reason for that is that the nonlocal �b introduces a
kind of cutoff frequency (of order �) above which the
mirror becomes ineffective to impose the boundary
conditions.

IV. 2þ 1 DIMENSIONS: INERTIAL DISSIPATION
ON A MOVING STRING

The situation is more interesting regarding dissipation
when d ¼ 2, since the space dependence of the matter field
allows for the action of inertial forces. Besides, if� ¼ 0, it
is possible to derive a closed-form expression for �mðMÞ.
Indeed, this object is formally identical to the effective
action for a massless real scalar field (�) in two dimen-
sions, which can be found exactly, and it is nontrivial only
if R, the scalar curvature of M is different from 0. Thus,
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before writing the explicit form of the result, we find
conditions for R to be different from 0.

Using y to denote the two spatial components of the
parametric form of M, namely, y ¼ yð�0; �1Þ (�0 � �,
�1 � �), we find, after a quite straightforward calculation,
that

R ¼ 2

g2
A; (25)

where g is the determinant of the induced metric, and

A ¼ ð@1y1Þ2@20y2@21y2 � @1y
1@21y

1@20y
2@1y

2

� @20y
1@1y

1@1y
2@21y

2 þ ð@1y2Þ2@20y1@21y1
� ð@1y1Þ2ð@0@1y2Þ2 � ð@1y2Þ2ð@0@1y1Þ2
þ 2@1y

1@1y
2@0@1y

1@0@1y
2; (26)

where y1 and y2 are the two spatial components of y.
A simpler expression for R may be written when the
surface can be written as a Monge patch (which is then
necessarily open), that is, whenM can be parametrized as

y0 ¼ �; y1 ¼ �; y2 ¼ yð�; �Þ: (27)

Note that yð�; �Þ describes a moving open string in 2þ 1
dimensions. In this case we have

R ¼ 2

g2
F; (28)

with

F¼
�������� @2�y @�@�y
@�@�y @2�y

��������; g¼ 1þð@�yÞ2 þð@�yÞ2:
(29)

A necessary and sufficient condition for F to vanish can be
obtained:

F ¼ 0 $ 9� 2 R=ð@� þ �@�Þyð�; �Þ ¼ 0: (30)

This includes (since � can also be 0 or 1), the cases of an
F which depends only on � or only on �. We may write
then all solutions to the condition above, for R to be zero
(and �m trivial) as follows:

y ¼ fð�� ��1�Þ; (31)

(for any �). Thus, there will be no effect if the evolution of
the mirror has the form of a packet that evolves undis-
turbed, with any speed (eventually zero). That is to say,
they are solutions of the wave equation with wave speed �
(arbitrary), and with a definite chirality: namely, they
should either move to the left or to the right, but cannot
be a combination of both. The absence of dissipative
effects for this kind of evolution is certainly related to
the Lorentz invariance of the model.

On the other hand, combining both left and right movers,
one certainly can have an F � 0. Thus, what is perhaps the
simplest example of a configuration where F � 0 corre-
sponds to standing waves.
We now recall the form of the (exact) effective action for

a massless real scalar field in 1þ 1 dimensions [8], to
write:

�mðMÞ ¼ � 1

96


Z
d2xR

1

�
R: (32)

We shall, in what follows, only consider the massless
matter field case. The reason is that for a massive field
the corresponding contribution is strongly suppressed, un-
less the curvature is big in comparison with a scale set by
the mass�. In such a case, however, the massless field case
should be a good approximation. Moreover, in the massive
case there are also local terms in the curvature, but their
locality makes them irrelevant to dissipative effects.
Of course, inserting the expression corresponding to a

Monge patch, one gets a more explicit form. Doing that,
one may look for the �m that results from the lowest order
contribution, in a derivative expansion of yð�; �Þ:

�m ’ 1

24


Z
d�d�

Z
d�0d�0Fð�; �Þ

���1
0 ð�� �0; �� �0ÞFð�0; �0Þ; (33)

where ��1
0 is the free propagator (which has the usual

logarithmic form), and F has been defined in (29).
The pole in the free propagator is responsible for the

existence of a nontrivial dissipation. Indeed, we may
Fourier transform, and rotate to real time, to obtain the
imaginary part of �m:

Im½�m� ’ 1

96


Z dk1
2


1

jk1j ½j
~Fðk0 ¼ jk1j; k1Þj2

þ j ~Fðk0 ¼ �jk1j; k1Þj2�; (34)

where ~Fðk0; k1Þ is the Fourier transform of F. Note that the
imaginary part sees the arguments of this function on-shell.
On the other hand, F is quadratic in y and therefore the
dissipation is quartic in the deformation of the string.

