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Information-theoretical analysis of the statistical dependencies among three variables:
Applications to written language
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We develop the information-theoretical concepts required to study the statistical dependencies among three
variables. Some of such dependencies are pure triple interactions, in the sense that they cannot be explained in
terms of a combination of pairwise correlations. We derive bounds for triple dependencies, and characterize the
shape of the joint probability distribution of three binary variables with high triple interaction. The analysis also
allows us to quantify the amount of redundancy in the mutual information between pairs of variables, and to
assess whether the information between two variables is or is not mediated by a third variable. These concepts
are applied to the analysis of written texts. We find that the probability that a given word is found in a particular
location within the text is not only modulated by the presence or absence of other nearby words, but also, on
the presence or absence of nearby pairs of words. We identify the words enclosing the key semantic concepts of
the text, the triplets of words with high pairwise and triple interactions, and the words that mediate the pairwise
interactions between other words.
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I. INTRODUCTION

Imagine a game where, as you read through a piece of text,
you occasionally come across a blank space representing a
removed or occluded word. Your task is to guess the missing
word. This is an example sentence, —your guess. If you
were able to replace the blank space in the previous sentence
with “make” or “try,” or some other related word, you have
understood the rules of the game. The task is called the Cloze
test [1] and is routinely administered to evaluate language
proficiency or expertise in a given subject.

The cues available to the player to solve the task can
be divided into two major groups. First, surrounding words
restrict the grammatical function of the missing word since, for
example, a conjugated verb cannot usually take the place of a
noun, or vice versa. Second, and assuming that the grammatical
function of the word has already been surmised, semantic
information provided by the surrounding words is typically
helpful. That is, the presence or absence of specific words in
the neighborhood of the blank space affect the probability of
each candidate missing word. For example, if the word bee
is near the blank space, the likelihood of honey is larger than
when bee is absent.

In this paper, we study the structure of the probabilistic links
between words due to semantic connections. In particular, we
aim at deciding whether binary interactions between words
suffice to describe the structure of dependencies, or whether
triple and higher-order interactions are also relevant: Should
we only care for the presence or absence of specific words
in the vicinity of the blank space, or does the presence or
absence of specific pairs (or higher-order combinations) also
matter in our ability to guess the missing word? For example,
one would expect that the presence of the word cell would
increase the probability of words as cytoplasm, phone, or
prisoner. The word wax, in turn, is easily associated with ear,
candle, or Tussaud. However, the conjoint presence of cell
and wax points much more specifically to concepts such as
bee or honey, and diminish the probability of words associated
with other meanings of cell and wax. Combinations of words,

therefore, also matter in the creation of meaning and context.
The question is how relevant this effect is, and whether the
effect of the pair (cell + wax) is more, equal or less than
the sum of the two individual contributions (effect of cell +
effect of wax). Here, we develop the mathematical methods to
estimate these contributions quantitatively.

The problem can be framed in more general terms. In any
complex system, the statistical dependence between individual
units cannot always be reduced to a superposition of pairwise
interactions. Triplet or even higher-order dependencies may
arise either because three or more variables are dynamically
linked together or because some hidden variables, not accessi-
ble to measurement, are linked to the visible variables through
pairwise interactions.

In 2006, Schneidman and co-workers [2] demonstrated that,
in the vertebrate retina, up to pairwise correlations between
neurons could account for approximately 90% of all the
statistical dependencies in the joint probability distribution
of the whole population. This finding brought relief to the
scientific community since an expansion up to the second order
was regarded sufficient to provide an adequate description of
the correlation structure of the full system. As a consequence,
not much effort has been dedicated to the detection and
the characterization of third- or higher-order interactions. To
our knowledge, this is the first study developing an exact
description of third-order dependencies. We derive the relevant
information-theoretical measures, and then apply them to
actual data.

As a model system, we work with the vast collection of
words found in written language since this system is likely to
embody complex statistical dependencies between individual
words. The dependencies arise from the syntactic and semantic
structures required to map a network of interwoven thoughts
into an ordered sequence of symbols, namely, words. The
projection from the high-dimensional space of ideas onto
the single dimension represented by time can only be made
because language encodes meaning in word order, and word
relations. In particular, if specific words appear close to
each other, they are likely to construct a context, or a
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topic. The context is important in disambiguating among the
several meanings that words usually have. Therefore, language
constitutes a model system where individual units (words) can
be expected to exhibit high-order interactions.

Statistics and information theory have proved to be useful
in understanding language structures. Since Zipf’s empirical
law [3] on the frequency of words, and the pioneering work of
Shannon [4] measuring the entropy of printed English, a whole
branch of science has followed these lines [5–7]. In recent
years, the discipline gained momentum with the availability of
large data sources in the Internet [8–11].

In this paper, we quantify the amount of double and triple
interactions between words of a given text. In addition, by
means of a careful analysis of the structure of pairwise
interactions, we distinguish between pairs of variables that
interact directly, and pairs of variables that are only correlated
because they both interact with a third variable. With these
goals in mind, we define and measure dependencies between
words using concepts from information theory [12–14], and
apply them in later sections to the analysis of written texts.

II. STATISTICAL DEPENDENCIES AMONG THREE
VARIABLES

When it comes to quantifying the amount of statistical
dependence between two variables X1 and X2 with joint
probabilities p(x1,x2) and marginal probabilities p(x1) and
p(x2), Shannon’s mutual information [12,14]

I (X1; X2) =
∑
x1,x2

p(x1,x2) log2
p(x1,x2)

p(x1)p(x2)
(1)

stands out for its generality and its simplicity. Throughout this
paper, we take all logarithms in base 2, and therefore measure
all information-theoretical quantities in bits. In Fig. 1, pairwise
statistical dependencies are represented by the rods con-

(a)

(b)

(c)

(d)

FIG. 1. Different ways in which three variables may interact. (a)
The three variables are independent. (b) Only pairwise interactions
exist. These may involve 1, 2, or 3 links (from left to right). (c)
The three variables are connected by a single triple interaction. (d)
Double and triple interactions may coexist. The most general case is
illustrated in the bottom-right panel.

necting two variables (independent variables appear discon-
nected). Since I (X1; X2) is the Kullback-Leibler divergence
D[p(x1,x2) : p(x1)p(x2)] [14] between the joint distribution
p(x1,x2) and its independent approximation p(x1)p(x2), the
mutual information is always non-negative. Moreover, X1 and
X2 are independent if and only if their mutual information
vanishes.

Three variables, in turn, may interact in different ways;
Fig. 1 illustrates all the possibilities. In this section, we discuss
several quantities that measure the strength of the different
interactions. So far, no general consensus has been reached
regarding the way in which statistical dependencies between
three variables should be quantified [15–24]. One attempt in
the framework of information theory is the symmetric quantity
I (X1; X2; X3), sometimes called the co-information [14,20],
defined as

I (X1; X2; X3) = I (X1; X2) − I (X1; X2|X3)

= I (X2; X3) − I (X2; X3|X1)

= I (X3; X1) − I (X3; X1|X2), (2)

where I (Xi ; Xj |Xk) is the conditional mutual information

I (Xi ; Xj |Xk)=
∑

xi ,xj ,xk

p(xi,xj ,xk) log2

[
p(xi,xj |xk)

p(xi |xk)p(xj |xk)

]
. (3)

The co-information measures the way one of the variables
(no matter which) influences the transmission of information
between the other two. Positive or negative values of the co-
information have often been associated with redundancy or
synergy between the three variables, although one should be
careful to distinguish between several possible meanings of
the words synergy and redundancy (see later in this section,
and also [21,25]).

In an attempt to provide a systematic expansion of the
different interaction orders, Amari [19] developed an alter-
native way of measuring triple and higher-order interactions.
His approach unifies concepts from categorical data analysis
and maximum-entropy techniques. The theory is based on a
decomposition of the joint probability distribution as a product
of functions, each factor accounting for the interactions of
a specific order. The first term embodies the independent
approximation, the second term adds all pairwise interactions,
subsequent terms orderly accounting for triplets, quadruplets,
and so forth. This approach constitutes the starting point for
this work.

Given the random variables X1, . . . ,XN governed by a
joint probability distribution p(x1, . . . ,xn), all the marginal
distributions of order k can be calculated by summing the
values of the joint distribution over n − k of the variables.
Since there are n!/k!(n − k)! ways of choosing n − k variables
among the original n, the number of marginal distributions
of order k is n!/k!(n − k)!. Amari defined the probability
distribution p(k)(x1,...,xN ) as the one with maximum entropy
H (k)

max among all those that are compatible with all the
marginal distributions of order k. The maximization of the
entropy under such constraints has a unique solution [26]:
the distribution allowing variables to vary with maximal
freedom, inasmuch they still obey the restriction imposed
by the marginals. Hence, p(k)(x1, . . . ,xN ) contains all the
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statistical dependencies among groups of k variables that
were present in the original distribution, but none of the
dependencies involving more than k variables.

