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High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model
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With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high
Reynolds number regimes up to equivalent resolutions of 60003 grid points in the absence of forcing and with
no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic
energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-
Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the
local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time
increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity
spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling
laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the
dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong
large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy
and the helicity.
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I. INTRODUCTION

Magnetic fields are known to be dynamically important in
a variety of flows, for example, in the liquid core of the earth
in stars and in galaxies. They also play a role at the atomic
level, e.g., in Bose-Einstein condensates [1]. Their origin in
astrophysics and geophysics is still ill understood, and their
dynamics in the fully nonlinear regime once the magnetic field
has grown, possibly to quasiequipartition with the velocity,
is ill understood as well. Numerous studies have shown,
though, that magnetohydrodynamic (MHD) turbulence differs
in several ways from classical hydrodynamic turbulence; for
example, it is more intermittent than fluids [2–4], more so,
in particular, in two space dimensions, and this intermittency
may be either time dependent or dynamically constrained as
observations of solar active regions show [5]. Furthermore,
numerical and theoretical arguments indicate that MHD tur-
bulence is less spectrally local than hydrodynamic turbulence
[6,7] (see also [8–10]) and that MHD may lack universality
in its scaling properties [11–14], including in the absence of
an imposed uniform magnetic field [15]. Finally, the role of
the correlation between the velocity and the magnetic field
has been known for a long time to be important, and this was
particularly emphasized when deriving an exact law involving
linear scaling with distance of third-order structure functions
[16] (see [17] for the von Kàrmàn relations for MHD in terms
of correlation functions).

Part of these differences may stem from the fact that,
even in the incompressible MHD case, the system supports
waves due to the effect of a large-scale magnetic field
(hence the nonlocality), whereas there are no such waves
in incompressible hydrodynamics in the absence of external
agents such as gravity or rotation. Of course, at small scales,
plasma kinetic effects will come into play (e.g., in space
plasmas), rendering the analysis more difficult. But even when

one ignores such small-scale effects and concentrates on the
dynamics of the large scales, one is still left with a variety
of observations and of phenomenological approaches to the
problem.

A wealth of new space data have come with the Cluster
mission (which uses four identical spacecrafts to study the
earth’s magnetosphere), and future projects such as the
Magnetospheric Multiscale Mission (MMS) will allow for
more in-depth studies of MHD turbulence, albeit in a complex
setting involving compressibility, boundary conditions, and
geometrical effects as well as the aforementioned plasma phe-
nomena. MHD turbulence can also be studied in the laboratory,
although achieving high magnetic Reynolds numbers in liquid
metals will remain a challenge for some time to come.

Of particular interest is how energy is distributed across
scales in MHD turbulence. For the moment there is no
clear-cut answer, with some indications that universality may
be breaking [15], but with the parameter(s) distinguishing
between possible different classes of solutions not well known.
Direct numerical simulations (DNS) played an important
role in these findings, as they allow for a rather controlled
exploration of solutions, with well-defined parameters, but
with the disadvantage that, in three space dimensions, the
resolutions that are attainable with present-day computers are
insufficient, by far, if one wants to model realistic geophysical
and astrophysical flows with huge Reynolds numbers. Also,
the computational cost of a detailed study of parameter space
at sufficiently high resolution is currently out of reach.

One way out of this conundrum, in part, is to resort to
modeling. There are numerous methods that have been devised
over the years (see, e.g., recent reviews for fluids [18] and for
MHD [19]). Among them, the Lagrangian averaged MHD
model (LAMHD hereafter) developed in [20] (see also [21])
seems promising in that it allows one to perform a quasi-DNS,
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in the sense that the Reynolds number is known and that the
inertial range is extended, compared to a DNS performed
on the same grid without the model, thanks to a different
formulation of the equations that preserves the invariants,
albeit in a different norm (see below).

In this context, we investigate properties of decaying MHD
turbulence in the absence of an imposed uniform magnetic
field using the LAMHD model. We thoroughly tested the
LAMHD model previously, in two dimensions [4,21,22] and
in three dimensions [23]. Here we extend our computations
to an equivalent grid resolution of the order of 60003 points,
with Taylor Reynolds number at the maximum of dissipation
of ≈2900. The next section is devoted to definitions and
the methodology, Sec. III gives details of the simulation,
Sec. IV discusses the global dynamics, and Sec. V discusses
the role played by Alfvénic exchanges. Finally, Sec. VI is our
conclusion.

II. EQUATIONS

The MHD equations for an incompressible fluid with v and
b, the velocity and magnetic fields in dimensionless Alfvénic
units, respectively, are

∂tv + ω × v = j × b − ∇p + ν∇2v,

∂ta = v × b − ∇φ + η∇2a, (1)

∇ · v = 0, ∇ · a = 0,

with b = ∇ × a, where a is the magnetic vector potential in
the Coulomb gauge. The potential φ and the pressure divided
by the constant (unit) density p are obtained self-consistently
to ensure, respectively, the Coulomb gauge and the incom-
pressibility of the velocity field. The kinematic viscosity is ν,
and the magnetic diffusivity is η; ω = ∇ × v is the vorticity,
and j = ∇ × b is the current density. The magnetic Prandtl
number PM = ν/η is taken in what follows to equal unity.

