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We describe a theoretical formalism to study the second-harmonic generation in periodically corrugated surfaces
illuminated by a plane wave. The incident wave vector is contained in the plane perpendicular to the grating
grooves. Our analysis is based on the most general expression for the nonlinear polarization of a homogeneous
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Optical Society of America

OCIS codes: 190.4350, 240.4350, 050.1950, 240.3695.

1. INTRODUCTION
Surface second-harmonic generation (SHG) has attracted a
great deal of attention in recent years and remains the focus
of activity of many research groups. The phenomenon pro-
vides a powerful spectroscopic tool for the study of the physi-
cal and chemical properties of the surfaces of isotropic
materials [1–6]. The sensitivity of this nonlinear effect to the
state of the surface is due to the fact that, within the dipole
approximation, a centrosymmetric material does not produce
second-harmonic radiation. At the surface, however, the in-
version symmetry is broken, permitting a dipolar contribution
to the harmonic field. In addition, SHG microscopy has
become an important imaging modality in biomedical optics,
because biological tissues such as muscles, tendons, skin
dermis, and brain slices are strong generators of second-
harmonic signals that can provide valuable information about
disease mechanisms [7,8].

The first studies of SHG at interfaces were concerned with
the reflection from flat surfaces [9–13]. Later, however, the
focus of attention shifted to periodic gratings [14–18] and ran-
domly rough surfaces [19–23]. Among the noteworthy features
that have been found are: a strong enhancement of the sec-
ond-harmonic signal for metallic surfaces in p polarization
due to the excitation of surface plasmon polaritons (SPPs)
[15–17], and destructive interference effects in the backscat-
tering direction due to multiple scattering [20–23]. More re-
cently, some attention has been given to the problem of SHG
by small particles and collections of particles [24–31]. Despite
all this work, many aspects of the problem are still not well
understood, and the nonlinear interaction of light with rough
surfaces and particles remains an active subject of research.

In this paper, we present calculations of the nonlinear elec-
tromagnetic response of periodic metallic gratings. For this,

we employ the undepleted pump approximation, which allows
the decoupling of the Maxwell equations at two frequencies, ω
and 2ω. Our formulation is based on the most general expres-
sion for the nonlinear polarization of a homogeneous and iso-
tropic medium. In general, the generated second-harmonic
field has contributions from the bulk, due to the gradients
of the fundamental field in the medium, and the surface,
due to the abrupt change in the material properties at the in-
terface. The surface is assumed periodic, and the diffracted
linear and nonlinear fields are calculated employing a Ray-
leigh method [32,33]. To keep the paper to a manageable size,
we only present results for the p-polarized second-harmonic
intensity obtained when the grating is illuminated by
p-polarized light. Usually, this p‒p contribution constitutes
the most important one.

Numerical techniques based on Green integral theorem [34]
have been used to study the nonlinear interaction between
electromagnetic waves and randomly rough surfaces [21–23],
and would seem suitable for studying periodic surfaces. How-
ever, possibly due to truncation effects, the approach encoun-
ters difficulties at large angles of incidence and scattering, and
when the excitation of SPPs plays a significant role in the in-
teraction [35]. Numerical techniques based on the Rayleigh
hypothesis, on the other hand, are simple and efficient, and
give reliable results even in cases in which the so-called Ray-
leigh limit is exceeded [36–39]. They are thus more appropri-
ate for the kind of problems studied here.

It is important to mention that the theoretical formalism
presented here is independent of the values or the model em-
ployed to determine the nonlinear susceptibilities. This is a
significant point because, although there are several theoreti-
cal models that provide values for these constants, and there
have been experimental attempts to determine them [40],
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there is still not sufficient and reliable data in the literature
that can be used for calculations with different materials. It
is only when we illustrate the results with some examples that
we adopt the nonlinear susceptibilities calculated on the basis
of a free-electron model [12,41].

The paper is organized as follows: in Section 2 we give de-
tails of the formalism used to model SHG for metallic surfaces,
Section 3 is devoted to a description of the Rayleigh method
employed to calculate the linear and nonlinear fields, in
Section 4 we present numerical simulations for silver sinu-
soidal gratings and analyze the excitation of surface plasmons
at the grating interface. Finally, in Section 5 we present our
conclusions.

2. THEORY
Let us consider a periodically corrugated boundary between a
linear medium (I) and a nonlinear material (II). Both media
are isotropic, homogeneous, and nonmagnetic. The permittiv-
ity of media I and II are denoted by ϵIðωÞ and ϵIIðωÞ, respec-
tively. We consider a rectangular coordinate system (x1, x2,
x3) in which the grooves of the grating are along the x2 axis,
and the x3 axis is perpendicular to the mean surface of the
grating, pointing toward the linear medium (Fig. 1). The grat-
ing is illuminated by a plane wave with harmonic time depen-
dence expð−iωtÞ.