The interactions of order k are quantified by the decrease
of entropy from p(k−1) to p(k), which can be expressed as a
Kullback-Leibler divergence

D(k) = D[p(k) : p(k−1)]

= H (k−1)
max − H (k)

max, (4)

where H (k)
max is the entropy of pk . The last inequality of Eq. (4)

derives from the generalized Pythagoras theorem [19]. As
increasing constraints cannot increase the entropy, D(k) is
always non-negative.

The total amount of interactions within a group of N vari-
ables, the so called multi-information �(X1, . . . ,XN ) [16], is
defined as the Kullback-Leibler divergence between the actual
joint probability distribution and the distribution correspond-
ing to the independent approximation. The multi-information
naturally splits in the sum of the different interaction orders

�12...N = D[p(x1, . . . ,xN ) : p(x1) . . . p(xN )]

=
N∑

k=2

D(k). (5)

For two variables, there are at most pairwise interactions.
Their strength, measured by D(2), coincides with Shannon’s
mutual information

D
(2)
12 = D[p(2)(x1,x2) : p(1)(x1,x2)]

= D[p(x1,x2) : p(x1)p(x2)]

= I (X1; X2) (6)

since the distribution with maximum entropy that is compatible
with the two univariate marginals is p(1)(x1,x2) = p(x1)p(x2).
This result is easily obtained by searching for the joint distri-
bution that maximizes the entropy using Lagrange multipliers
for the constraints given by the marginals [27].

When studying three variables X1, X2, and X3, we
separately quantify the amount of pairwise and of triple
interactions. In this context, D

(3)
123 measures the amount of

statistical dependency that cannot be explained by pairwise
interactions, and is defined as

D
(3)
123 = D[p(x1,x2,x3) : p(2)(x1,x2,x3)]

= H (2)
max − H123, (7)

where H123 represents the full entropy of the triplet
H (X1,X2,X3) calculated with p(x1,x2,x3).

The distribution p(2)(x1,x2,x3) contains up to pairwise
interactions. If the actual distribution p(x1,x2,x3) coincides
with p(2)(x1,x2,x3), there are no third-order interactions.
Within Amari’s framework, hence, if D

(3)
123 > 0, some of the

statistical dependency among triplets cannot be explained in
terms of pairwise interactions.

Both I (X1; X2; X3) and D
(3)
123 are generalizations of the

mutual information intended to describe the interactions
between three variables, and both of them can be extended
to an arbitrary number of variables [19,28]. It is important
to notice, however, that the two quantities have different

meanings. A vanishing co-information [I (X1; X2; X3) = 0]
implies that the mutual information between two of the
variables remains unaffected if the value of the third variable
is changed. However, this does not mean that it suffices
to measure only pairs of variables, and thereby obtain the
marginals p(x1,x2),p(x2,x3),p(x3,x1), to reconstruct the full
probability distribution p(x1,x2,x3). Conversely, a vanishing
triple interaction (D(3)

123 = 0) ensures that pairwise measure-
ments suffice to reconstruct the full joint distribution. Yet,
the value of any of the variables may still affect how much
information is transmitted between the other two.

We shall later need to specify the groups of variables whose
marginals are used as constraints. We therefore introduce a new
notation for the maximum-entropy probability distributions
and for the maximum entropies. Let V represent a set
of k variables. For example, if k = 3, we may have V =
{X1,X2,X3}. When studying the dependencies of kth order,
we shall be working with all sets V1, . . . ,Vr that can be formed
with k variables, where r = n!/k!(n − k)! Let pV1,V2,...,Vr

be
the probability distribution of maximum entropy HV1,V2,...,Vr

that satisfies the marginal restrictions of V1,V2, . . . ,Vk . Under
this notation,

p(2)(x1,x2,x3) = p12,13,23,

p(1)(x1,x2,x3) = p1,2,3. (8)

Respectively, the maximum entropies are H12,13,23 and
H1,2,3 = H (X1) + H (X2) + H (X3). Under the present nota-
tion, the mutual information I (Xi ; Xj ) is Iij , and the co-
information of three variables X1,X2,X3 is written as I123.

The amount of pairwise interactions D
(2)
ij between variables

i and j is known to be bounded by [14]

D
(2)
ij = Iij � min(Hi,Hj ). (9)

We have derived an analogous bound for triple interactions
(see Appendix A). The resulting inequality links the amount
of triple interactions D

(3)
123 with the co-information I123:

D
(3)
123 � min{I12,I23,I31} − I123 � min{H1,H2,H3}. (10)

These bounds imply that pure triple interactions, appearing in
the absence of pairwise interactions [see Fig. 1(c)], may only
exist if the co-information I123 is negative.

A. Characterization of the joint probability distribution of
variables with high triple interactions

Two binary variables X1 and X2 can have maximal mutual
information I12 = 1 bit in two different situations. For the
sake of concreteness, assume that Xi = ±1. Maximal mutual
information is obtained either when X1 = X2 or when X1 =
−X2. In other words, the joint probability distribution must
either vanish when the two variables are equal, or when the
two variables are different, as illustrated in Fig. 2(a). If the
mutual information is high, though perhaps not maximal, then
the two variables must still remain somewhat correlated, or
anticorrelated. The joint probability distribution, hence, must
drop for those states where the variables are equal or different.
In this section, we develop an equivalent intuitive picture of
the joint probability distribution of triplets with maximal (or,
less ambitiously, just high) triple interaction.
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(a)

(b)

(c)

(d)

FIG. 2. (a) Density plot of the two bivariate probability distribu-
tions that have I = 1 bit. Dark states have zero probability, and white
states have p(x1,x2) = 1/2. (b) Density plot of the two trivariate
probability distributions with D

(3)
ijk = 1 bit. Dark states have zero

probability, and white states have p(x1,x2,x3) = 1/4. (c) Gradual
change between a uniform distribution and a XOR distribution, for
different values of θ [Eq. (13)]. (d) Amount of triple interactions as a
function of the parameter θ .

Consider three binary variables X1,X2,X3 taking values ±1
with joint probability distribution

p(x1,x2,x3) =
{

1/4 if x1x2x3 = −1,

0 if x1x2x3 = 1
(11)

as illustrated in Fig. 2(b), left side. For this probability distri-
bution, the three univariate marginals p1,p2,p3 are uniform,
that is, pi(1) = pi(−1) = 1/2. Moreover, the three bivariate
marginals p12,p23,p31 are also uniform: pij (1,1) = pij (1, −
1) = pij (−1,1) = pij (−1, − 1) = 1/4. The full distribution,
however, is far from uniform since only half of the eight
possible states have nonvanishing probability.

The probability distribution of Eq. (11) is henceforth called
a XOR distribution. The name is inspired by the fact that two
independent binary variables X1 and X2 can be combined
into a third dependent variable X3 = X1 XOR X2, where XOR
represents the logical function exclusive OR. If the two input
variables have equal probabilities for the two states ±1, then

Eq. (11) describes the joint probability distribution of the triplet
(X1,X2,X3).

The maximum-entropy probability compatible with uni-
form bivariate marginals is uniform p(2)(x1,x2,x3) = 1/8. The
amount of triple interactions is therefore

D
(3)
123 = H12,13,23 − H123

= 3 bits − 2 bits = 1 bit, (12)

and D
(3)
123 = �123, i.e., all interactions are tripletwise and D

(3)
123

reaches the maximum value allowed for binary variables. Of
course, the same amount of triple interactions is obtained
for the complementary probability distribution (a so-called
negative XOR), for which p(x1,x2,x3) = 1/4 when

∏
i xi =

+1 [see Fig. 2(b), right side].
So far, we have demonstrated that XOR and −XOR

distributions contain the maximal amount of triple interactions.
Amari [19] has proved the reciprocal result: If the amount
of triple interactions is maximal, then the distribution is
either XOR or −XOR. We now demonstrate that if the joint
distribution lies somewhere in-between a uniform distribution
and a XOR (or a −XOR) distribution, then the amount of
triple interactions lies somewhere in-between 0 and 1, and the
correspondence is monotonic. To this end, we consider a family
of joint probability distributions parametrized by a constant
θ , defined as a linear combination of a uniform distribution
pu(x1,x2,x3) = 1/8 and a ±XOR distribution:

pθ (x1,x2,x3) = 1
8 (1 + x1x2x3 tanh θ ), (13)

where θ ∈ (−∞, + ∞). Varying θ from zero to ∞ shifts
the p(x1,x2,x3) from the uniform distribution pu to the XOR
probability of Eq. (11) [see Fig. 2(c)]. Negative θ values, in
turn, shift the distribution to −XOR. All the bivariate marginals
of the distribution pα(xi,xj ) are uniform, and equal to 1

4 . The
maximum-entropy model compatible with these marginals
is the uniform distribution pu(x1,x2,x3) = 1/8. Hence, the
amount of triple interactions is

D
(3)
123(θ ) = 1

2 [(1 + tanh θ ) log2(1 + tanh θ )

+ (1 − tanh θ ) log2(1 − tanh θ )]. (14)

As shown in Fig. 2(d), this function is even, and varies
monotonically in each of the intervals (−∞,0) and (0, + ∞).
Therefore, there is a one to one correspondence between the
similarity between the ±XOR distribution and the amount of
triple interactions. The same result is obtained for arbitrary
binary distributions, as argued in the last paragraph of
Appendix B. As a consequence, we conclude that for binary
variables, the ±XOR distribution is not just one possible
example distribution with triple interactions, but rather, it
is the only way in which three binary variables interact in
a tripletwise manner. If bivariate marginals are kept fixed,
and triple interactions are varied, then the joint probability
distribution either gains or loses a XOR-like component, as
illustrated in Fig. 2(c).