In the absence of dissipation (ν = 0 ,η = 0), the total
energy

ET = Ev + Eb = 1

2
(‖v‖2 + ‖b‖2)

≡ 1

2

∫
(|v|2 + |b|2) d3x (2)

is conserved (Ev and Eb are, respectively, the kinetic and
magnetic energy, and ‖·‖2 denotes L2 norms). Two other
quadratic quantities are preserved by the nonlinear terms in
three dimensions (3D): the cross correlation HC = ∫

v · b d3x,
and the magnetic helicity Hb = ∫

a · b d3x.
The Lagrangian averaged model introduces a priori two

filtering lengths αv,b for the velocity and the magnetic fields in
such a way that the conservative structure of the equations is
preserved [20]. Written in terms of the rough fields v, b, and a
and of the filtered fields u, B, and A, the LAMHD equations
read

∂tv + ω × u = j × B − ∇� + ν∇2v,

∂tA = u × B − ∇φ′ + η∇2a, (3)

∇ · v = ∇ · u = ∇ · a = ∇ · A = 0,

where � is a modified pressure and φ′ is a modified potential
and with filtering being accomplished through normalized
convolution filters Lv,b chosen to be the inverse of a Helmholtz

operator, namely, Lv,b = H−1 = (1 − α2
v,b∇2)−1. The filtering

lengths are related to the ratio of the dissipation scales of the
LAMHD flow and the modeled MHD flow [24]; since we
shall investigate flows with a unit magnetic Prandtl number,
we take a common filter length for both the velocity and
magnetic field, αv,b ≡ α. That is, u = (1 − α2∇2)−1v and
B = (1 − α2∇2)−1b. The ideal quadratic invariants in terms
of L2 norms for MHD are transformed for LAMHD, being
expressed now in terms of Hα

1 norms; this leads to formulations
that contain both the rough fields v and b and the filtered fields
u and B, as can be seen, for example, in the expression of the
total energy:

Eα
T = 1

2

(‖u‖α
1 + ‖B‖α

1

)
≡ 1

2

∫
[(u − α2∇2u) · u + (B − α2∇2B) · B]d3x

= 1

2

∫
[v · u + b · B]d3x. (4)

Similarly, the magnetic helicity Hα
b = ∫

a · B d3x in its Hα
1

norm is preserved by the LAMHD equations. A form of cross
correlation is also preserved, and the LAMHD equations also
have the equivalent of an Alfvén flux-conservation theorem
(based on these equivalences, and for the sake of clarity, the
superscript α will be suppressed in the sections presenting
numerical results unless strictly required).

The Reynolds number in the following is defined as

Re = UrmsL0/ν, (5)

with Urms and L0 being the rms velocity and the integral scale,
respectively. The Taylor Reynolds number Rλ = Urmsλ/ν is
defined using either the kinetic or magnetic Taylor scale:

λv,b = 2π

√
Eα

v,b

/

α

v,b, (6)

where 
α
v = ‖ω‖α

1 and 
α
b = 
b = ‖j‖2 are, respectively,

the enstrophy and square current (or magnetic enstrophy)
in LAMHD, proportional, respectively, to the kinetic and
magnetic dissipation in the model. Taylor wave numbers are
defined as kλv,b

= 2π/λv,b.
The numerical implementation of the LAMHD equations

is performed using a pseudospectral code for which inversion
of the Helmholtz operator is straightforward. The code is
parallelized using message passing interface (MPI) and has
been tested in a variety of conditions (see, e.g., [25]); a hybrid
version of the code, using OpenMP as well, allows efficient
parallelization for higher resolutions using a larger number of
processors [26]. The computational box has a size of (2π )3,
and wave numbers vary from kmin = 1 to kmax = N/3 using a
standard 2/3 dealiasing rule, with N being the number of grid
points per direction.

III. SIMULATION SETUP

The dynamics of MHD turbulence is quite complex,
and there may be different regimes, as characterized, for
example, by their energy spectra, either isotropic or anisotropic
depending on the presence of an imposed uniform magnetic
field b0. With b0 ≡ 0 and no forcing, a high resolution DNS
using 15363 grid points [27] showed evidence of isotropic
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Iroshnikov-Kraichnan (IK) energy scaling [28]. More recently,
it was shown [15] that energy spectra may differ measurably
even when global quantities (ET , Eb/Ev , Hb, and HC) are the
same at the initial time: IK-like, weak-turbulence-like (WT)
[29], or Kolmogorov-like (K41) spectra [30] were obtained,
the discriminating factor being the ratio of Alfvénic time
τA to the eddy turnover time τNL. These times are defined,
respectively, as

τA = �/b0, τNL = �/v�,

with v� being the characteristic velocity at scale �; in the
absence of an imposed mean field, b0 in the above expression
is taken as the amplitude of the magnetic field at the gravest
mode.