For the nonlinear medium (II), Maxwell’s equations for the
fields at 2ω can be written in the form

∇ × Eðrj2ωÞ ¼ 2iω
c

Hðrj2ωÞ; ð1aÞ

∇ ×Hðrj2ωÞ ¼ −
2iω
c

Dðrj2ωÞ; ð1bÞ

∇ · Dðrj2ωÞ ¼ 0; ð1cÞ

∇ ·Hðrj2ωÞ ¼ 0; ð1dÞ

where c is the velocity of light in the vacuum. The constitutive
relation for this medium is

Dðrj2ωÞ ¼ ϵIIð2ωÞEðrj2ωÞ þ 4πPNLðrj2ωÞ; ð2Þ
where PNLðrj2ωÞ represents the nonlinear polarization.

For isotropic and centrosymmetric media, the first nonzero
contribution to the bulk nonlinear polarization is given by the
quadrupolar term. The third-order susceptibility tensor has 21
nonzero elements, of which only three are independent. Then,
the nonlinear polarization takes the general form [12]

PNLðrj2ωÞ ¼ α½EðrjωÞ ·∇�EðrjωÞ þ βEðrjωÞ½∇ · EðrjωÞ�
þ γ∇½EðrjωÞ · EðrjωÞ�; ð3Þ

where α ¼ δ − β − 2γ, and the constants δ, β, and γ are
frequency-dependent parameters characterizing the medium.
In a homogeneous medium, the second term on the right hand
side of Eq. (3) must always vanish.

Using Maxwell equations and taking into account that the
present problem is invariant in the x2 direction, it is a standard
step to demonstrate that all the components of the fields in
region I and II can be expressed in terms of the components
of the fields along the grooves (E2 for s polarization andH2 for
p polarization). It has been shown [26] that, if the excitation
field is purely s or p polarized, there is no s-polarized second-
harmonic radiation. Since we are assuming that the incident
field is p polarized, the second-harmonic field will also be p

polarized. We shall denote by ψ ðRÞ
p ðrjΩÞ, the two component of

the magnetic field. Here, R represents region I or II, and Ω
stands for ω or 2ω.

At 2ω, the propagation equation for p polarization in region
II is reduced to

�
∇2

13 þ
�
2ω
c

�
2
ϵIIð2ωÞ

�
ψ ðIIÞ
p ðrj2ωÞ ¼ i4π

�
2ω
c

��
∂PNL

1

∂x3
−
∂PNL

3

∂x1

�
;

ð4Þ

where∇13 ¼ ∂

∂x1
x̂1 þ ∂

∂x3
x̂3 and PNL

j (j ¼ 1; 2; 3) are the rectan-
gular components of the nonlinear polarization vector. From
Eq. (3), we find that ∂PNL

3 =∂x1 ¼ ∂PNL
1 =∂x3 and the right hand

side of Eq. (4) is zero. This shows that in this case, the bulk
contribution to the second-harmonic field vanishes.

To write the boundary conditions that the 2ω fields obey at
the interface, it is useful to define a local system of coordi-
nates (x, y, z), as shown in Fig. 1. The boundary conditions
can be written as (see [26])

EðIÞ
t ðrsj2ωÞ − EðIIÞ

t ðrsj2ωÞ ¼ −4π∇tP
s
zðrsj2ωÞ; ð5Þ

HðIÞ
t ðrsj2ωÞ −HðIIÞ

t ðrsj2ωÞ ¼ 4π
�
2iω
c

�
ẑ × Ps

t ðrsj2ωÞ; ð6Þ

where the subscripts t and z indicate the components that are
tangent and normal to the surface, rs represents points on the
surface, and the superscripts (I) and (II) indicate evaluation
from above and below the interface, respectively. In writing
Eqs. (5) and (6), we have defined the components of the sur-
face nonlinear polarization as

Ps
zðrsj2ωÞ ¼ lim

τ→0

Z τ

−τ

PNL
z ðrs; zj2ωÞ
ϵIIðzj2ωÞ

dz; ð7Þ

Ps
t ðrsj2ωÞ ¼ lim

τ→0

Z τ

−τ
PNL
t ðrs; zj2ωÞdz: ð8Þ

Equations (5) and (6) show that the tangential components
of the fields are discontinuous across the interface, in contrast
with the more familiar situation found in linear optics. The
right hand sides of these equations represent surface sources
that can produce radiation at the second-harmonic frequency.Fig. 1. View of the principal section of the grating.
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The components of the second-order surface susceptibility
tensor χsijk relate the amplitudes of the components of the
nonlinear surface polarization to the fundamental field ampli-
tudes. For the surface of isotropic material only three distinct
components are necessary to characterize the nonlinear re-
sponse of the system. These are χsttz ¼ χstzt, χsztt, and χszzz.
The symmetry properties of the surface enable us to write

Ps
zðrsj2ωÞ ¼ χszzz½DzðrsjωÞ�2 þ χsztt½EtðrsjωÞ · EtðrsjωÞ�; ð9Þ

Ps
t ðrsj2ωÞ ¼ χsttz½EtðrsjωÞDzðrsjωÞ�: ð10Þ

Some simplification occurs for systems that are invariant in
one direction (in our case along x2 ¼ y) and are illuminated
perpendicular to that direction. In such cases, the problem be-
comes essentially a scalar one.