III. TRIPLET ANALYSIS OF PAIRWISE INTERACTIONS

In a triplet of variables X1,X2,X3, three possible binary
interactions can exist, quantified by I (X1; X2), I (X2; X3),
and I (X3; X1). In this section, we characterize the amount of
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overlap between these quantities, we bound their magnitude,
and we learn how to distinguish between reducible and
irreducible interactions.

A. Redundancy among the three mutual informations within a
triplet

In the preceding section, we saw that when there are
only two variables X1 and X2, D

(2)
12 coincides with the

mutual information I (X1; X2). When there are more than
two variables, D(2) can no longer be equated to a mutual
information since there are several mutual informations in play,
one way per pair of variables: I (X1; X2),I (X2; X3), etc. In this
section, we derive a relation between all these quantities for
the case of three interacting variables. The multi-information
of Eq. (5) decomposes into pairwise and triple interactions

�123 = D
(2)
123 + D

(3)
123, (15)

from where we arrive at

D
(2)
123 = �123 − D

(3)
123

= I12 + I13 + I23 − I123 − D
(3)
123. (16)

The total amount of pairwise dependencies, hence, is in general
different from the sum of the three mutual informations.
That is, depending on the sign of D

(3)
123 + I123, the amount of

pairwise interactions D
(2)
123 can be larger or smaller than

∑
Iij .

This range of possibilities suggests that
∑

Iij − D
(2)
123 may be

a useful measure of the amount of redundancy or synergy
within the pairwise interactions inside the triplet, and this is
the measure that we adopt in this paper.

This measure coincides with the co-information when there
are no triple dependencies, that is, when D

(3)
123 = 0. In this case,

I123 = I12 + I13 + I23 − D
(2)
123. (17)

Under these circumstances, a positive value of I123 implies
that the sum of the three mutual informations is larger than the
total amount of pairwise interactions. The content of the three
informations, hence, must somehow overlap. This observation
supports the idea that a positive co-information is associated
with redundancy among the variables. In turn, a negative
value of I123 implies that although the maximum-entropy
distribution compatible with the pairwise marginals is not
equal to p1p2p3 (that is, although D

(2)
123 > 0), when taken two

at a time, variables do look independent (that is, pij ≈ pipj ).
The statistical dependency between the variables of any pair,
hence, only becomes evident when fixing the third variable.
This behavior supports the idea that a negative co-information
is associated with synergy among the variables.

Of course, when D
(3)
123 > 0, the co-information is no longer

so simply related to concepts of synergy and redundancy, not
at least, if the latter are understood as the difference between
the sum of the three informations and D

(2)
123. However, we

show later that in actual data, one can often find a close
connection between the amount of triple interactions and the
co-information.

B. Triangular binary interactions

In a group of interacting variables, if X1 has some degree
of statistical dependence with X2, and X2 has some statistical

dependence with X3, one could expect X1 and X3 to show
some kind of statistical interaction, only due to the chained
dependencies X1 → X2 → X3, even in the absence of a direct
connection. Here, we demonstrate that indeed, two strong
chained interactions necessarily imply the presence of a third
connection closing the triangle. In the pictorial representation
of the middle column of Fig. 1, this means that if only two
connections exist (there is no link closing the triangle), then the
two present interactions cannot be strong. For example, with
binary variables, it is not possible to have I12 = I23 = 1 bit,
and I31 = 0. The general inequality reads as (see the derivation
in Appendix A)

I12 + I31 − H1 � I23. (18)

C. Identification of pairwise interactions that are mediated
through a third variable

In the preceding section, we demonstrated that the chained
dependencies X1 ↔ X2 ↔ X3 can induce some statistical
dependency between X1 and X3. On the other hand, it is also
possible for X1 and X3 to interact directly, inheriting their
interdependence from no other variable. These two possible
scenarios cannot be disambiguated by just measuring the
mutual information between pairs of variables. In Appendix C,
we explain how, starting from the most general model
(illustrated in the lower-right panel of Fig. 1), the analysis of
triple interactions allows us to identify those links that can be
explained from binary interactions involving other variables,
and those that cannot: the so-called irreducible interactions.
Briefly stated, we need to evaluate whether the interaction
between X1 and X2 (captured by the bivariate marginal p12)
and the interaction between X2 and X3 (captured by p23)
suffice to explain all pairwise interactions within the triplet,
including also the interaction between X1 and X3. To that end,
we compute a measure of the discrepancy between the two
corresponding maximum-entropy models

�12
13,23 = D[p12,13,23 : p13,32] = H13,23 − H12,13,23. (19)

The amount of irreducible interaction, that is, the amount of bi-
nary interaction between X1 and X3 that remains unexplained
through the chain X1 ↔ X2 ↔ X3 is defined as

�13 = min
{
I12,�

12
13,23

}
. (20)

In Sec. V D, we search for pairs of variables with small
irreducible interaction, by computing �13 using all possible
candidate variables X2 that may act as mediators. From them,
we keep the one giving minimal irreducible interaction, that
is, the one for which the chain X1 ↔ X2 ↔ X3 provides the
best explanation for the interaction between X1 and X3.

IV. MARGINALIZATION AND HIDDEN VARIABLES

Imagine we have a system of N variables that are linked
through just pairwise interactions. In such a system, for
any pair of variables Xi,Xj there is a third variable Xk

producing a vanishing irreducible interaction �ij = 0. By
selecting a subset of k variables, we may calculate the kth
order marginal pk , by marginalizing over the remaining N − k

variables. As opposed to the original multivariate distribution
pN , the marginal pk may well contain triple and higher-order
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HERNÁNDEZ, ZANETTE, AND SAMENGO PHYSICAL REVIEW E 92, 022813 (2015)

(a) (b)

FIG. 3. Examples illustrating the effects of marginalization in
a pair of variables (a) or a triplet (b). In each case, the variable
represented in black drives the other slave variables, which do not
interact directly with each other (top). However, after marginalizing
over the driving variable, a statistical dependence between the
remaining variables appears. The new interaction can be pairwise
(a), or pairwise and tripletwise (b).

interactions. In other words, there may be pairs of variables
Xi,Xj that belong to the subset for which there is no
other third variable Xk in the subset producing a vanishing
irreducible interaction �ij = 0. The high-order interactions in
the subset, therefore, result from the fact that not all interacting
variables are included in the analysis. Therefore, triple and
higher-order statistical dependencies do not necessarily arise
due to irreducible triple and higher-order interactions: just
pairwise interactions may suffice to induce them, whenever
we marginalize over one or more of the interacting variables.
An example of this effect is derived in Appendix D. In the
same way, marginalization may introduce spurious pairwise
interactions between variables that do not interact directly,
as illustrated in Fig. 3. Therefore, even if, by construction,
we happen to know that the system under study can only
contain pairwise statistical dependencies, it may be important
to compute triple and higher-order interactions, whenever one
or a few of the relevant variables are not measured.

Virtually all scientific studies focus their analysis in only
a subset of all the variables that truly interact in the real
system. However, as stated above, neglecting some of the
variables typically induces high-order correlations among the
remaining variables. If such correlations are interpreted within
the reduced framework of the variables under study, they are
spurious, at least, in the sense that there may well be no
mechanistic interaction among the selected variables that gives
rise to such high-order interactions. However, if interpreted
in a broader sense (i.e., a mathematical fact, that may result
as a consequence of marginalization), high-order correlations
may be viewed as a footprint of the marginalized variables,
which are often inaccessible. As such, they constitute an
opportunity to characterize those parts of the system that
cannot be described by the values of the recorded variables.

In the next section, we analyze the statistics of written lan-
guage. We select a group of words (each selected word defines
one variable), and we measure the presence or absence of each
of these words in different parts of the book. For simplicity,
not all the words in the book are included in the analysis,
so the discarded words constitute examples of marginalized
variables. However, marginalized variables are not always as
concrete as nonanalyzed words. Other nonregistered factors
may also influence the presence or absence of specific words,
for example, those related to the thematic topic or the style
that the author intended for each part of the book. These
aspects are latent variables that we do not have access to by
simply counting words. An analysis of the high-order statistics
among the subgroup of selected words may therefore be useful
to characterize such latent variables, which are otherwise
inaccessible through automated text analysis.