In this paper, we examine one of these cases further by
performing computations at higher Reynolds number using
the LAMHD model, resulting in an equivalent grid of roughly
60003 points and a Taylor Reynolds number of ≈2900. The
case of interest is the one that gives IK-like energy scaling,
and we therefore consider only one initial condition, similar
to the one studied in Ref. [27] with 15363 spatial resolution.
By “equivalent grid,” we mean the following: a comparison
with the 15363 DNS with η = ν = 2 × 10−4 was carried out
solving the LAMHD equations on grids of 2563, 3843, and
5123 points to validate the results of the model [19,23]. The
runs presented here, with 10243 grid points and viscosity
and magnetic diffusivity η = ν = 5 × 10−5, would require a,
≈60003 resolution in a DNS.

The filter length α is chosen to be 4π/kmax, i.e., the
filter wave number is kmax/2, and the grid resolution is
x = 2πk−1

max/3 (see, e.g., [23] for details on how the
filter length is chosen for a given resolution). The initial
conditions are close but not identical to those used in [27];
they consist of a superposition of Arn’old-Beltrami-Childress
(ABC) flows distributed in the first four shells (k ∈ [1, 4]),
with superimposed noise with a wide spectrum as in [27].
However, the noise has a steeper energy distribution ∝ k−6

instead of ∝ k−3. The choice of a shallower distribution of
random noise in [27] was guided by the desire to reach the
maximum of dissipation in a short computational time; with the
computational constraint not being so strong in the LAMHD
model, we resort to a steeper initial random distribution so
as to let turbulent spectra evolve in a less constrained manner,
allowing us to examine in this paper as well whether qualitative
differences in behavior take place or not under such a change.

The steeper distribution of noise here also results in
slightly different values for the relative initial helicities (when
compared with the run in [27]), defined, respectively, as

ρv = Hv/
√

Ev
v, ρb = Hb/
√

EaEb.

Here Ea is the L2 norm of the vector potential, and Hv =∫
u · ω d3x is the kinetic helicity, which measures deviations

from mirror symmetry in the hydrodynamic flow. Because of
Schwarz inequality, we have |ρv,b| � 1.

The resulting flow at t = 0 has Ev = Eb = 1, ρv = 0.78,
and ρb = 0.94, compared to Ev = Eb = 1, ρv = 0.49, and
ρb = 0.54 for the DNS run in [27], leading to stronger
nonlinearities and faster initial evolution in the previous work.
Note that at t = 0 we can use either L2 or Hα

1 norms for the

FIG. 1. Ratio of total magnetic energy Eα
b to kinetic energy Eα

v

as a function of time. The inset shows total energy, Eα
T = Eα

v + Eα
b

(solid line), and total dissipation, εα = ν
α
v + η
b (dash-dotted line),

versus time. Note that the superscript α is suppressed in the labels
and will also be suppressed in later figures for clarity.

LAMHD energy and other global quantities since they differ
only after the fourth digit.

IV. GLOBAL DYNAMICS

A. Time evolution

As expected from the larger values of relative helicities,
development of a fully developed turbulent regime takes a
longer time in the present run compared to the DNS run on a
grid of 15363 points. Indeed, the maximum of total dissipation
for the LAMHD flow is reached for t∗ ≈ 6.5 (as opposed
to ≈3.8 for the 15363 DNS run) as can be seen in Fig. 1
(inset). The total dissipation remains approximately constant
between the maximum and the final time of the computation,
t ≈ 11, providing us with a quasisteady state at small scales
for several turnover times. Except for this delay in the onset
of the formation of small-scale gradients, both flows evolve in
similar manners. Figure 1 also shows the temporal evolution of
the total energy and of the ratio of magnetic to kinetic energy.
The magnetic energy grows rapidly at the expense of its kinetic
counterpart, and the ratio between these two quantities then
fluctuates around a value close to ≈3.5 for times between ≈3
and ≈10, with a tendency for further increase toward the end
of the run.