To describe the surface profile, we have chosen a param-
etric representation. The vector valued function rsðtÞ that de-
scribes the profile as a function of the parameter t can be writ-
ten as

rsðtÞ ¼ ½f ðtÞ; gðtÞ�; ð11Þ

where the parametric functions f ðtÞ and gðtÞ are single-valued
functions of t. For surfaces that can be represented as single-
valued functions of the x1 coordinate, one can get f ðtÞ ¼
t ¼ x1. In such cases, gðx1Þ represents the height of the sur-
face as a function of x1.

The vectors

Z ¼ ½−g0ðtÞ; f 0ðtÞ�; X ¼ ½f 0ðtÞ; g0ðtÞ�; ð12Þ

of magnitude ϕðtÞ ¼ f½f 0ðtÞ�2 þ ½g0ðtÞ�2g1=2 are normal and tan-
gent to the surface, respectively. The corresponding unit vec-
tors are ẑ ¼ Z=ϕðtÞ and x̂ ¼ X=ϕðtÞ. Notice that if the
parameter t is chosen as the arc length along the curve,
ϕðtÞ ¼ 1. Similarly, the operators of unnormalized normal
and tangential derivatives are given by

∂

∂Z
¼

�
−g0ðtÞ ∂

∂x1
þ f 0ðtÞ ∂

∂x3

�
; ð13aÞ

∂

∂X
¼

�
f 0ðtÞ ∂

∂x1
þ g0ðtÞ ∂

∂x3

�
: ð13bÞ

It should also be mentioned that to evaluate the tangential
derivatives on the surface, it is convenient to use the relation

∂FðrÞ
∂X

����
r¼rs

¼ dFðtÞ
dt

; ð14Þ

which can be obtained by application of the chain rule.
At this stage, it is also convenient to define the values of the

field and its normal derivative evaluated on the surface as

ψ ðRÞ
p ðtjΩÞ ¼ ψ ðRÞ

p ðrjΩÞjr¼rs ; ð15aÞ

ϒðRÞ
p ðtjΩÞ ¼ ∂ψ ðRÞ

p ðrjΩÞ
∂Z

����
r¼rs

: ð15bÞ

The boundary conditions required to complete the solution
for the case of p polarization can be obtained from Eqs. (5)
and (6). We find that

1
ϵIð2ωÞ

ϒðIÞ
p ðtj2ωÞ − 1

ϵIIð2ωÞ
ϒðIIÞ

p ðtj2ωÞ

¼ −4π 2iω
c

�
dPs

zðtj2ωÞ
dt

þ ϕðtÞPNL
x ðtj2ωÞ

ϵIIð2ωÞ
�
; ð16aÞ

ψ ðIÞ
p ðtj2ωÞ − ψ ðIIÞ

p ðtj2ωÞ ¼ 4π 2iω
c

Ps
xðtj2ωÞ: ð16bÞ

As we have already mentioned, Eq. (4) shows that the bulk
contribution to the second-harmonic field vanishes, while
Eq. (16) contain nonzero contributions due to the surface.
It is worth pointing out, however, that the second term on
the right hand side of Eq. (16a) is in fact a mixed term; it
has a contribution due to the bulk nonlinear polarization eval-
uated on the surface.

From Eqs. (3), (9), and (10), the sources of the p-polarized
second-harmonic field due to p-polarized excitation can be
written as

ϕðtÞPNL
x ðtj2ωÞ ¼ −ðα=2þ γÞ c

2

ω2

�
1

ϵ2I ðωÞ
d

dt

�ϒðIÞ
p ðtjωÞ
ϕðtÞ

�
2

þ 1
ϵ2IIðωÞ

d

dt

�
1

ϕðtÞ
dψ ðIÞ

p ðtjωÞ
dt

�
2
�

−
α

2ϵIIðωÞ
d

dt
½ψ ðIÞ

p ðtjωÞ�2; ð17aÞ

Ps
xðtj2ωÞ ¼

χsttz
ϵIðωÞ

�
c

ω

�
2 1
ϕ2ðtÞϒ

ðIÞ
p ðtjωÞdψ

ðIÞ
p ðtjωÞ
dt

; ð17bÞ

Ps
zðtj2ωÞ ¼ −χszzz

�
c

ω

�
2
�

1
ϕðtÞ

dψ ðIÞ
p ðtjωÞ
dt

�
2

− χsztt
1

ϵ2I ðωÞ
�
c

ω

�
2
�ϒðIÞ

p ðtjωÞ
ϕðtÞ

�
2
: ð17cÞ

3. RAYLEIGH METHOD
We consider that the grating is illuminated frommedium I by a
p-polarized plane wave of frequency ω propagating along a
direction forming an angle θi with the x3 axis (Fig. 1). In what
follows, we will assume that medium I is the vacuum. There-
fore, the incident magnetic field can be written as