As an ansatz, we can imagine that each topic affects
the statistics of a subgroup of all the words. The fact that
topics are not included in the analysis is equivalent to having
marginalized over topics. By doing so, we create interactions
within the different subgroups of words. If the topics do
not overlap too much, from the network of the resulting
interactions, we may be able to identify communities of words
highly connected, that are related to certain topics. Variations
in the topic can therefore be diagnosed from variations in the
high-order statistics.

V. OCCURRENCE OF WORDS IN A BOOK

Before analyzing a book, all its words are taken in
lowercase, and spaces and punctuation marks are neglected.
Each word is replaced by its base uninflected form using the
WORDDATA function from the program Mathematica [29]. In
this way, for instance, a word and its plural are considered as
the same, and verb conjugations are unified as well.

In order to construct the network of interactions between
words, we analyze the probability that different words appear
near to each other. The notion of neighborhood is introduced
by segmenting each book into parts. A book containing M

words is divided into P parts, so that there are M/P words
per part. We analyze the statistics of a subgroup of K selected
words w1, . . . ,wK , and define the variables

Xi =
{

1 if the word wi appears in a part,
−1 otherwise. (21)

The different parts of the book constitute the different
samples of the joint probability p(x1,x2, . . . ,xK ) or of the
corresponding marginals. Notice that if word wi is found in
a given part of the book, in that sample Xi = 1, no matter
whether the word appeared one or many times. The marginal
probability p(xi) = (〈xi〉 + 1)/2 is the average frequency with
which word wi appears in one (any) of the parts. Here, we
analyze up to triple dependencies, so we work with joint
distributions of at most three variables p(xi,xj ,xk).

In this work, we choose to study words that have an
intermediate range of frequencies. We disregard the most
frequent words (which are generally stop words such as
articles, pronouns, and so on) because they predominantly play
a grammatical role, and only to a lesser extent they influence
the semantic context [30]. We also discard the very infrequent
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words (those appearing only a few times in the whole book)
because their rarity induces statistical inaccuracies due to
limited sampling [31]. Discarding words implies that only
a seemingly small number of words are analyzed, allowing
us to illustrate the fact that even a small number of variables
suffice to infer important aspects of the structure of the network
of statistical dependencies among words. In other types of
data, the limitation in the number of variables may arise from
unavoidable technical constraints, and not from a matter of
choice.

We analyzed two books, On the Origin of Species (OS) by
Charles Darwin and The Analysis of Mind (AM) by Bertrand
Russell, both taken from Project Gutenberg website [32].
Each book was divided into P = 512 parts. In OS, each part
contained 295 words, and in AM, 175. Parts should be big
enough so that we can still see the structure of semantic
interactions, and yet, the number of parts should not be too
small as to induce inaccuracies due to limited sampling.

In both books, we analyzed K = 400 words with interme-
diate frequencies. For OS, the analyzed words appeared a total
number of times ni , with 33 � ni � 112. For AM, we analyzed
words with 21 � ni � 136. Since for these words the number
of samples (parts) is much greater than the number of states
(2), entropies were calculated with the maximum likelihood
estimator. We are able to detect differences in entropy of 0.01
bits, with a significance of α = 0.1% (see Appendix E for an
analysis of significance). A Bayesian analysis of the estimation
error due to finite sampling was also included, allowing us to
bound errors between 0.005 bits and 0.01 bits, depending on
the size of the interaction (see Appendix F).

A. Statistics of single words

Before studying interactions between two or more
words, we characterize the statistical properties of single
words. Specifically, we analyze the frequency of individual
words, and their predictability of its presence in one (any) part
of the book. Within the framework of information theory, the
natural measure of (un)predictability is entropy.

Using the notation pi = p(xi), the entropy Hi is

Hi = −(1 − pi) log2(1 − pi) − pi log2 pi. (22)

This quantity is maximal (H = 1 bit) when pi = 1/2, that is,
when the word wi appears in half of the parts. When wi appears
in either most of the parts or in almost none, Hi approaches
zero. For all the analyzed words, 0 < pi < 1/2. In this range,
the entropy H is a monotonic function of pi .

The value of pi , however, is not univocally determined by
the number ni of times that the word wi appears in the book. If
wi appears at most once per part, then pi = ni/P . If wi tends
to appear several times per part, then pi < ni/P .

In addition, one can determine whether the fraction of parts
containing the word is in accordance with the expected fraction
given the total number of times ni the word appears in the
whole book. If ni is half the number of parts (that is, ni =
P/2), then pi = 1/2 implies that the ni words are distributed
as uniformly as they possibly can: half of the parts do not
contain the word, and the other half contain it just once. If,
instead, ni = 100P , a value of pi = 1/2 corresponds to a

highly nonuniform distribution: the word is absent from half
of the parts, but it appears many times in the remaining half.

To formalize these ideas, we compared the entropy of each
selected word with the entropy that would be expected for a
word with the same probability per part 1/P , but randomly
distributed throughout the book and sampled ni times. The
binomial probability of finding the word k times in one (any)
part is

p̂i(k) = ni!

k!(ni − k)!

(
1

P

)k (
1 − 1

P

)ni−k

. (23)

Equation (23) describes an integer variable. In order to
compare with Eq. (22), we define Yi as the binary variable
measuring the presence or absence of word wi in one (any)
part, assuming that the word is binomially distributed. That is,
Yi = 0 if k = 0, and Yi = 1 if k > 0. The marginal probability
of p(Yi = 1) is p̂(k > 0) = 1 − (1 − 1/P )ni . This formula is
also obtained when all the words in the book are shuffled.
In this case, p̂i(k) follows a hypergeometric distribution,
such that p̂i(k = 0) = (M−ni

M/P
)/( M

M/P
) = ∏ni−1

j=0 (1 − M/P

M−j
) ∼=

(1 − 1/P )ni , where the last equality holds when M 
 ni .
Hence, the entropy of the binary variable associated with

the binomial (or the shuffled) model is

H binomial
i (Yi) = −(1 − 1/P )ni log2[(1 − 1/P )ni ]

− [1 − (1 − 1/P )ni ] log2[1 − (1 − 1/P )ni ].

(24)
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FIG. 4. Entropy of the 400 selected words in each book (one data
point per word), compared to the expected entropy for a binomial
variable with the same total count ni (continuous line), as a function of
the total count. Entropies are calculated with the maximum likelihood
estimator. The analytical expression of Eq. (24) is represented with
the black line, and the gray area corresponds to the percentiles 1%–
99% of the dispersion expected in the binomial model, when using
a sample of ni words. Data points outside the gray area, hence, are
highly unlikely under the binomial hypothesis, even when allowing
for inaccuracies due to limited sampling. (a) OS. (b) AM.
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TABLE I. Words with highest difference in entropy �Hi =
H binomial

i − Hi , expressed in bits. Left: OS. Right: AM.

Word (OS) �Hi Word (AM) �Hi

bee 0.369 proposition 0.335
cell 0.365 appearance 0.315
slave 0.302 box 0.299
stripe 0.295 datum 0.258
pollen 0.275 animal 0.240
sterility 0.266 objective 0.215
pigeon 0.252 star 0.211
fertility 0.248 content 0.206
nest 0.242 emotion 0.205
rudimentary 0.234 consciousness 0.204

The entropy of the variable Xi measured from each book is
compared with the entropy of the binomial-derived variable Yi

in Fig. 4.
Even if the process were truly binomial, the estimation of

the entropy may still fluctuate, due to limited sampling. In
Fig. 4, the gray region represents the area expected for 98%
of the samples under the binomial hypothesis. We expect 1%
of the words to fall above this region, and another 1%, below.
However, in OS, out of 400 words, none of them appears above,
and 15% appear below. In AM, the percentages are 0% and
16.5%. In both cases, the outliers with small entropy are 15
times more numerous than predicted by the binomial model,
and no outliers with high entropy were found, although 4
were expected for each book. In both books, hence, individual
word entropies were significantly smaller than predicted by the
binomial approximation, implying that they are not distributed
randomly: In any given part, each word tends to appear many
times, or not at all.

A list of the words with highest difference (H binomial
i −

Hi) is shown in Table I. Interestingly, most of these words
are nouns, with the first exception appearing in place 10 (the
adjective “rudimentary”) for OS. As reported previously [30],
words with relevant semantic content are the ones that tend to
be most unevenly distributed.

B. Statistics of pairs of words

In principle, there are two possible scenarios in which the
mutual information between two variables can be high: (a) in

each part of the book the two words either appear together or
are both absent, and (b) the presence of one of the words in
a given part excludes the presence of the other. In Table II,
we list the pairs of words with highest mutual information.
In all these cases, the two words in the pair tend to be either
simultaneously present or simultaneously absent [option (a)
above].