B. Energy scaling

During the time of approximately constant dissipation rate,
the energy spectrum presents a clear IK law, as can be
seen in Fig. 2(a), which displays the total energy spectrum
compensated by k3/2. In Fig. 2(a) and in subsequent figures, the
vertical solid line represents the classical Taylor scale based on
the velocity field, the vertical dash line is the magnetic Taylor
scale, and the vertical dotted line indicates the filter wave
number 2π/α (beyond which the model is expected to differ
from MHD). Note that no bottleneck is observed, i.e., there is
no enhancement of the spectrum at the onset of the dissipative
range, as already observed in several MHD simulations. The
IK law seems to be a good approximation to the dynamics in
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(a)

(b)

FIG. 2. (a) ET (k) averaged over time with t ∈ [6.5,11], compen-
sated by k3/2 (solid line, left scale), and the ratio of magnetic to kinetic
energy as a function of k (dash-dotted line, right scale). Also shown is
ET (k) from a lower Re 15363 DNS [27] (dashed line), demonstrating
the efficacy of the model. Here and in all subsequent figures, the
vertical solid, dashed, and dotted lines denote, respectively, the wave
numbers corresponding to the kinetic Taylor scale, the magnetic
Taylor scale, and the filtering scale α (beyond which the model is
expected to differ from MHD with η = ν = 5 × 10−5). (b) Total
(solid line), magnetic (dashed line), and kinetic (dotted line) energy
spectra compensated by k19/12 = k(3/2+5/3)/2 (see text for details). The
IK slope (−3/2) is favored against the K41 slope (−5/3) until the
magnetic Taylor scale.

the range of wave numbers from k ≈ 4 to k ≈ 2π/λb ≈ 28,
i.e., all the way to the magnetic Taylor scale.

To verify this, Fig. 2(b) also shows the total, kinetic, and
magnetic energy spectra compensated by k19/12. The spectral
index 19/12 corresponds to the mean value between the IK
and K41 spectral indices, i.e., (3/2 + 5/3)/2. As a result, a
positive slope in the compensated plot indicates the spectrum
is closer to IK, while a negative slope indicates the spectrum
is closer to K41 scaling. The total and magnetic energy
spectra monotonously increase up to the magnetic Taylor wave
number, and only the kinetic energy spectrum flattens and has
a small negative slope between the kinetic and magnetic Taylor
wave numbers.

Figure 2(a) also gives (with the scale on the right) the ratio
Eα

b (k)/Eα
v (k); it appears remarkably flat at the beginning of

the IK inertial range, and it also displays a slight enhancement
peaking around k = 80 (associated with the faster decay of
the kinetic energy spectrum after the kinetic Taylor scale).
The approximate constancy, with Eb(k) ≈ 1.4 Ev(k), denotes
a partial Alfvénization of the flow in most of the inertial range,
but with, at k = kmin, a magnetic field that can be evaluated as
being roughly 3 times larger than the large-scale velocity field
and at least 10 times larger than the rms value of the turbulent
fluctuations.

Note that, at scales smaller than the filter α, the balance
between the velocity and the magnetic field for the model
is inverted, with a slight excess of kinetic energy (e.g., note
Eα

b (k)/Eα
v (k) < 1 in this range). This may be attributed to an

effective hyper-resistivity in LAMHD for the magnetic field
in the subfilter scales; at these scales, the model differs from
MHD. Indeed, in the DNS reported in [15], this decrease of
Eb/Ev was only seen close to the dissipation frequency, and
the magnetic to kinetic ratio remained above unity at all scales.

The residual energy spectrum

ER(k) = Eα
b (k) − Eα

v (k) (7)

is shown in Fig. 3. A heuristic argument indicates that, for K41
scaling, the residual energy is expected to vary as k−7/3, while
for IK scaling the residual energy should go as k−2 [31]. In
the inertial range of our LAMHD run, the slope is closer to
(although shallower than) −2 (a result also seen in Ref. [32]).
This point is further discussed in Sec. V.

We show in Fig. 4 the ratio τNL(k)/τA(k) as a function of
wave number, where the eddy turnover time and the Alfvén
time are defined as

τNL(k) = 1

k
√

kEα
v (k)

, (8)

τA(k) =
√

2

k2Eα
b (k = 1)

, (9)

respectively.

FIG. 3. Residual energy spectrum ER(k) = Eb(k) − Ev(k) aver-
aged in the same time interval as in Fig. 2 and compensated by k7/3.
The dashed line indicates a slope of −2 up to the Taylor magnetic
scale, while the solid horizontal line indicates a slope of −7/3; the
best fit from 4 � k � 28 gives −1.4 ± 0.1.
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FIG. 4. Ratio of the eddy turnover time τNL to the Alfvén time τA

as a function of wave number averaged in the same interval of time
as in Fig. 2 (solid line); the power law fit (dot-dashed line) has an
exponent of 0.3 with an error of ±0.1.