HiðrÞ ¼ x̂2ψ0 expðiki:rÞ; ð18Þ

in which ψ0 is the amplitude of the incident field and

ki ¼ α0x̂1 − β0x̂3; ð19Þ

where α0 ¼ ω=c sin θi and β0 ¼ ω=c cos θi.
When the incident wave [Eq. (18)] impinges upon the grat-

ing, the reflected field contains the diffracted waves at the
fundamental frequency and, under the right conditions, a sec-
ond-harmonic field is generated by the nonlinearities of the
material. We start by writing the x2 component of the reflected
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and transmitted magnetic fields with frequency ω in the re-
gions outside the grooves. It is well known that in these zones,
the fields can be represented rigorously by the Rayleigh ex-
pansions. Thus, for x3 > max½gðtÞ�, we can write

ψ ðIÞ
p ðrjωÞ ¼

X∞
n¼−∞

Rn exp½iðαnx1 þ βnx3Þ�; ð20Þ

where

αn ¼ α0 þ
n2π
d

; ð21Þ

α2n þ β2n ¼ ϵIðωÞ
�ω
c

�
2
: ð22Þ

For the region x3 < min½gðtÞ�, we have

ψ ðIIÞ
p ðrjωÞ ¼

X∞
n¼−∞

Tn exp½iðαnx1 þ γnx3Þ�; ð23Þ

with

α2n þ γ2n ¼ ϵIIðωÞ
�ω
c

�
2
: ð24Þ

The problem of the interaction of light with a diffraction
grating between two isotropic, homogeneous, and linear med-
ia with permittivities ϵIðωÞ and ϵIIðωÞ has been extensively stu-
died using different theoretical methods. In the present paper,
the electromagnetic fields of the linear problem are calculated
using a standard Rayleigh method [36–39]. Basically, the ex-
pansions (Eqs. (20) and (23)) are assumed to be also valid in
the region between the grooves (Rayleigh hypothesis). Then,
the unknown amplitudes Rn and Tn are found as the numer-
ical solutions of a system of linear equations. Once we have
solved the linear problem, Eqs. (20) and (23) are used to cal-
culate the nonlinear sources PNL

x , Ps
x, and Ps

z defined in
Eqs. (17a)–(17c), respectively.

We now turn to the electromagnetic fields of frequency 2ω.
As the grating surface is periodic with period d, these fields
are pseudoperiodic with respect to x1. Therefore, outside the
modulation region, they can also be represented rigorously by
the Rayleigh expansions. As we mentioned, for the case we
are considering, there is no s-polarized second-harmonic ra-
diation. The x2 component of the magnetic field in the region
x3 > max½gðtÞ� can be written as

ψ ðIÞ
p ðrj2ωÞ ¼

X∞
n¼−∞

Sn exp½iðα0nx1 þ β0nx3Þ�; ð25Þ

where

ðα0nÞ2 þ ðβ0nÞ2 ¼ ϵIð2ωÞ
�
2ω
c

�
2
; ð26Þ

α0n ¼ 2α0 þ
n2π
d

: ð27Þ

In the region x3 < min½gðtÞ�, we obtain a similar expansion

ψ ðIIÞ
p ðrj2ωÞ ¼

X∞
n¼−∞

Wn exp½iðα0nx1 þ γ0nx3Þ�; ð28Þ

with

ðα0nÞ2 þ ðγ0nÞ2 ¼ ϵIIð2ωÞ
�
2ω
c

�
2
: ð29Þ

To solve the electromagnetic problem at 2ω, we invoke
again the Rayleigh hypothesis. We will assume that Eqs. (25)
and (28) are also valid in the region inside the grooves. We
then truncate Eqs. (20), (23), (25), and (28) from −M to M

and then substitute these equations into the left hand side
of the boundary conditions (Eq. (16)), thus obtaining a system
of 2ð2M þ 1Þ equations with 2ð2M þ 1Þ unknowns: amplitudes
Sn and Sn (2M þ 1 values each of them). Symbolically, these
are given by

�
um

vm

�
¼

�
Anm Bnm

Cnm Dnm

��
Sn

Wn

�
; ð30Þ

where

Amn ¼
Z

1

0
exp½iðα0n − α0mÞf ðtÞ� expðiβ0ngðtÞÞdt; ð31Þ

Bmn ¼ −

Z
1

0
exp½iðα0n − α0mÞf ðtÞ� expðiγ0ngðtÞÞdt; ð32Þ

Cmn ¼
Z

1

0
hnðtÞ exp½iðα0n − α0mÞf ðtÞ� expðiβ0ngðtÞÞdt; ð33Þ

Dmn ¼ −
1

ϵIIð2ωÞ
Z

1

0
knðtÞ exp½iðα0n − α0mÞf ðtÞ� expðiγ0ngðtÞÞdt;

ð34Þ

hnðtÞ ¼ i½−g0ðtÞα0n þ β0nf 0ðtÞ�; knðtÞ ¼ i½−g0ðtÞα0n þ γ0nf 0ðtÞ�;
ð35Þ

um ¼ 8πicχsttz
ω

�
−ψ2

0

Z
1

0

1
ϕ2 BCE1ðmÞdt

þ ψ0

X
n

Rn

Z
1

0

1

ϕ2 ðEnC − FnBÞE2ðn;mÞdt

þ
X
n;l

RnRl

Z
1

0

1

ϕ2 EnF lE3ðn;m; lÞdt
�
; ð36Þ
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vm ¼ 16πiω
c