V. 3þ 1 DIMENSIONS: INERTIAL DISSIPATION
ON A MOVING MIRROR

We conclude our study of the scalar field model with the
d ¼ 3 case. Here, it is not possible to find an exact effective
action for an arbitrary manifold M (even when � ¼ 0).
The effective action can, however, be computed approxi-
mately, in an expansion in powers of the curvature. One
has, up to the second order [9]
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�iðMÞ ’ � 1

64� 23=2

Z
d3�

ffiffiffiffiffiffiffiffiffiffi
gð�Þ

q
½a1R��ð��Þ�ð1=2ÞR��

þ a2Rð��Þ�ð1=2ÞR� þ �local; (35)

where a1 ¼ �1 and a2 ¼ 1=8. �local is a divergent contri-
bution constructed with the induced metric and its deriva-
tives, and we will assume that these divergences are
absorbed into appropriate counterterms in the classical
action. Since local terms are not relevant for the dissipative
effects considered here, we will omit �local in what follows.

The nonlocal kernel ð��Þ�ð1=2Þ can be formally defined
using the integral representation [10]

ð��Þ�ð1=2Þ ¼ 2




Z þ1

0
dm

1

��þm2
; (36)

in terms of the two-point function of a massive scalar field
ð��þm2Þ�1.

Consistently with the expansion of the effective action in
powers of the curvature, we shall analyze the nonlocal part
of �iðMÞ under the assumption that the mirror is almost
flat, and that the time dependence of its surface is smooth.
This means small departures from a flat surface almost flat
manifold M. To implement this in a quite straightforward
way, we first assume that the parametrization used is of the
form:

y� ¼
�
�� for � ¼ 0; 1; 2
yð�0; �1; �2Þ for � ¼ 3:

(37)

Then it follows that g�� ¼ ��� þ h��, with h�� �
@�y@�y. We then perform an expansion in the deformation

of the manifold, i.e., around the ��� metric: g�� ¼ ��� þ
h��, assuming that h�� is small. To find the lowest non-

trivial contribution in an expansion in h, we note that

�iðMÞ ’ 1

64� 23=2

Z
d3�R��ð��0Þ�ð1=2Þ

� ½������ � 1

8
�������R��; (38)

where R�� is the Ricci tensor expanded to its lowest non-

trivial order in h�� and ð��0Þ�ð1=2Þ is the nonlocal kernel
for a flat spacetime.

To linear order in h�� we have

R�� ’ 1
2ð@�@�h

 þ @
@
h�� � @�@
h
� � @�@
h
�Þ:

(39)

Using this equation, it is straightforward to write the Ricci
tensor in terms of the function yð�Þ. For instance we have

R00 ’ @0@1y@0@1yþ @0@2y@0@2y� @0@0y@1@1y

� @0@0y@2@2y; (40)

and similar expressions for the other components.
As in the two-dimensional case, one can readily show

that all components of the Ricci tensor vanish when the
evolution of the mirror is described by a packet that moves
with constant velocity in any direction, i.e., y ¼ fð�0 �
��1�iÞ. Therefore, the manifold M is flat for this kind of
evolution, since in d ¼ 3 the Riemann tensor is entirely
determined by the Ricci tensor. Once more, simple evolu-
tions that produce dissipative effects are standing waves.
The dissipative effects induced by the matter degrees of

freedom are related to the imaginary part of the effective
action in Minkowski spacetime. Rotating to real time, and
introducing Fourier transforms for the flat propagator and
the Ricci tensor we obtain

Im ½�i� ’ Im

�
1

32
23=2

Z 1

0
dm

Z d3k

ð2
Þ3

�
~R��ðkÞ ~R��ð�kÞ½������ � 1

8�
������

ð�k20 þ k21 þ k22 þm2 � i�Þ
�
:

(41)

Introducing the notation

j ~BðkÞj2 ¼ ~R��ðkÞ ~R��ð�kÞ
�
������ � 1

8
������

�
; (42)

and performing the integration over k0, we find

Im ½�i�’ 1

23=264

Z 1

0
dm

Z d2k

ð2
Þ2

�j ~Bðk0¼!k;kÞj2þj ~Bðk0¼�!k;kÞj2
!k

(43)

with !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þm2

q
. The structure of this result is

similar to that of the two-dimensional case (34), except for
the additional integral in the parameter m, used to have a
suitable integral representation of the nonlocal kernel

ð��2
0Þ�ð1=2Þ.