Since Eα
b (k)/Eα

v (k) ∼ const [see Fig. 2(a)], this implies
that the associated characteristic time ratio τA/τNL must be
a function of wave number. Indeed, the ratio is clearly not
constant as the wave number increases and seems to follow in
the inertial range a k0.3±0.1 power law (Fig. 4). If we assume
Ev(k) ∼ ET (k) ∼ k−3/2, this leads to τNL ∼ k−3/4 and to the
ratio shown in Fig. 4 varying as k1/4. When we assume K41
scaling with Ev(k) ∼ k−5/3, the ratio of times varies as k1/3.
Finally, for WT we would have k1/2. The first two solutions
are compatible with the data, particularly considering we are
not taking into account that (i) intermittency corrections to
the spectral indices can alter these indices and (ii) the kinetic
and total energy spectra may not follow the same power law.
Indeed, one should remember that there is no constraint on the
behavior of Ev,b(k) separately since the invariant that cascades
directly is the total energy. In fact, the stronger constraint on
the spectral behavior of MHD fields comes from the exact
law in terms of the energy and energy fluxes of Elsässer
variables or in terms of the total energy and cross helicity
and their fluxes (as well as for magnetic helicity). These
laws imply complex correlations between the velocity and
the magnetic field [16] but do not imply that power laws must
be followed by each individual field. Finally, note that this
result is not in agreement with the critical balance hypothesis
[33] which postulates τNL(k) = τA(k) ∼ k−1; in fact, solving
this relationship for the kinetic energy spectrum Ev(k), this
hypothesis would lead to Ev(k) ∼ k−1 in the isotropic case,
implying a logarithmic divergence, which is unlikely (the case
with an external uniform magnetic field may be different).

C. Helicity scaling

Examining now the magnetic helicity spectrum, we observe
that it shows a single scaling in the energy containing range,
in the inertial range, and beyond the Taylor scales (in contrast
to the spectra discussed before). It follows rather closely a
k−3.7±0.1 law, as can be seen in Fig. 5. Such a steep spectrum for
Hb has been observed before [3,34]. The slope does not corre-
spond to the phenomenological analysis done in [31] under the

FIG. 5. Spectrum of magnetic helicity averaged over the same
interval of time as in Fig. 2 (solid line); the dot-dashed line indicates
a power law fit with exponent −3.7 and an error of ±0.1.

hypothesis of an inverse cascade of magnetic helicity. Indeed,
in this simulation all the helicity is concentrated initially in
k ∈ [1, 4], and therefore there is no separation between the
helicity containing scale and the size of the box for an inverse
cascade of magnetic helicity to develop. The power law in
Hb(k) seems therefore to be associated with a transfer of the
helicity toward smaller scales by the direct energy cascade. As
will be discussed in the next section, this transfer is required to
satisfy a balance imposed by Alfvénization and magnetic field
induction. Note that in [35], such a steep spectrum for Hb(k)
is interpreted as a Kolmogorov spectrum for both the current
helicity and the kinetic helicity, through sweeping by the large
scales.

Similar to the case of energy, a residual helicity spectrum
can be defined as

HR(k) = k2Hb(k) − Hv(k). (10)

The factor k2 multiplying Hb(k) gives the current helicity
spectrum, which is dimensionally equivalent to Hv(k). This
functional is known to play an important role in the nonlinear
stage of the dynamo [31]. Figure 6 shows HR(k) in the
simulation. Two ranges become apparent, with a knee in
the spectrum around k ≈ 9. For larger wave numbers, the
residual helicity seems to follow a ∼k−2.2 law. We observe
that Hb(k) > 0 ∀k, and k2Hb(k) − Hv(k) is positive until
k ≈ 100.

D. Local anisotropy

We further examine in Fig. 7 the local scaling of the
magnetic field when expressed in terms of its second-order
longitudinal structure function, separated into perpendicular
and parallel spatial increments,

Sb
2 (l⊥,‖) =

〈 {
[b(x + l⊥,‖) − b(x)] · l⊥,‖

|l⊥,‖|
}2 〉

. (11)

Here ⊥ and ‖ denote space-varying directions with respect to
the direction of a local mean magnetic field b0,loc, defined as
an average of b in a box of edge length π (the flow integral
scale is L0 ≈ 2.9) around each point x for which the data are
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FIG. 6. Residual helicity HR(k) = k2Hb(k) − Hv(k). The dashed
line indicates a power law ∼k−1, while the dash-dotted line indicates
∼k−2.2.

sought. Therefore, these structure functions do not measure
global anisotropy (the flow is globally isotropic) or global
scaling, but rather local anisotropy and scaling with respect to
a local mean magnetic field.

The points at which these correlation functions are com-
puted are chosen at random, and Fig. 7 is the result of
an analysis performed for 2.5 × 107 points. Noteworthy is
the variation with scale of the ratio of the perpendicular to
the parallel component, with a crossover near the magnetic
Taylor scale. At smaller scales, Sb

2 (l⊥) > Sb
2 (l‖), and the ratio

increases as the scale decreases until reaching the filter scale.
This is in sharp contrast with hydrodynamical turbulence,
including in the presence of an imposed rotation: isotropy
is recovered at small scale in such flows because the ratio of
the inertial wave time to the eddy turnover time gets larger
as the wave number grows, or in other words, the influence

FIG. 7. Second-order longitudinal structure function (for t = 7)
of the magnetic field, compensated by a Kolmogorov law l2/3, for
perpendicular (solid line) and parallel (dotted line) increments with
respect to the local mean magnetic field. The structure function for
parallel increments (dotted line) displays, at scales larger than the
Taylor scales, a scaling ∼l‖.

of anisotropy is felt at large scale but becomes secondary at
small scales. It is also noteworthy that the local perpendicular
magnetic field seems to display a scaling closer to K41
turbulence, while the parallel increments, having Sb

2 (l‖) ∼ l‖,
display a scaling close to ∼k−2

‖ .