�
ψ2
0

Z
1

0

�
a1

�ϕ0

ϕ3 C
2 −

1
ϕ2 CG

�

þ a2

�ϕ0

ϕ3 B
2 −

1
ϕ2 BH

�
þ ia3C

�
E1ðmÞdt

þ ψ0

X
n

Rn

Z
1

0

�
a1

�ϕ0

ϕ3 2CFn −
1

ϕ2 ðCJ n þ GF nÞ
�

− a2

�ϕ0

ϕ3 2BEn −
1

ϕ2 ðBIn þHEnÞ
�

þ ia3ðFn þ CÞ
�
E2ðn;mÞdt

þ
X
n;l

RnRl

Z
1

0

�
a1

�ϕ0

ϕ3 FnF l −
1

ϕ2 FnJ l

�

þ a2

�ϕ0

ϕ3 EnEl −
1

ϕ2 EnI l

�
þ ia3F l

�
E3ðn;m; lÞdt

�
; ð37Þ

where ϕ ¼ ϕðtÞ, ϕ0 ¼ dϕðtÞ=dt and

a1 ¼ −
c2

ω2

�
χszzz þ

α=2þ γ
ϵIIð2ωÞϵ2IIðωÞ

�
; ð38Þ

a2 ¼ −
c2

ω2

�
χsztt þ

α=2þ γ
ϵIIð2ωÞ

�
; ð39Þ

a3 ¼ −
α

2ϵIIðωÞϵIIð2ωÞ
; ð40Þ

a4 ¼ χsztt þ
γ

ϵIIð2ωÞ
; ð41Þ

E1ðmÞ ¼ exp

�
−i

�
2π
d
mf ðtÞ þ 2β0gðtÞ

��
; ð42Þ

E2ðn;mÞ ¼ exp

�
i

�
2π
d
ðn −mÞf ðtÞ þ ðβn − β0ÞgðtÞ

��
; ð43Þ

E3ðn;m; lÞ ¼ exp

�
i

�
2π
d
ðnþ l −mÞf ðtÞ þ ðβn þ βlÞgðtÞ

��
:

ð44Þ

The functions denoted by the caligraphic letters are func-
tions of parameter t and are given by

B ¼ α0g0ðtÞ þ β0f 0ðtÞ; C ¼ α0f 0ðtÞ − β0g0ðtÞ;
G ¼ ðCÞ0 þ iðCÞ2; H ¼ ðBÞ0 þ iBC;

Ej ¼ −αjg0ðtÞ þ βjf 0ðtÞ; F jðtÞ ¼ αjf 0ðtÞ þ βjg0ðtÞ;
I j ¼ ðEjÞ0 þ iEjF j ; J j ¼ ðF jÞ0 þ iðF jÞ2:

In the expressions above, the primes denote derivatives with
respect to t.

Once the unknown amplitudes Sn and Wn are calculated,
the power carried by each one of the diffracted orders can
be found.

Let us define p2ωn , the ratio between the power of the non-
linear reflected nth order and the square of the incident power

p2ωn ¼ jhP2ω
n ij

jhPincij2
; ð45Þ

where hP2ω
n i and hPinci indicate the mean values of the Poynt-

ing vectors associated to the nonlinear reflected nth order and
to the incident wave, respectively.

Analogously, we define pωn as the ratio between the power
of the linear reflected nth order and the incident power

pωn ¼ jhPω
nij

jhPincij
; ð46Þ

where hPω
ni indicates the mean value of the Poynting vector

associated to the linear reflected nth order.

4. RESULTS AND DISCUSSION
In this section we present some numerical results for sinusoi-
dal silver gratings. For the permittivity as a function of fre-
quency (ϵIIðωÞ and ϵIIð2ωÞ), we have used a best fit to
experimental data from Johnson and Christy [42].

The nonlinear susceptibilities employed in the numerical
simulations are calculated with a free-electron model, which
is relatively simple and leads to analytical expressions for
the nonlinear susceptibilities. In this model, the nonlinear
polarization takes the form given by Eq. (3), with α ¼ 0,
β ¼ e=ð8πm0ω2Þ, and γ ¼ e3nB=ð8m2

0ω4Þ [41]. Here, e and m0

are the electron charge and mass, respectively, and nB is the
bulk electron number density.

From Eqs. (7)–(10), we find

χszzz ¼ −
2
3
β
�ðϵRIIðωÞ − 1ÞðϵRIIðωÞ − 3Þ

2ϵRII2ðωÞ
−
2
3
ln

� ϵRIIðωÞ
ϵRIIð2ωÞ

��
; ð47aÞ

χsztt ¼ 0; ð47bÞ

χsttz ¼ β
�ϵRIIðωÞ − 1

ϵRIIðωÞ
�
: ð47cÞ

In these expressions, ϵRIIðωÞ is the real part of the permittiv-
ity of the metal and is given by ϵRIIðωÞ ¼ 1 − ω2

p=ω2, where ωp is
the plasma frequency. In the present model, γ can also be ex-
pressed as γ ¼ ðβ=4Þ

�
1 − ϵRIIðωÞ

	
.