The words listed in Table II are semantically related. In
both books, there are examples of words that participate in
two pairs: cell is connected to both bee and wax (OS) and
mnemic is connected to both phenomena and causation (AM).
These examples keep appearing if the lists of Table II are
extended further down. Their structure corresponds to the
double links in the second and third columns of Figs. 1(b)
and 1(d). As explained in Sec. III B, two strong binary links
imply that the third link closing the triangle should also be
present. Indeed, in OS, america is linked to both south and
north (rows 2 and 4 of Table II). The words south and north
are also linked to each other, but they only appear in position
32, with a mutual information that is approximately 1

3 of the
two principal links. A similar situation is seen with bee and
wax, both connected to cell, although the direct connection
between bee and wax appears sooner, in position 16. The same
happens in AM with phenomena and causation, linked through
mnemic, which are connected to each other in the 39th place
of the list. These examples pose the question as to whether
the weakest link in the triangle could be entirely explained
as a consequence of the two stronger links. A triplet analysis
of pairwise interactions allows us to assess whether such is
indeed the case (see Sec. III C).

We finish the pairwise analysis with a graphical repre-
sentation of the words that are most strongly linked with
pairwise connections (upper part of the insets of Fig. 5). Words
belonging to a common topic are displayed in different gray
levels (different colors, online), and tend to form clusters.
In each cluster (insets in Fig. 5), triplets of words often form
triangles of pairwise interactions. In the central plot, and in the
top graph of each inset, the width of each link is proportional
to the mutual information between the two connected words.

C. Statistics of triplets

In order to determine whether triple interactions provide
a relevant contribution to the overall dependencies between

TABLE II. Pairs of words with highest mutual information. Left: OS. Right: AM. The values are in bits.

wi (OS) wj (OS) Iij Hi Hj wi (AM) wj (AM) Iij Hi Hj

male female 0.242 0.504 0.409 1 2 0.191 0.330 0.337
south america 0.210 0.480 0.560 truth falsehood 0.110 0.429 0.191
reproductive system 0.152 0.290 0.474 response accuracy 0.107 0.306 0.264
north america 0.133 0.429 0.560 depend upon 0.107 0.229 0.616
cell wax 0.122 0.201 0.150 mnemic phenomena 0.095 0.423 0.516
bee cell 0.120 0.330 0.201 mnemic causation 0.090 0.423 0.381
fertile sterile 0.120 0.345 0.330 consciousness conscious 0.089 0.504 0.352
deposit bed 0.109 0.322 0.314 door window 0.086 0.160 0.128
fertility sterility 0.109 0.352 0.322 stimulus response 0.085 0.474 0.306
southern northern 0.107 0.306 0.264 pain pleasure 0.079 0.171 0.181
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FIG. 5. (Color online) Central graph: network of pairwise interactions in OS. Width of links proportional to the mutual information between
the two connected words. Insets: detail of selected subnetworks. Top graph: links proportional to mutual information. Bottom graph: links
proportional to irreducible interaction.

words, we compare D
(3)
ijk with the total amount of pairwise

interactions within the triplet D
(2)
ijk .

Figure 6 shows the fraction of the total interaction that
corresponds to triple dependencies D

(3)
ijk/�ijk as a function of

the total interaction �ijk . The data extend further to the right,
but the triplets with �ijk > 0.05 bits are less than 0.4%. The
first thing to notice is that the values of the total interaction
(values in the horizontal axis) are approximately an order of
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FIG. 6. Fraction of the total interaction within a triplet �ijk that
corresponds to tripletwise dependencies D

(3)
ijk/�ijk as a function of

the total interaction. The gray level of each data point is proportional
to the (logarithm of the) number of triplets at that location (scale
bars on the right). �ijk values above 0.01 bits are significant (see
Appendix). (a) OS. (B) AM. Dashed line: averages over all triplets
with the same �ijk .

magnitude smaller than the entropies of individual words (see
Fig. 4). Individual entropies range between 0.1 and 0.9 bits, and
interactions are around 0 and 0.05. In order to get an intuition
of the meaning of such a difference, we notice that if we want to
know whether words wi , wj , and wk appear in a given part, the
number of binary questions that we need to ask is (depending
on the three chosen words) between 0.3 and 2.7 if we assume
the words are independent (Hi + Hj + Hk), and between 0.25
and 2.2, if we make use of their mutual dependencies (Hi +
Hj + Hk − �

(3)
123). Although sparing ≈10% of the questions

may seem a meager gain, it can certainly make a difference
when processing large amounts of data.

The second thing to notice is that triple interactions are by
no means small as compared to the total interactions within
the triplet since there are triplets with D

(3)
ijk/�ijk of order

unity. In other words, triple interactions are not negligible,
when compared to pairwise interactions. In the triplets with
D

(3)
ijk/�ijk ≈ 1, the departure from the independent assump-

tion resembles the XOR behavior (or −XOR), in the sense
that the states (x1,x2,x3) for which

∏
i xi = 1 have a lower

(higher) probability than the states with
∏

i xi = −1. The first
case corresponds to triplets where all pairs of words tend to
appear together, but the three of them are rarely seen together.
In the second case, the words tend to appear either the three
together or each one on its own, but they are rarely seen in
pairs.

Table III shows the words with largest triple information.
These interactions are well above the significance threshold of
0.01 bits. The triplet (america, south, north) is similar to a XOR
gate, so these words tend to appear in pairs but not all three

TABLE III. Words with highest triple information D
(3)
ijk . The first

column displays a tag that allows us to identify each triplet in Fig. 7.
The last column indicates whether the triplet behaves as a XOR gate
(+1) or a −XOR (−1). Top: OS. Bottom: AM. Values in bits.

Tag i j k D
(3)
ijk Iijk D(3)/� XOR

α america south north 0.065 0.005 0.16 +1
β inherit occasional appearance 0.040 −0.040 0.96 −1
γ action wide branch 0.036 −0.036 0.93 −1
δ europe perhaps chapter 0.036 −0.036 0.90 −1
ε climate expect just 0.035 −0.035 0.97 −1
α speak causation appropriate 0.041 −0.041 0.93 −1
β sense perception natural 0.033 −0.033 0.90 −1
γ since actual wholly 0.033 −0.033 0.90 −1
δ wish me connection 0.033 −0.033 0.95 −1
ε consist should life 0.033 −0.033 0.92 −1

together. In certain contexts, the author uses the combination
south america, in other contexts, north america, and yet in
others, he discusses topics that require both south and north
but no america.

Most of the triplets in Table III have triple information
values that are equal in magnitude to the co-information
but with opposite sign, that is, D

(3)
ijk ≈ −Iijk . Besides, for

these triplets, most of the interaction is tripletwise, that
is, D

(3)
ijk/�123 ≈ 1. To determine whether such tendency is

preserved throughout the population, in Fig. 7 we plot the triple
information D

(3)
ijk as a function of the co-information Iijk for

all triplets. We see that the vast majority of triplets are located
along the diagonal D

(3)
ijk ≈ −Iijk . In order to understand why

(a)

(b)
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FIG. 7. Triple information D3
ijk as a function of the co-

information Iijk for all triplets. The gray level of each data point
is proportional to the (logarithm of the) number of triplets at that
location (scale bars on the right). �ijk values above 0.01 bits are
significant (see Appendix). (a) OS. (b) AM.

022813-10



INFORMATION-THEORETICAL ANALYSIS OF THE . . . PHYSICAL REVIEW E 92, 022813 (2015)

this is so, we analyze how data points are distributed when
picking a triplet of words randomly. The cases (a), (b), (c),
and (d) of Fig. 1 are ordered in decreasing probability. That is,
picking three unrelated words [Fig. 1(a)] has higher probability
that picking a triplet with only pairwise interactions [Fig. 1(b)],
which is still more likely than picking a case with only triple
interactions [Fig. 1(c)], leaving the case of double and triple
interactions [Fig. 1(d)] as the least probable. All cases with
no triple interaction [Figs. 1(a) and 1(b)] fall on the horizontal
axis D

(3)
ijk = 0 in Fig. 7. Therefore, in order to understand why

points outside the horizontal axis cluster along the diagonal,
we must analyze the triplets that do have a triple interaction
[Figs. 1(c) and 1(d)]. We begin with Fig. 1(c) because it has a
higher probability than Fig. 1(d). This case corresponds to
D

(3)
ijk > 0 and Iij = Ijk = Iki ≈ 0. It is easy to see that in

these circumstances, p2 ≈ pipjpk , and hence, D
(3)
ijk ≈ −Iijk .

We continue with the left column of Fig. 1(d) since having a
single pairwise interaction has higher probability than having
more. This case corresponds to D

(3)
ijk > 0, Iij = Ijk ≈ 0, and

Iki > 0, for some ordering of the indexes i,j,k. In these
circumstances, p2 ≈ pijpikpjk/pipjpk , which again implies
that D(3)

ijk ≈ −Iijk . Therefore, all triplets containing some triple
interaction and at most a single pairwise interaction fall along
the diagonal in Fig. 7. The only outliers are triplets with
D

(3)
ijk > 0 and at least two links with pairwise interactions,

which, as derived in Sec. III B, most likely contain also the
third pairwise link. Such highly connected triplets are typically
few.

