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Abstract
We present a simple approach to calculate the thermodynamic properties of single Kondo
impurities including orbital degeneracy and crystal field effects (CFE) by extending a previous
proposal by Schotte and Schotte (1975 Phys. Lett. 55A 38). Comparison with exact solutions
for the specific heat of a quartet ground state split into two doublets shows deviations below
10% in the absence of CFE and a quantitative agreement for moderate or large CFE. As an
application, we fit the measured specific heat of the compounds CeCu2Ge2, CePd3Si0.3,
CePdAl, CePt, Yb2Pd2Sn and YbCo2Zn20. The agreement between theory and experiment is
very good or excellent depending on the compound, except at very low temperatures due to
the presence of magnetic correlations (not accounted for in the model).
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(Some figures may appear in colour only in the online journal)

1. Introduction

In the last decades, heavy fermion systems and intermediate
valence compounds have attracted considerable attention
because of their fundamental importance in modern solid
state physics [1]. Different ingredients contribute to the
complexity of these fascinating systems: the presence of
strong Kondo interactions, the level structure originated in
crystal field effects (CFE) including different hybridization
strengths with the conduction band, and possible coherence
effects introduced by the periodicity of the lattice and intersite
magnetic interactions.

Usually above a certain coherence temperature, several
Ce [2, 3] and Yb [4–6] compounds, for example, can be
described by an impurity Anderson model or the impurity
Kondo model, which is the integer-valent limit of the former
when the magnetic configuration dominates. These systems
behave as conventional Fermi liquids [7], although with a
very large effective mass m∗ [8, 9]. Other systems display
non-Fermi-liquid behavior [10], but they are outside the scope
of this work.

The impurity Anderson model and several variants
of it have been solved exactly using the Bethe-ansatz
technique [11–19, 22]. Desgranges and Schotte have
calculated the specific heat for the spin-1/2 Kondo
model solving numerically the resulting system of integral
equations [16]. Exact results in the presence of crystal
field have been reported by several authors [17–19, 22]. In
particular, Desgranges and Schotte calculated the specific heat
of a system of two doublets [17].

A limitation of these exact solutions when CFE are
present is that the hybridization of different multiplets are
considered to be the same, which usually is not the case
in real systems. Another drawback is that to calculate
thermodynamic quantities, the Bethe-ansatz leads to a set
of integral equations, which should be solved numerically,
rendering it very difficult to use the exact solutions as a tool
to fit experimental data. The numerical renormalization group
(NRG) is a very accurate numerical technique which has the
advantage over the Bethe-ansatz that there are no restriction
for the impurity Hamiltonian [20]. For example, an Anderson
model that mixes a doublet with either a singlet or a triplet can
be exactly solved [13], but not when both singlet and triplet
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are present, while the NRG can treat the complete model
and describe the quantum phase transition between singlet
and doublet ground states [21]. However, the calculations are
numerically demanding. To the best of our knowledge neither
exact results nor NRG has been used to fit experimental results
in which non-trivial CFE are present.

Recent increases in the available experimental data of
physical properties at intermediate temperature (T > 10 K)
on intermetallic compounds renders necessary the analysis of
experimental data with the inclusion of CFE.

In the absence of crystal field, Schotte and Schotte
proposed a simplified approach based on the resonant level
model to interpret experiments of spin-1/2 Kondo systems in
a magnetic field [23]. The theory assumes a linear increase
of the slitting of the peaks with magnetic field, which is only
approximately true according to Bethe-ansatz results [24]. In
spite of this fact, the authors were able to fit the magnetization
of Fe impurities in Ag as a function of magnetic field
and the magnetic susceptibility as a function of temperature
very accurately [23]. For the specific heat, the comparison
between this approach with exact solutions shows an excellent
agreement [16].

In this work we extend the approach to include CFE
and apply the results to interpret the specific heat of several
Ce and Yb compounds, for which one expects that single
impurity behavior in the Kondo limit (oxidation state near
Ce3+ or Yb3+) and Fermi-liquid physics applies down to low
temperatures. The approximations are described in section 2.
The resulting approximate analytical results are compared
with available exact results in section 3. In section 4 we apply
our approach to four Ce (CeCu2Ge2,CePd3Si0.3, CePdAl and
CePt) and two Yb (Yb2Pd2Sn and YbCo2Zn20) compounds.
We summarize our results in section 5.

2. Approximations

We start from a generalization of the approach proposed
by Schotte and Schotte [23] to the case of two doublets
split by a crystal field 1 or, alternatively, a quadruplet with
different g factors, in both cases with the possible application
of a magnetic field. Specifically we postulate the following
simplified form of the free energy for two doublets:

F2d = −kBT
∫
∞

−∞

dω
1
π

[
00

(ω −10)
2
+ 02

0

+
01

(ω −11)
2
+ 02

1

]
ln(e

ω
2kBT + e

−
ω

2kBT ), (1)

where 0i represents the half-width at half-maximum of the
spectral density for the doublet i, 11 = 1 + s, where s ≤ 00
is a small shift that can be disregarded for the moment, 10 =

B0 + s and B0 = g0µBB̃ is the Zeeman magnetic splitting of
the doublet ground state by the magnetic field B̃. The Kondo
temperature TK is proportional to the width of the ground-state
doublet, 00, as explained in detail in section 3. Note that in
the absence of hybridization effects (i.e. 0i = 0), except for

an irrelevant additive constant, F2d reduces to

F0
2d = −kBT ln
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e
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)
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which corresponds to the free energy of two doublets
separated by an energy 1, both split by a magnetic field in
the same fashion. Although the latter fact is not realistic, for
the usual cases in which 1� B0, the individual levels of the
excited doublet have a similar population for all temperatures
and their magnetic splitting becomes irrelevant. The same
situation occurs for01� B0. Thus we expect that equation (1)
is a reasonable approximation in general.