In what follows (unless stated otherwise), we use
Eqs. (47a)–(47c) for the calculation of the nonlinear
parameters.

To perform the numerical simulations, it is necessary to
study the convergence of the results. To do so, the number
of terms in the series (N ¼ 2M þ 1) was varied from N ¼
11 to N ¼ 41; the value of N chosen for our simulations
was N ¼ 17, a value that ensures the convergence of the re-
sults of up to four significant digits.

We have also checked that, in the limit of groove to period
ratio h=d → 0, the nonlinear specular reflected power tends to
the nonlinear reflected power for planar interfaces. In this
case, the reflected power has been calculated using the fol-
lowing expression
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p ¼ jhPrefij
jhPincij2

¼ 8π
c

jSð2ωÞj2
jψ0j4

; ð48Þ

where hPrefi and hPinci are the mean values of the reflected
and incident Poynting vectors, respectively, ψ0 is the ampli-
tude of the incident wave, and Sð2ωÞ is the reflected amplitude
of the magnetic field, which has been derived analytically for
planar surfaces.

As is well-known, flat metal-dielectric interfaces can sup-
port the propagation of SPP waves. The excitation of such
waves is accompanied by a significant enhancement of the
electromagnetic field on the surface [43], and the electric
field components associated with them satisfy the relation
jEx3=Ex1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵIIðΩÞ

p
; this means that for good conductors

jEx3j ≫ jEx1j and, therefore, that the electric field associated
to the surface plasmon is mainly perpendicular to the surface.
Since this is the direction in which the inversion symmetry is
broken, surface plasmons are efficient generators of second-
harmonic radiation and have played a prominent role in many
studies of SHG by corrugated surfaces.

By solving the homogeneous (without sources) electromag-
netic problem of a vacuum-metal planar interface [43,44], one
can show that surface plasmons satisfy the dispersion relation
αpðΩÞ ¼ ½ϵIIðΩÞ=ð1þ ϵIIðΩÞÞ�1=2Ω=c. Surface plasmons can be
excited efficiently with periodic gratings when the x1 compo-
nent of the wavevector of a diffracted order coincides with
their propagation constant. That is, when

αn ¼ α0 þ n
2π
d

≈ ReðαpðωÞÞ; ð49Þ

where n is an integer. Similarly, for the second-harmonic field,
one has

α0m ¼ 2α0 þm
2π
d

≈ Reðαpð2ωÞÞ; ð50Þ

where m is an integer. As we shall see, the fields calculated
with the method described here, demonstrate quite clearly the
coupling and decoupling of surface plasmons to several dif-
fracted orders for values of θi that are near the theoretical
values expected on the basis of the above expressions.

Second-harmonic experiments with corrugated surfaces
whose profiles and material properties are known are scarce,
and it is not easy to make direct comparisons with published
data. For the case of periodic gratings, this situation is caused
mainly by the experimental problems for controlling the exact
shape of the grooves, by the uncertainties in the linear and
nonlinear constants that characterize the metal, and by the
difficulties associated with the normalization of the data (of-
ten, data is presented in arbitrary units). In our attempts to
test the theory described here, we present calculations that
can be compared with the experimental results reported
in [15].

In Fig. 2, we show results for second-harmonic diffraction
by sinusoidal silver gratings, calculated with the nominal para-
meters corresponding to the experimental data presented in
Fig. 4 of [15]. That is, we consider gratings with period
0:556 μm and groove depths h ¼ 230Å, h ¼ 350Å, and h ¼
460Å (gratings 1, 2, and 3, respectively). In Fig. 2(a), we plot
p2ω
−1 as a function of the angle of incidence for angles in the

region of the excitation of a surface plasmon at the fundamen-

tal frequency (64° < θi < 65:5°). For the permittivities of
silver, we use ϵIIðωÞ ¼ −59:55þ 1:15i and ϵIIð2ωÞ ¼ −14:14þ
0:14i, which are the values obtained by Johnson and Christy
for a wavelength of 1:064 μm [42].

The curves have nearly the same shapes as the correspond-
ing experimental ones (Fig. 4 of [15]). Although the results are
in qualitative agreement with the experimental ones, there are
differences in the angular position of the peaks, as well as in
their relative intensities. The peaks in the p2ω

−1 theoretical
curves appear at θM ≈ 64:85°, which is consistent with the va-
lue of the surface plasmon propagation constant predicted by
the flat surface dispersion relation. The experimental peaks,
however, appear at a slightly different angle (θM ≈ 64:3°. This
difference is possibly due to the value of the permittivities
used in the calculations. To investigate this assumption, we
have also performed numerical simulations using the permit-
tivities given by Palik [45]. These results are shown in
Fig. 2(b), where we present p2ω

−1 for the same gratings studied
in the previous figure but with ϵIIðωÞ ¼ −51:99þ 3:38i and
ϵIIð2ωÞ ¼ −10:18þ 0:83i. We observe that the peaks shift to
the left and that the value of θM is closer to that obtained
in the experimental measurements.