It is worth mentioning that a case in which the matter
field is a massless Dirac field c (in 2þ 1 dimensions)
leads to very similar results. Assuming the matrices 
a

(a ¼ 1, 2, 3) for this field to be in a reducible representa-
tion of Clifford’s algebra, chosen in such a way that the
parity anomaly is cancelled, the matter field action Sm is
given by

Smð �c ; c ;MÞ ¼
Z

d3�
ffiffiffiffiffiffiffiffiffiffi
gð�Þ

q
�c ð�ÞDc ð�Þ; (44)
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where D ¼ 
ae
�
a ð�ÞD�, e

�
a is the dreibein and D� ¼

@� � i
4!

a
b��ab. Here, !

a
b� denotes the spin connection

(determined by the dreibein and Christoffel symbol) and
�ab � i

2 ½
a; 
b�. The result for �i may also be read from

[9], and it is given by (35) with the only difference being in
the numerical values of the coefficients a1 and a2, that we
will not need in what follows. Thus, all the estimates
below, as well as the conditions for no dissipation, hold
true for this model as well. Note that the Dirac field model
might be relevant to describe the internal degrees of free-
dom in graphene surfaces. Indeed, charge carriers in gra-
phene layers exhibit a linear dispersion relation, as if they
were 2þ 1 massless fermions propagating at the Fermi
velocity vF, which is of order vF � c=300 [11]. Therefore,
Eq. (44) describes such degrees of freedom in units where
vF ¼ 1.

We can obtain an estimation of Im½�i� for the scalar and
Dirac fields by assuming that the dynamics of the mirror is
described by a standing wave of the form

yð�0; �1; �2Þ ¼ y0 cosð��0Þ cosð�1=LÞ; (45)

where we have denoted by y0 the amplitude of the oscil-
lations,� its frequency and L the typical distance between
nodes in the direction of �1. For simplicity, consider
evolutions of the mirror that are invariant along �2. From
(39) and (40), we can calculate the Ricci tensor. For
example, we can estimate the Fourier transform of (40),
which can be written as

~R00ðkÞ ¼ � 4
3y20�
2

L2
�ðk2Þ½�ðk1Þð�ðk0 � 2�Þ

þ �ðk0 þ 2�ÞÞ þ �ðk0Þð�ðk1 � 2=LÞ
þ �ðk1 þ 2=LÞÞ�:

Similar expressions can be found for the 11 component of
the Ricci tensor, and it is easy to see that R10 ¼ R01 ¼ 0.

In order to have a rough estimation of the magnitude of
Im½�i� when the mirror’s dynamics is approximated by Eq.
(45), we need to perform integrations in Eq. (43). After
integrating in k1 and k2, we get

Im ½�i� � y40�
3T�

L4
; (46)

where T is the total time during which the mirror is mov-
ing, and � denotes the total surface of the (unperturbed)
mirror. The presence of these coefficients is a by-product
of having considered a delocalized standing wave as the
one in (45). It is worth noting that, for this particular
motion of the mirror, there is no threshold for the dissipa-
tion effects.

Restoring ℏ and the propagation velocity (vF) of the
matter fields inside the layer, the estimated magnitude of
Im½�i� becomes

Im½�i�
T�

� ℏy40�
3

v2
FL

4
: (47)

We may compare this result with the one obtained for one
perfect mirror oscillating according with Eq. (45). In this
case, the DCE produces an imaginary part in the effective
action as long as �> c=L [12]:

Im½�DCE�
T�

� ℏy20�
5ð1� c2

L2�2Þ5=2
c4

: (48)

When � is above threshold, the ratio between both effects
is approximately given by

Im½�i�
Im½�DCE� �

�
y0
L

�
2
�
c

vF

�
2
�

c

�L

�
2
�
1� c2

L2�2

��5=2
: (49)

This ratio may be bigger or smaller than 1 depending on the
value of the different parameters. It is interesting to remark
that while the inertial dissipation is quartic in the amplitude
y0, the dissipation associated to the DCE is quadratic.
Moreover, for the particular motion (45), the inertial ef-
fects do not have a frequency threshold, while the DCE
does.
In Eq. (49) we compared the inertial dissipation with the

DCE for a perfect mirror. Note, however, that, being inde-
pendent of the coupling to the vacuum field, the inertial
effect may be more relevant than the DCE in cases where
that coupling is rather weak, namely, when the mirrors are
far from perfect.
It is also worth noting that the result mentioned above,

that a deformation traveling undistorted (with a constant
direction) does not produce inertial dissipation, may be
relevant to the DCE. Indeed, in the case of having more
than one mirror with such deformation, the configuration is
free of inertial dissipation, while the DCE does not vanish.
Finally, we wish to point out that we have considered

here the effect due to inertial forces just for one matter
field; in a real medium many different contributions can
appear, coming from the excitation of different internal
degrees of freedom. All of them will contribute to the
imaginary part, with different parameters and kinematical
factors.
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