From Eq. (16) we see that the triplets that are near
the diagonal are neither synergistic nor redundant, that is,
Iij + Ijk + Iki ≈ D

(2)
ijk . Those located above the diagonal

have redundant pairwise information(Iij + Ijk + Iki > D
(2)
ijk),

whereas those below are synergistic. In the two analyzed
books, very few (≈10) triplets satisfy

∑
Iij − D(2) < −0.01

bits. Contrastingly, ≈300 triplets have significant redundant
pairwise information (

∑
Iij − D(2) > 0.01 bits). The triplets

located far from the diagonal correspond, in both cases, to
those with a large total dependency (� � 0.1 bits). Table IV
displays the words with highest redundant pairwise interaction,
that is, Iij + Ijk + Iki − D

(2)
ijk . With the exception of data

TABLE IV. Triplets with highest redundant pairwise information
D

(3)
ijk + Iijk = Iij + Ijk + Iki − D

(2)
ijk . The first column displays a tag

that allows us to identify each triplet in Fig. 7. Top: OS. Bottom: AM.
Values in bits.

Tag i j k D
(3)
ijk + Iijk

ζ bee cell wax 0.089
α america south north 0.070
η glacial southern northern 0.065
θ mountain glacial northern 0.062
κ male female sexual 0.057
ζ leave door window 0.061
η stimulus response accuracy 0.039
θ mnemic phenomena causation 0.038
κ truth false falsehood 0.036
λ place 2 1 0.027

TABLE V. Pairs of words with lowest irreducible interaction. The
first column displays a tag that allows us to identify each triplet in
Fig. 7. Top: OS. Bottom: AM. Values in bits.

i j Iij �ij kmed

ζ bee wax 0.093 0.003 cell
α south north 0.071 0.001 america
λ continent south 0.032 0.001 america
μ lay wax 0.032 0.000 cell
ν southern arctic 0.031 0.001 northern
θ phenomena causation 0.042 0.004 mnemic
η stimulus accuracy 0.039 0.000 response
λ place 2 0.028 0.000 1
μ proposition falsehood 0.024 0.002 truth
ν proposition door 0.022 0.000 window

point α (america, south, north), the triplets that have highest
redundancy tend to be in the lower right part of Fig. 7, whereas
the ones with highest triple interaction lie in the upper left
corner.

D. Identification of irreducible binary interactions

Using the tools of Sec. III C, here we identify the pairs of
words that interact only because the two of them have strong
binary interactions with a third word. In the first place, the
pairs of words whose mutual information is larger than the
significance level (0.01 bits) are selected. For those pairs,
the irreducible interaction is calculated by considering all
other candidate intermediary words, and selecting the one that
minimizes Eq. (20). We observe that many pairs have a low
irreducible interaction, implying that their dependency can be
understood by a path that goes through a third variable Xk ,
such as

p(xi,xj ) ≈
∑
xk

p(xi,xk)p(xk,xj )

p(xk)
. (25)

In these situations, the behavior of the pair {Xi,Xj } can
be predicted from the dependency between {Xi,Xk} and the
dependency between {Xk,Xj }.

In Table V, we list the pairs (i,j ) of words that have smallest
irreducible interaction, including the third word (k) that acts
as a mediator. In these triplets, most of the interaction between
words wi and wj is explained in terms of wk . Mediators tend
to have a high semantic content, and to provide a context
in which the other two words interact. Besides, the triplets
(i,j,k) in Table V tend to cluster in the lower right corner of
Fig. 7, implying that pairs of words share redundant mutual
information.

The number of pairs with significant mutual information
(i.e., Iij > 0.01 bits), and whose interaction is explained at
least in a 90% through a third word (i.e., �ij/Iij < 0.1) is
higher in the book OS (108) than in book AM (19). Out of
the 108 pairs of OS, 16 are explained through the word cell,
12 through america, 8 through northern, 6 through glacial, 6
through sterility, and so on. The fact that specific words tend
to mediate the interaction between many pairs suggests that
they may act as hubs in the network.

022813-11
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In the lower parts of the insets of Fig. 5 we see example
networks of irreducible interactions. When compared with the
network of mutual informations (upper part of the insets), the
irreducible network contains weaker bonds, as expected, since
by definition �ij cannot be larger than Iij . In the figure, we
can identify some of the pairs of Table V, whose interaction is
mediated by a third word. Such pairs appear with a significantly
weaker bond in the lower panel, as for example, bee wax
(mediator = cell, OS), and stimulus accuracy (mediator =
response, AM). Moreover, one can also identify the pairs
whose interaction is intrinsic (that is, not mediated by a
third word) as those where the link in the top panel has
approximately the same width as in the bottom panel. Notable
examples are male-female (OS) and depend-upon (AM).

VI. CONCLUSIONS

In this paper, we developed the information-theoretical
tools to study triple dependencies between variables, and
applied them to the analysis of written texts. Previous studies
had proposed two different measures to quantify the amount
of triple dependencies: the co-information Iijk and the total
amount of triple interactions D(3). Given that there is a certain
controversy regarding which of these measures should be
used, it is important to notice that Iijk is a function of three
specific variables X1,X2,X3, whereas D(3) is a global measure
of all triple interactions within a wider set of N variables,
with N � 3. Therefore, it only makes sense to compare the
two measures when D(3) is calculated for the same group of
variables as Iijk , which implies using N = 3.

The two measures have different meanings. Whereas the
co-information quantifies the effect of one (any) variable
in the information transmission between the other two, the
amount of triple interactions measures the increase in entropy
that results from approximating the true distribution pijk by
the maximum-entropy distribution that only contains up to
pairwise interactions. When studied with all generality, these
two quantities need not be related, that is, by fixing one of them,
one cannot predict the value of the other. When restricting
the analysis to binary variables, however, a link between them
arises. Three binary variables are characterized by a probability
distribution over 23 possible states. Due to the normalization
restriction, the distribution is determined once the probability
of seven states are fixed. Choosing those seven numbers is
equivalent to choosing the three entropies Hi,Hj ,Hk , the three
mutual informations Iij ,Ijk,Iki , and one more parameter. This
extra parameter can be either the co-information Iijk (in which
case the triple interaction D(3) is fixed) or the triple interaction
D(3) (in which case the co-information Iijk is fixed). Hence,
although in general the co-information and the amount of triple
interactions are not related to one another, for binary variables,
once the single entropies and the pairwise interactions are
determined, Iijk and D(3) become linked. In this particular
situation, hence, there is no controversy between the two
quantities because they both provide the same information,
only with different scales.

Moreover, we have shown that when pooling together all
the triplets in the system, and now without fixating the value
of individual entropies or pairwise interactions, Iijk and D(3)

often add up to zero. This effect results from the fact that most

triplets contain at most a single pairwise interaction. Hence, for
most of the triplets the two measures provide roughly the same
information. The exception involves the triplets containing at
least two binary interactions, which are likely to contain all
three interactions, in view of Sec. III B.

One could repeat the whole analysis presented here, but
with Xi = number of times the word appeared in a given part
(instead of the binary variable appeared or not appeared).
This choice would transform the binary approach into an
integer description, which could potentially be more accurate,
if enough data are available. It should be borne in mind,
however, that the size of the space grows with the cube of the
number of states, so serious undersampling problems are likely
to appear in most real applications. We choose here the binary
description to ensure good statistics. In addition, this choice
allowed us to (a) relate triple interactions with the ±XOR gate,
and (b) related the co-information with the amount of triple
interactions.

In this work, we studied interactions between words in
written language through a triple analysis. This approach
allowed us to accomplish two goals. First, we detected pure
triple dependencies that would not be detectable by studying
pairs of variables. Second, we determined whether pairwise
interactions can be explained through a third word.

We found that, on average, 11% and 13% of the total
interaction within a group of three words is pure tripletwise.
On average, triple dependencies are weaker than pairwise
interactions. However, in 7% (OS) and 9% (AM) of the total
number of triplets, triple interactions are larger than pairwise.
Although this is a small fraction of all the triplets, all the
400 selected words participate in at least one such triplet.
Hence, if word interactions are to be used to improve the
performance in a Cloze test, triple interactions are by no means
negligible.

We believe that in particular for written language the pres-
ence of triple interactions is mainly due the marginalization
over the latent topics. For example, the triplet (america,
south, north) resembles a XOR gate, so variables tend to
appear two at a time, but not alone, nor the three together.
Imagine we include an extra variable (this time, a nonbinary
variable), specifying the geographic location of the phenomena
described in each part of the book. The new variable would
take one value in those parts where Darwin describes events of
North America, another value for South America, and yet other
values in other parts of the globe. If these topiclike variables are
included in the analysis, the amount of high-order interactions
between words is likely to diminish because complex word
interactions would be mediated by pairwise interactions
between words and topics. However, since topiclike variables
are not easily amenable to automatic analysis, here we have
restricted the study to wordlike variables. We conclude that
high-order interactions between words is likely to be the
footprint of having ignored (marginalized) over topiclike
variables.
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APPENDIX A: MATHEMATICAL PROOFS

1. Derivation of the bound in Eq. (10)

As imposing more restrictions cannot increase the entropy,
H12,23,31 � H12,23. Using the fact that H12,23 = H12 + H23 −
H2 (see Appendix B), it follows from Eq. (7) that

D
(3)
123 � H12,23 − H123,

(A1)
D

(3)
123 � I13|2.