Concerning the relative heights of the curves, we also
observe some differences. While in Fig. 2(a), the relation
between the height of the peaks for gratings 1 and 2 is approxi-
mately 2.3, this value decreases to 1.3 in Fig. 2(b); the analo-
gous value for the experimental data is approximately 2.2.

The results presented in Figs. 2(a) and 2(b) show that the
curves are very sensitive to the values of the permittivity used
to describe the metal and illustrate some of the difficulties en-
countered in the comparison with experimental data. So, con-
sidering the uncertainties on the optical properties of the
metal, the simple model assumed for the nonlinear polariza-
tion in our calculations (free-electron model), and the fact that
the gratings profiles used in the measurements are not exactly
sinusoidal (as mentioned by Coutaz et al. [15]), the level of
agreement between our calculations and the experimental re-
sults was considered satisfactory.

We have carried out calculations with the corrugated grat-
ings with other periods and amplitudes. In all cases, we have
used p-polarized illumination with λ ¼ 1:064 μm. As examples,
we consider sinusoidal silver gratings characterized by
d=λ ¼ 1, and several values of the height to period ratio h=d:
namely, h=d ¼ 0:01, 0.05, 0.075, and 0.1. As before, we consid-
er a free-electron model and the dielectric constants ϵIIðωÞ ≈
−59:55þ 1:15i and ϵIIð2ωÞ ¼ −14:14þ 0:14i.

Before discussing the details of the calculations, we present
some illustrations that can help in the visualization of the re-
sults. In Fig. 3, we show the angular trajectories of the diffrac-
tion orders as functions of the angle of incidence. Figure 3(a)
corresponds to the case of the fundamental field, while
Fig. 3(b) corresponds to the second-harmonic field. One can
see that some orders are only present within a range of angles
of incidence, and that there are more orders at 2ω. The ver-
tical lines of Figs. 3(a) and 3(b), indicate the angles of inci-
dence for which conditions Eq. (49) or (50) are fulfilled;
the diffraction orders involved are indicated in each case.

Figure 4(a) shows pω0 , calculated through Eq. (46) for n ¼ 0,
as a function of the angle of incidence θi. These curves repre-
sent the intensity along the curve corresponding to the zero
order in Fig. 3(a). The peak near normal incidence is
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associated to the coupling of a surface plasmon to the (þ1)
reflected order, and the peak near 82:5° is due to the coupling
of a surface plasmon to the (−2) reflected order [see Fig. 3(a)].
As can be observed in the figure, the power diffracted into this
order decreases when h=d increases.

The specularly reflected second-harmonic signal p2ω0 , calcu-
lated through Eq. (45) for n ¼ 0, is plotted in Fig. 4(b) as a

function of θi. The curves represent the intensities along
the curve corresponding to the zero order in Fig. 3(b). Several
anomalies are observed in the curve: the peaks at θi ≈ 0:5° and
at θi ≈ 82:5° are related to the already mentioned coupling of
the diffracted orders (þ1) and (−2) to surface plasmons of fre-
quency ω. In this case, since the excitation of a SPP causes an
intensification of the linear fields near the surface, the second-
harmonic fields are also enhanced. The same figure shows
other anomalies, one near normal incidence (θi ≈ 2°) and an-
other one at θi ≈ 32:5°, both corresponding to the coupling of
the nonlinear diffracted orders (þ2) and (þ1), respectively, to
SPPs [see Fig. 3(b)]. We observe that the peaks near θi ≈ 82:5°
become more pronounced when h=d increases. This figure
also shows that, for θi > 48°, p2ω0 decreases for greater values
of h=d.

The fact that the results of Fig. 4(b) indicate that the stron-
gest nonlinear signal occurs for small angles of incidence
might seem strange at first sight; this is because the electric
field vector of the incident field is nearly parallel to the surface
in this case. To understand this result, we first note that the
second-harmonic intensity peaks obtained when θi ≈ 0:5° co-
incide with the excitation of a surface plasmon through the
(þ1) order. This, coupled with the fact that for good conduc-
tors Reðαpð2ωÞÞ ≈ 2ReðαpðωÞÞ, implies that second-harmonic
plasmons can be generated efficiently by the nonlinear inter-
action of plasmons of frequency ω. The interaction of these 2ω
plasmons with the grating couples out radiation into the spec-
ular direction, as well as in the other diffraction orders. The
situation is shown schematically in Fig. 5.

In Fig. 6(a) we plot pω
−1 as a function of θi. Again, the figure

should be interpreted as the intensity along the curve corre-
sponding to the −1 order in Fig. 3(a). This figure shows a
strong minimum near normal incidence, associated to the
plasmon excited at 0:5°, and another minimum associated

Fig. 2. Computed values of p2ω
−1 as a function of the angle of incidence θi, for p incidence with λ ¼ 1:064 μm from the vacuum onto a sinusoidal

silver grating with period d ¼ 0:556 μm and groove depths h ¼ 230Å, h¼350Å, and h ¼ 460Å (gratings 1, 2, and 3, respectively). These parameters
are those used in Fig. 4 of [15]. (a) For the permittivities of silver, we used ϵIIðωÞ ¼ −59:55þ 1:15i and ϵIIð2ωÞ ¼ −14:14þ 0:14i [42]. (b) For the
permittivities of silver, we used ϵIIðωÞ ¼ −51:99þ 3:38i and ϵIIð2ωÞ ¼ −10:18þ 0:83i [45].