V. ALFVÉNIC EXCHANGES

Is there a dynamical role for Alfvénic exchanges beyond a
tendency toward equipartition? Even if the spectral behavior
of the total energy can be obtained from first principles and
phenomenological considerations as to the relevant timescale
for energy transfer (the eddy turnover time, the Alfvén time,
or their combination in a transfer time τtr = τ 2

NL/τA that
embodies the slowing down of nonlinear coupling in the
presence of waves [28]), the behavior of individual spectra
is not so straightforwardly determined. For the kinetic and
magnetic energy spectra, there are indications of differing
spectral behavior both in the solar wind [36] and in numerical
simulations [37]. For the magnetic helicity, flows forced at
intermediate scales have been observed to undergo an inverse
cascade to large scales, including in the supersonic case (see
[38] and references therein), but in the decaying case and with
initial conditions at large scale, the behavior of Hb(k) does
not appear to be universal [34]. In this section, we discuss the
scaling laws observed in our simulations in terms of Alfvénic
exchanges and magnetic induction.

We start with the residual energy ER(k) (Fig. 3). The
way to derive ER(k) ∼ k−2 is to suppose that [31] (i) the
residual energy is small compared to the total energy, in a ratio
(τA/τNL)2, i.e.,

ER(k) ∼ (τA/τNL)2ET (k), (12)

and (ii) the kinetic energy spectrum appearing in τNL [see
Eq. (8)] behaves in the inertial range as the total energy.
Assuming further that ET follows an IK k−3/2 law leads to
ER(k) ∼ k−2, but the second hypothesis may not be fulfilled
in all cases [36,37], and indeed, we find a shallower residual
spectrum, ER ∼ k−3/2.

The understanding of the origin of the discrepancies in
the scaling of magnetic helicity (Fig. 5) is partial at best.
We focus here on the spectral scaling in the direct cascade
energy range presented in the previous section, as opposed
to the inverse cascade of magnetic helicity, which is not
accessible in our simulations. It is advocated in [34] that
the scaling can be attributed to a combination of factors
involving the competing nonlinearities in MHD turbulence,
modeled using the two-point closure developed in [31]. A
phenomenological way to recover the balance advocated in
[34] is to assume partial Alfvénization of the flow, leading
to a quasiequipartition of the velocity and magnetic field,
both for the symmetric part (energies) and the antisymmetric
part (helicities) of their respective correlation tensors. In other
words, one could expect to have, in the order of an Alfvén
time (based on the large-scale magnetic field), the following
balance:

Ev(k) ∼ Eb(k), Hv(k) ∼ k2Hb(k). (13)
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Note, however, that equipartition is not achieved exactly, as
observed in the solar wind. One can then postulate that this
incomplete equipartition is equally occurring for the energy
and for the helicity. That is, that the ratio

Ev(k)/Eb(k)

Hv(k)/[k2Hb(k)]
(14)

is close to a constant in the inertial range. This condition is
approximately fulfilled in our simulation as well as in the DNS
in [27,37].

The relationship in Eq. (14) can be derived in a different
manner that takes into account the dynamics of the magnetic
field and further clarifies how the system can evolve toward
such balance. To do this, we take a mean-field approach to
induction processes in the equation for the magnetic field,
associated in the mechanically forced case with the growth
of a seed magnetic field by dynamo action. By splitting
the magnetic field into b = b0 + b′, where b0 is a large-
scale magnetic field that grows under the influence of
the small-scale kinetic helicity and b′ are the turbulent
magnetic fluctuations, one obtains under the mean-field
approximation:

∂b0

∂t
= α′∇ × b0. (15)

Here α′ ∝ −τcorr〈Hv〉ss , where 〈·〉ss indicates averaging over
the small-scale turbulent helical field, and τcorr is a velocity
field correlation time [39] (see [40] for a review). Taking
the dot product of the above equation with the large-scale
magnetic potential a0 and integrating over space, one gets
the following evolution equation for the large-scale magnetic
helicity:

d

dt

∫
a0 · b0d

3x = 2α′
∫

|b0|2d3x. (16)

Note that dissipation has been neglected in these equations
and that the large-scale magnetic energy (

∫ |b0|2d3x) appears
in the equation upon integration under suitable boundary
conditions.