This inequality is tight since a probability distribution exists
for which the equality is fulfilled: when H12,23 = H12,23,31,
that is, when p12,23,31(x1,x2,x3) = p12 p23/p2.

The derivation can be done removing any of the restrictions
V ∈ {12,13,23}. Therefore,

D
(3)
123 � min{I12|3,I23|1,I13|2},

(A2)
D

(3)
123 � min{I12,I13,I23} − I123,

where I123 is the co-information. From Eq. (A2), it also follows
that

D
(3)
123 � min{H1,H2,H3}. (A3)

2. Derivation of Eq. (18)

Inserting the upper bound of Eq. (A1) in Eq. (16),

I12 + I23 + I31 = I123 + D
(2)
123 + D

(3)
123

� I123 + D
(2)
123 + I23|1

= I23 −��I23|1 + D
(2)
123 +��I23|1. (A4)

Therefore,

I12 + I31 � D
(2)
123. (A5)

In addition, since reducing the number of marginal restric-
tions cannot diminish the entropy of the maximum-entropy
distribution

D
(2)
123 = −H [p12,23,31] + H1 + H2 + H3

� −H [p23] + H1 + H2 + H3

= I23 + H1. (A6)

Combining Eqs. (A5) and (A6),

I12 + I31 − H1 � I23.

Therefore, if I12 and I31 are large, I23 cannot be too small.

APPENDIX B: MAXIMUM-ENTROPY SOLUTION

The problem of finding the probability distribution that
maximizes the entropy under linear constrains, such as fixing
some of the marginals, has a unique solution [26]. Although
no explicit closed form is known for the case where each
variable varies in an arbitrary domain, there are procedures,
for example the iterative proportional fitting [26], that converge
to the solution.

In some special cases, a closed form exists. For example,
when the univariate marginals are fixed, the solution is
the product of such marginals. Another case is when we
look for the maximum-entropy distribution of three variables

p̂(x1,x2,x3) that satisfies two constraints, for example p(x1,x2)
and p(x2,x3), out of the three bivariate marginals. Posing
the maximization problem through Lagrange multipliers, we
obtain a solution of the form

p̂(x1,x2,x3) = f1(x1,x2)f2(x2,x3). (B1)

If we enforce the marginal constraints and the normalization,
we get

p̂(x1,x2,x3) = p(x1,x2)p(x2,x3)

p(x2)
, (B2)

which is known as the pairwise approximation. The entropy
of this distribution is

H [p̂] = H12,23 = H12 + H23 − H2. (B3)

Next, we derive the solution p(2)(x1,x2,x3) in the special
case of three binary variables (Xi = ±1). This solution
has maximum entropy and satisfies the three second-order
marginal constrains p(x1,x2), p(x1,x2), and p(x2,x3). In prin-
ciple, eight variables need to be determined, one for the prob-
ability of each state. However, considering the normalization
condition, the constraints on the three univariate marginals,
and on the three bivariate marginals, we are left with only
a single free variable. As shown in previous studies [18,19],
the problem reduces to finding the root of a cubic equation.
Since we are interested in comparing this solution with the
joint probability p(x1,x2,x3), a convenient and conceptually
enlightening way of expressing the solution p(2)(x1,x2,x3), as
in the work of Martignon [18], is

p(2)(x1,x2,x3) = p(x1,x2,x3) − δ
∏

i

xi, (B4)

where the value of δ is such that the probabilities remain in the
simplex, that is, p(2)(x) ∈ [0,1]. For the marginals, we get

p(2)(xi,xj ) = p(2)(xi,xj ,1) + p(2)(xi,xj , − 1)

= p(xi,xj ,1) + p(xi,xj , − 1) − δ + δ

= p(xi,xj ). (B5)

The value of δ is obtained from∏
x/

∏
i xi=1

p(2)(x1,x2,x3) =
∏

x/
∏

i xi=−1

p(2)(x1,x2,x3), (B6)

condition ensuring that the coefficient accounting for the
triple interaction in the log-linear model vanishes [19].
Equation (B6) reduces to the previously mentioned cubic
equation on δ.

If the solution is δ = 0, then the probability p is the one
with maximum entropy. Otherwise, the probability p departs
from p(2), implying that, up to a certain degree, the multivariate
distribution resembles either the XOR gate, or its opposite.

We close this section by discussing the effect of varying
the amount of triple interactions while keeping all bivariate
marginals fixed, as discussed in Sec. II A. There, we proved
that when p(x1,x2,x3) took the shape of Eq. (13), then the
amount of triplet interactions was a measure of the similarity
between the joint distribution and a ±XOR distribution. Here,
we extend this result to arbitrary distributions. We have
demonstrated here that p(x1,x2,x3) can always be written as
p(x1,x2,x3) ∝ p(2)(x1,x2,x3) + δx1x2x3, where p(2)(x1,x2,x3)
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is the maximum-entropy model compatible with the bivariate
marginals of the original distribution, and δ is a certain
constant. Amari showed that if δ = 0, there are no triple
interactions. Pushing his argument further, here we notice
that if the bivariate marginals are kept fixed, the only way
of changing the amount of triple interactions is to vary the
value of δ. The size of δ determines the degree of similarity
between p(x1,x2,x3) and a ±XOR distribution. Therefore,
once the bivariate marginals are fixed, the only parameter that
can be manipulated in order to change the amount of triple
interactions is the one that quantifies the size of the ±XOR
component.

APPENDIX C: IRREDUCIBLE INTERACTIONS

Following the ideas from [22,33], we wish to detect whether
the statistical dependencies among a group of variables V =
{X1, . . . ,Xk} contain all possible interactions, or whether some
of the interactions can be derived from others. All possible
interactions are defined by the power set of V , that is, the
set whose elements are all the possible subsets of elements of
V . If some interactions can be explained in terms of others,
then some groups of variables in V are independent from
other groups, and the set that defines all present interactions is
smaller than the power set. To identify the subsets of variables
whose dependencies suffice to explain all interactions, we
propose different structured sets � = {U1,U2, . . . ,U�}, where
each Ui = {Xi1 , . . . ,Xik } is itself a set of variables that may or
may not belong to V . Each set � is a candidate explanation
of the statistical structure in V . Within the maximum entropy
approach, for each proposed � we calculate

�V
� = D[p�∪V : p�]

= H� − H�∪V , (C1)

where we are using the notation described in the previous sec-
tion, so that p� is the maximum-entropy distribution compati-
ble with the marginals of the groups of variables U1,U2, . . . ,U�

contained in �, and p�∪V is the maximum-entropy distribution
compatible with the marginals of U1, . . . ,U�,V . If �V

� is zero,
then p�∪V = p�, and the joint probability of the variables
V can be derived from �. This means that the statistical
dependencies among the groups that compose � suffice to
explain the statistical structure among the groups that compose
V , even if the former contains interactions whose order is
smaller than the number of elements in V .

In the simplest example, we want to decide whether the
statistical structure in the pairwise marginal p12 = p(X1,X2)
may or may not be explained by the univariate marginals p1 =
p(X1) and p2 = p(X2). In this case, V = {X1,X2} and � =
{U1,U2}, with U1 = {X1},U2 = {X2}. When calculating the
union � ∪ V , we notice that here the sign ∪ represents a union
of marginals, not a union of sets. The bivariate marginal p12

contains the univariate marginals p1 and p2, so � ∪ V = V .
Hence,

�12
1,2 = D[p12 : p1,2] = I (X1; X2). (C2)

If �12
1,2 = 0, the entire statistical structure within V is ac-

counted for by the two independent variables X1 and X2.

In a more complex example, we may wish to de-
termine whether the statistical dependencies between the
variables X1, X2, and X3 can be explained by just first-
and second-order interactions. We define V = {X1,X2,X3}
and � = {U1,U2,U3}, with U1 = {X1,X2}, U2 = {X2,X3},
U3 = {X3,X1}. The triple marginal p123 contains all pairwise
marginals p12, p23, and p31, so again, � ∪ V = V . Therefore,

�123
12,13,23 = D[p123 : p12,13,23] = D

(3)
123. (C3)

If �123
12,13,23 = 0, pairwise interactions suffice to explain all the

statistical structure in V .
A less ambitious goal would be to determine whether the

statistical dependence between X1 and X2 is mediated by
a third variable X3. We hence define V = {X1,X2}, � =
{U1,U2}, and U1 = {X1,X3}, U2 = {X3,X2}. The union of
marginals is now � ∪ V = {V,U1,U2} = V , so in this case,
�12

13,23 is given by Eq. (19).
The set � constitutes a candidate explanatory model for

the statistical dependencies within V . The aim is to find the
simplest set � for which �V