Fig. 3. Angular behavior of the (a) linear and (b) second-harmonic
diffraction orders. The curves illustrate the angular position of the var-
ious orders as functions of the angle of incidence; the diffraction order
is indicated. The vertical lines indicate the angles of incidence for
which an order coincides with the surface plasmons propagation con-
stant. The number next to each vertical line indicates the diffraction
order involved in the coupling. The wavelength to period ratio is
λ=d ¼ 1, and we have used the dielectric constants ϵIIðωÞ ≈ −59:55þ
1:15i and ϵIIð2ωÞ ≈ −14:14þ 0:14i.
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to the surface plasmon near 82:5°. It can be appreciated that
pω
−1 decreases if θi increases (except in the region of the two

mentioned anomalies), and it increases when h=d increases.
Figure 6(b) shows p2ω

−1 as a function of θi. This reflected or-
der propagates for all values of 0° < θi < 90°. As in Fig. 4(b),
anomalies corresponding to SPPs at frequencies ω and 2ω are
observed. There is also another anomaly, located at θi ≈ 27:5°,
which corresponds to the coupling of a surface plasmon to the
(−3)th nonlinear diffracted order. In this figure, and contrary
to what is observed in Fig. 4(b) for p2ω0 , for all values of θi, p2ω−1
increases if h=d increases.

Figure 7 shows p2ω
−2 as a function of θi. This reflected order

is also propagating for all values of 0° < θi < 90°. Here we
can appreciate the same anomalies observed in Figs. 4(b)
and 6(b), corresponding to SPPs at frequency ω. In addition,
two minima can be clearly observed at θi ≈ 27:5° and θi ≈ 74°,
which correspond to the coupling of a surface plasmon to the
(−3)th and (−4)th nonlinear diffracted orders, respectively.
These minima are deeper for greater values of h=d.

Figure 8 shows p2ωþ1 as a function of θi. This reflected order
propagates only in the region 0° < θi < 30°. In this figure,
the two surface plasmons near normal incidence can be

Fig. 4. (a) pω0 as a function of the angle of incidence θi, for p incidence from the vacuum onto a sinusoidal silver grating, λ=d ¼ 1 and several values
of the height to period ratio h=d. On the left, we show pω0 for 5° < θi < 90°; on the right, the range 0° < θi < 5° is plotted. (b) p2ω0 as a function of the
angle of incidence θi. On the left, we show p2ω0 for 5° < θi < 90°; on the right, the range 0° < θi < 5° is plotted.

Fig. 5. Schematic diagram of some of the multiple scattering and
nonlinear optical processes that can take place in the interaction
of the electromagnetic field with the grating. The diagram shows that
the specular reflection at the fundamental frequency arises from sin-
gle and multiple-scattering interactions. Similarly, contributions to the
second-harmonic signal can arise from a variety of nonlinear interac-
tions. The figure illustrates the generation of second-harmonic plas-
mons through the interaction of fundamental plasmons and their
subsequent decay into propagating waves.
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Fig. 6. (a) pω
−1 as a function of the angle of incidence θi. The parameters are the same as in Fig. 4. On the left, we show pω

−1 for 5° < θi < 90°; on the
right, the range 0° < θi < 5° is plotted. (b) p2ω

−1 as a function of the angle of incidence θi. The parameters are the same as in Fig. 4. On the left, we
show p2ω

−1 for 5° < θi < 90°; on the right, the range 0° < θi < 5° is plotted.

Fig. 7. p2ω
−2 as a function of the angle of incidence θi. The parameters are the same as in Fig. 4. On the left, we show p2ω

−2 for 5° < θi < 90°; on the
right, the range 0° < θi < 5° is plotted.
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appreciated as two sharp maxima. These are the same sur-
face plasmons near normal incidence observed in Figs. 4(b)
and 6(b). For h=d ¼ 0:075 and h=d ¼ 0:1, p2ωþ1 decreases if
θi increases, except in the region near normal incidence. It
can also be appreciated that p2ωþ1 increases for greater values
of h=d.

5. CONCLUSIONS
We have developed a theoretical formalism to study the SHG
in periodically corrugated surfaces illuminated by a plane
wave, for classical mounting, and based on the most general
expression for the nonlinear polarization of an homogeneous
and isotropic medium. The diffraction problem was solved
using a Rayleigh method, which is efficient and has given re-
liable results even for grooves with a height to period ratio
exceeding the Rayleigh limit for perfect conductors. Our nu-
merical technique was checked for corrugated surfaces, and
illustrated by examples for which the nonlinear susceptibil-
ities are calculated with a free-electron model.
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