As a result of Eq. (16), the helical velocity field injects he-
licity into the large-scale magnetic field. Since total magnetic
helicity is conserved in the ideal case, the opposite amount
of magnetic helicity must be created at small scales, i.e., the
following dynamical balance must hold independently of the
scale (with a change in sign for large and small scales):

dHb

dt
∼ ±τcorrHvEb. (17)

The dynamical balance can be understood using the conceptual
“stretch, twist, and fold” (STF) dynamo [41]. Each time a
closed magnetic flux tube is twisted by the helical velocity
field, smaller-scale magnetic field lines are twisted in the
opposite direction, thus pushing toward small scales some
magnetic helicity. This process removes magnetic helicity
from the large scales and allows the magnetic field to
“disentangle” through reconnection events, destroying in that
way magnetic helicity [10,42].

The correlation time τcorr can be taken to be the eddy
turnover time, τcorr ∼ τNL, since the induction effect given
by Eq. (17) is associated with deformation of magnetic field

lines by turbulent eddies. From Eq. (17), assuming again that
the temporal evolution follows the eddy turnover time τNL,
i.e., by approximating d/dt ∼ 1/τNL, we find

Hb ∝ HvEb/(k2Ev) (18)

from which Eq. (14) follows. These phenomenological con-
siderations show that the regeneration of the magnetic field by
dynamo action is, in fact, compatible with an Alfvénic balance
and that these two processes may be occurring on similar time
scales in MHD turbulence. In a decaying flow such as here,
there may not be sufficient time available to see such Alfvénic
and dynamo exchanges take place repeatedly, but it would
be of interest to examine the helicity exchanges in a forced
flow; this may provide a geometrical origin of Alfvénization,
through the dynamic alignment of relevant vectors, as is known
to occur on a nonlinear time scale [43].

The constraint given by Eq. (18) is compatible with
the spectrum of magnetic helicity observed in Fig. 5. In
hydrodynamic turbulence, k−1Hv/Ev ∼ 1/k [44], and under
this assumption Hb ∼ k−2Eb (in this simulation, the ratio
k−1Hv/Ev decays slightly faster with k). For Eb ∼ ET

∼ k−3/2 or steeper, then Hb ∼ k−7/2 or steeper. The k−3.7±0.1

law in Fig. 5 seems therefore consistent with a transfer
of the helicity toward smaller scales by the direct energy
cascade, which satisfies the balance imposed by Alfvénization
or induction.

We finally consider the spectrum of residual helicity from
the point of view of Alfvénization. To derive its scaling, we
assume that, similar to the residual energy case, we have

HR(k) ∼ (τA/τNL)2HC(k). (19)

The cross correlation appears here for at least two reasons:
On the one hand, helicity is a pseudoscalar and thus the right-
hand side of Eq. (19) must involve a pseudoscalar as well.
On the other hand, it is known that total energy and cross
correlation play interlinked roles in the dynamics of MHD
flows. This is particularly striking when writing the exact laws
in MHD turbulence that stem from conservation of ET and HC

[16], as mentioned before. As a result, the phenomenological
formulation in Eq. (19) seems the most plausible.

If we now assume that HC(k) scales as the total energy,
i.e., HC(k) ∼ ET (k) ∼ k−3/2, then Eq. (19) yields HR(k)
∼ k−2. However, it should be noted that the spectrum of cross
helicity in MHD turbulence may be steeper than IK, as, e.g.,
HC(k) ∼ k−2, a spectral law that was obtained in two-point
closures [45]. In this case the spectrum leads to HR(k) ∼ k−5/2.
For 9 � k � 50, we find HR(k) ∼ k−2.2, which does not allow
us to decide between the two solutions. Moreover, note that
the correlation coefficient is very low in this computation,
of the order of ρC = HC/ET ≈ 1.5 × 10−3, with a spectrum
strongly fluctuating with wave number.

These simple arguments indicate that there may be, in fact,
dynamical constraints on the behavior of the flow that link the
velocity and magnetic field statistics, both for the energy and
the helicity, and that go beyond a strict derivation of scaling
laws in turbulence based on the conservation of a sole invariant,
e.g., the magnetic helicity or the total energy.
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VI. DISCUSSION AND CONCLUSION

In this paper we presented results from numerical simula-
tions of MHD turbulence in the absence of external forcing,
using a Lagrangian averaged model to attain the largest
possible Reynolds number at a given spatial resolution. At very
high Reynolds number, the separation of scales between the
energy-containing range and the dissipation range is huge, and
with a power law decrease of the distribution of energy among
scales, for all practical purposes, the large-scale magnetic field
acts as a locally uniform field for the small scales, with one
important difference, though: that there is no imposed direction
to the flow and that it is, in fact, isotropic at large scales (no
k = 0 component). In other words, we can say that we have
global isotropy and homogeneity. This is the case in the solar
wind at very large scale: the locally uniform field in one of the
spiral arms changes direction with the spiral arm and globally
can be viewed as isotropic. However, at small scale, the effect
of the large-scale field is such that the dynamics is anisotropic,
or, more precisely, locally anisotropic.