� = 0. The search for such �,
however, has to be done within the power set of the set that
includes all the variables in the system, so the number of candi-
date � sets grows exponentially with the number of variables.
Since for a large system the search becomes computationally
intractable, here we restrict the analysis to the study of pairwise
dependencies, that is, sets V with just two elements. Moreover,
we search for explanatory models that attempt to reproduce all
the statistical structure in V by means of pairwise interactions
with a third variable, as in Eq. (19). A similar approach,
but within a different theoretical framework, has been proved
useful in disambiguating couplings in oscillatory systems [34].
We define the amount of irreducible interaction between the
variables Xi and Xj as the amount of statistical dependencies
that remain unexplained by the optimal minimal model, that
is,

�ij = min
{
�

ij

i,j , min
k

{
�

ij

ik,kj

}}
= min

{
Iij , min

k

{
�

ij

ik,kj

}}
= min

{
Iij , min

k
{Hik,kj − Hij,jk,ki}

}
. (C4)

The index k ranges through all the variables that do not
coincide with i or j (k = i,k = j ). By defining �ij as a
Kullback-Leiber divergence, its non-negativity is ensured.
Besides, the minimization in Eq. (C4) ensures that �ij is
upper bounded by the mutual information, that is, �ij � Iij .
Expanding �

ij

ik,kj ,

�
ij

ik,kj = Hik + Hkj − Hk − Hij,jk,ki

= Hik + Hjk − Hk − Hijk + Hijk − Hij,jk,ki

= Iij |k − D
(3)
ijk. (C5)

Therefore, if there are not triple interactions within the
whole set of variables, then �ij correspond to conditioning
the mutual information between i and j with every other
possible variable k, and looking for the minimum. We can
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rewrite Eq. (C4) as

�ij = Iij − �
(

max
k

{
Iijk + D

(3)
ijk

})
= Iij − �

(
max

k

{
Iij + Ijk + Iki − D

(2)
ijk

})
, (C6)

where �(x) is the Heaviside step function. In this sense,
we are looking for a triplet that has maximal redundancy,
understanding redundancy as

∑
I − D(2).

APPENDIX D: EXAMPLE OF MARGINALIZATION
EFFECTS

Consider four binary variables Xi = ±1, which can be
thought of as spins, with only pairwise interactions between
X4 and each of the other three variables. The fourth variable is
in the up state with probability (1 + e−2β )−1. Here, we focus
in negative β values, which favor the down state. The joint
probability can be written as a log-linear model [17,19]

ln p(x1,x2,x3,x4) = βx4 + x1x4 + x2x4 + x3x4 − ψ

= (β + x1 + x2 + x3)x4 − ψ, (D1)

where β < 0 is the field acting on X4, and ψ is the
normalization constant. Marginalizing over X4, we obtain

p(x1,x2,x3) = cosh(β + x1 + x2 + x3)∑
x′ cosh(β + x ′

1 + x ′
2 + x ′

3)
. (D2)

With this probability we are able to calculate the interactions
�123, D

(2)
123, and D

(3)
123 as a function of β.

In Fig. 8, we see the multi-information �123, the amount
of pairwise interactions in the triplet D

(2)
123, and the triple

information D
(3)
123 as a function of the field β acting on X4.

As stated above, �123 = D
(2)
123 + D

(3)
123. All of these quantities

are obtained from the marginal probabilities p(x1,x2,x3) given
by Eq. (D2) (see Appendix B). When the field is strong
(β → −∞), the total amount of interaction vanishes, as all
spins align in the down state. For small values of the field, the
amount of interactions is large, and can be explained almost
entirely by pairwise dependencies. However, for intermediate
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FIG. 8. Interactions �123, D(2)
123, and D

(3)
123 as a function of the field

β acting on X4.

values of the field (see inset of Fig. 8), which corresponds
to the fourth spin aligned downwards most of the time, the
triple information is crucial to understand the structure of
dependencies within the group of remaining variables. In this
paper, we argue that in the case of written language, the topics
or latent variables that affect the occurrence of words are likely
to present the same kind of behavior, that is, they tend to be
inactive most of the time. And when they are active, they tend
to favor the occurrence of specific groups of words.

APPENDIX E: SIGNIFICANCE TEST

We want to assess whether a probability distribution of three
variables p(x) is explained or not by the simpler maximum-
entropy model p(2)(x), obtained after measuring only the
pairwise marginal probabilities. That is, taking the maximum-
entropy model as the null hypothesis H0, and considering
as the alternative hypothesis H1 the one in which there is a
triple dependency, we want to calculate the plausibility of the
distribution p(x). In statistics, a usual way of comparing two
models, one of which is nested within the other, is a likelihood
ratio test.

If we take N samples, then the likelihood ratio λ is
given by

λ = P (x1, . . . ,xN |H1)

P (x1, . . . ,xN |H0)

=
∏N

i=1 p(xi)∏N
i=1 p(2)(xi)

. (E1)

Considering N → ∞ and using Sanov’s theorem [14], it
follows

log2(λ) = ND[p : p(2)]. (E2)

In addition, the result by Wilks [35] implies that, neglecting
terms of order N−1/2,

2 log2(λ) = χ2
d , (E3)

that is, the logarithm of the likelihood tends to a χ2 distribution,
where the number of degrees of freedom d equals the
difference in the numbers of parameters between the models.
Combining these two results, we conclude that under the null
hypothesis,

D[p : p(2)] = χ2
1

2N
, (E4)

where the χ2 distribution has one degree of freedom. Taking
a significance of α = 0.1% and N = 512, we reject the null
hypothesis if D[p : p(2)] � 0.01 bits. An analogous analysis is
done when evaluating the significance of D[pij,ik,jk : pik,jk],
with the same result.

APPENDIX F: ERROR ESTIMATION

The estimation of the error of our measures is done by a
Bayesian approach [31]. Estimation problems are dominated
by finite sampling in the probabilities of the different states.
On the one side, we have the true probability q governing
the outcome of the experiment, whose coordinates refer to
the S possible states of the system (in our case to the eight
states for three binary variables). On the other side, there is the
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frequency count f = ni/n, where ni is the number of times the
state i occurs, and N is the total number of measurements. The
probability of measuring f given that the data are governed by
q is the multinomial probability

p(f|q) = N !
∏

i

q
ni

i

ni!
= N !

∏
i

q
Nfi

i

(Nfi)!
. (F1)

We have no access to q, we can only measure f. We therefore
need the probability that the true distribution be q given that f
was measured, that is, the probability density P (q|f). Through
Bayes’ rule,

P (q|f) = p(f|q)P (q)

p(f)

= exp (−ND[f : q])P (q)

Z
, (F2)

where P (q) is the prior probability distribution for q, and Z
is the normalization over the domain of q. For the estimation
of the error, and in the limit of a large number of samples, the
result does not depend on the choice of the prior, as we show
next.

If we need to estimate some function of the probabilities
W (q), the variance of the estimate is

σ 2
W = 〈W 2〉 − 〈W 〉2, (F3)

where the average is over P (q|f). In our case, we are interested
in the triple information W (q) = D[q : q(2)], where q(2) is the
maximum-entropy probability compatible with the second-
order marginals.

From [31] it follows that, in the limit N 
 S and to a first
order in 1/N ,

σ 2
W ≈

∑
i

(
∂W

∂qi

)2∣∣∣∣
f

fi(1 − fi)

N

− 2
∑

i

∑
j<i

(
∂W

∂qi

∂W

∂qj

)∣∣∣∣
f

fifj

N
+ O(N−2)

= ∇qW
t · Σ · ∇qW, (F4)

where the covariance matrix of the probabilities Σ is

Σij =
{

fi (1−fi )
N

if i = j,

− fifj

N
if i = j.

(F5)

Due to finite sampling, the frequencies fi may fluctuate. From
Eq. (F4) we see that we only need the covariance matrix and
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FIG. 9. (Color online) Standard deviation of the triple informa-
tion D3

ijk as a function of the D3
ijk , for the triplets that satisfy

D3
ijk > 0.01. (a) OS. (b) AM. The dashed line indicates the identity.

the gradient of W (q) evaluated in f in order to transform the
variance of the vector f along different directions of the simplex
into variance in W . It is important to notice that the error in
W is of order 1/

√
N , which means that if we want to reduce

the error by half, we need to increase the number of samples
fourfold.

In our case, the gradient ∇qW is difficult to calculate,
but we can obtain the result from Eq. (F4) numerically.
Given the frequency f, first we calculate the eigenvalues and
eigenvectors from the covariance matrix Σ given by Eq. (F5).
One nondegenerate eigenvector is orthogonal to the simplex,
and has a zero eigenvalue. The remaining eigenvectors vk

belong to the simplex and all have positive eigenvalues σ 2
k ,

equal to the variances in the corresponding directions. Finally,
making a small change ε in the frequencies along these
directions, we obtain the change �Wk = W (f + εvk) − W (f),
so that

σ 2
W = (�W )2 ≈ 1

ε2

S−1∑
k=1

�W 2
k σ 2

k , (F6)

where every σ 2
k is in the order of 1/N .

Figure 9 shows the standard deviation of D3
ijk obtained by

this method as a function of D3
ijk for the triplets that satisfy

D3
ijk > 0.01, for both books. The error lies between 0.005 bits

and 0.01 bits.
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