As a result of the global isotropy in our run, the total
energy spectrum develops an inertial range compatible with
Iroshnikov-Kraichnan phenomenology, and other spectral
quantities are consistent with this scaling. Moreover, the small
scales are seen to go through an Alfvénization process that can
be attributed to a local mean magnetic field.

However, magnetic helicity presents a wide inertial range
with a spectrum steeper than what usual phenomenological
arguments predict. What, then, is governing the behavior of
magnetic helicity? In the inverse cascade range, a dimensional
Kolmogorov-like analysis leads to Hb(k) ∼ k−2 [31], and
numerical data using the integro-differential MHD equations
in the framework of the eddy-damped quasinormal Markovian
(EDQNM) closure do corroborate the existence of such a
regime. One should note that the argument in [31] presupposes
the independence of the cascades that may take place in MHD
turbulence: that of total energy to small scales, the cascade
of cross helicity likely to small scales as well, and that of
magnetic helicity to large scales. However, the equipartition
relationships in Eqs. (13), (14), and (18) link the different
correlators that one can build on the physical variables in
a much more intricate way. We do know already that there
are other such complex relationships involving coupling of
these quantities, namely, the exact laws that stem from the
conservation of ET , HC , and Hb [16,46].

It is advocated in [34] that, in the decay and the forced
case, different dynamics may take place. It is true that
for a steady-state inverse cascade to develop, separation of
scales and forcing are, in principle, required, and the present
simulation has initial conditions with most of the magnetic
helicity concentrated at the largest scale in the box. At this
point, it is therefore important to make a distinction between
the behavior of magnetic helicity in its inverse cascade range,
and its behavior in the direct cascade range of energy as
observed in our simulation. In the direct cascade range, helicity
seems to be transported to smaller scales by the energy cascade,
and its spectrum can be explained from phenomenological
arguments that take into account Alfvénization of the flow, or,
equivalently, the dynamics of magnetic field induction leading
to Alfvénization.

These arguments are, however, dependent on the spectrum
of the kinetic and magnetic energy separately, on the spectrum
of kinetic helicity Hv , and on the spectrum of HC . Indeed, the
exact relationship for magnetic helicity derived in [46] is more
complex in its structure than the laws for the other invariants;
it involves the fields themselves, not structure functions (based
on field differences). Moreover, the electromotive force v × b
(associated with the magnetic induction) plays a central role
(the law in [46] derives only from the induction equation).
Furthermore, the third-order correlators of third-order tensors
involving pseudovectors have a much more complex structure
than for the full symmetric (nonhelical) case since it requires
a priori four scaling functions to define the properties of the
dynamics. Other examples where the presence of helicity
leads to new scaling laws are known [47]. Thus, we can
expect, in a similar fashion, that there could be different forms
of the magnetic helicity spectrum in MHD depending on,
e.g., the kinetic helicity or the intensity of the cross helicity
in the flow.

These helicity effects open the door to a lack of universality
for spectra of invariants (see also [15,34,48]) since different
regimes may occur in different MHD flows. Note that these
arguments differ from the critical balance regime for MHD
turbulence advocated in [33], which does not seem to be
observed in high Reynolds number MHD, at least in the
globally isotropic and decaying case (see [15] and Fig. 4). In
spite of the different possible scaling laws arising for magnetic
helicity, it would be interesting to know if all satisfy the
condition given by Eq. (18). We know of at least a few more
examples satisfying this condition, e.g., the flow in Ref. [37]
and the flows studied in the pioneering work of Müller and
Malapaka [34].

Finally, and as mentioned in the introduction, one other
peculiarity of MHD turbulence is the fact that interactions are
less spectrally local than in hydrodynamic turbulence. This
has been known for a long time in its simplest version, that of
Alfvén waves. The large-scale magnetic field is responsible
for the propagation of waves that put in equipartition the
small-scale velocity and magnetic fields; this is the basis for the
modification to a Kolmogorov energy spectrum as proposed
in [28]. In fact, nonlocal effects have been quantified in MHD
turbulence (see [7,10] and references therein). Nonlocality
may also break down the underlying hypothesis leading to
Hb(k) ∼ k−2 even for the inverse cascade range and may
intermingle small-scale velocity and magnetic excitations with
the large-scale magnetic field. As stressed in [48], nonlocality
breaks the simple self-similarity known to occur in fluids at
least at second order; it is also shown in [48] that the magnetic
field at small scale may have a folded structure that is consistent
with the exact law derived in [16]. Thus, the exact MHD laws
and their associated balances presented here, which are derived
independently of locality assumptions, may therefore prove
useful to reach a better understanding of MHD turbulence.
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