An alternative scenario to which equation (1) can be
applied is a quadruplet split by a magnetic field. In that case
the corresponding energies are ±g0µBB̃/2 and ±g1µBB̃/2
and one should consider 01 = 00,11 = (g0+ g1)µBB̃/2 and
10 = (g0 − g1)µBB̃/2.

The integral in equation (1) with a cutoff D can be
expressed in terms of the Gamma function 0(x):

F2d = 2kBTRe
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)
. (3)

In practice, we find that for small bare splitting 1, it is
convenient to increase the position of both doublets by a shift
s with 0 < s ≤ 00. This can be understood as follows. For the
SU(2)model, the approximation of Schotte and Schotte seems
to be inspired by the fact that the electron spectral density
has a resonance centered at the Fermi energy, in such a way
that in the Kondo limit, with total electron occupation 1 at
the impurity, both spins have occupation 1/2. This becomes
clear in Fermi-liquid approaches, in which the resonance
near the Fermi energy can be accurately described [25, 26].
However, when the hybridization between the impurity and
conduction electrons is the same for both doublets and 1 =
0, the model has SU(4) symmetry [27–33], each fermion
should have an occupation near 1/4, and this means that the
resonance is displaced above the Fermi energy [31, 32]. For
general hybridizations and zero magnetic field, integrating
the spectral densities (in a similar way as in the slave-boson
mean-field approximation [32]), one finds that to enforce a
total occupation 1 (as corresponding to Ce and Yb impurities
in the Kondo limit) in a mean-field approach, the shift s should
satisfy

2
π

[
arctan

00

s
+ arctan

01

s+1

]
= 1, (4)

which is equivalent to

1011 = 0001, (5)

where we have used that 10 = s for B = 0. The extension
of this heuristic approach to finite magnetic field is beyond
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the scope of the present work. In any case the above equation
shows that s is negligible for large 1.

In Ce compounds, the Hund’s rules ground state with
total angular momentum j = 5/2 is split into a quartet and
a doublet, or three doublets depending on the point group
determined by the symmetry around the Ce atom. Therefore,
for a comparison with experiment, a third doublet should be
included. Note that including a third term between brackets in
equation (1) would mean that eight (not six) broadened levels
are considered (as it is clear taking all 0i = 0). Therefore,
a straightforward extension of this equation to include three
doublets is not possible. However, if the width of the levels 0i

is much smaller than the splitting 12 between the third and
the first doublet, we can take at high temperatures the simple
Schottky expression FS, which corresponds to all 0i = 0:

FS = −kBT ln
(

2c0 + 2c1e−
11
kBT + 2c2e−

12
kBT

)
,

ci = cosh(giµBB̃/2).
(6)

A similar reasoning can be followed for more doublets. This
leads to the following proposal to describe the free energy
for three doublets, or a quartet ground state and an excited
doublet:

F = F2d − F0
2d + FS. (7)

For small temperatures F2d dominates, while the remaining
two terms become important when kBT reaches values near
12. This will become apparent in section 4. Note that this
form ensures the correct limit (kB ln 6) for the entropy as T→
∞. For a ground-state doublet and an excited quadruplet, F2d
and F0

2d should be replaced by the corresponding expressions
for one doublet in which the terms containing 11 are absent.
Extension of equation (7) to include more doublets (like,
e.g., in the case of Yb systems with J = 7/2) with width much
smaller than its excitation energy is straightforward.

The specific heat and magnetic susceptibility of the
system can be obtained differentiating equation (7) [23]. Here
for later use, we give the expression of the specific heat at zero
magnetic field (B̃ = 0):

C = C2d −
1

kBT2

 12e−
1

kBT

(1+ e−
1

kBT )2

+ CS, (8)

where the specific heat for only two doublets or a quartet
C2d = −T∂2F2d/∂T2 becomes

C2d = −
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where ψ ′ is the derivative of the digamma function and CS is
the Schottky expression for the specific heat obtained deriving
equation (6):
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1
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For later use, we give here the coefficient γ of the first
term in the low-temperature expansion C = γT + O(T2) of
the specific heat:

γ =
πk2

B

3

1∑
j=0

0j

12
j + 0

2
j

. (11)

3. Comparison with exact solutions

While several works discuss the solution of the Bethe-ansatz
equations with CFE [17–19, 22], to the best of our knowledge,
the solution in a wide range of temperatures has been
reported only by Desgranges and Rasul [17]. These authors
calculated the specific heat as a function of temperature for
a quartet split into two doublets by an energy 1 and zero
magnetic field. For 1 = 0, this Kondo model has SU(4)
symmetry, which is reduced to SU(2) as soon as 1 > 0. This
SU(4)→ SU(2)model, and the corresponding (more general)
Anderson one, has become popular recently in the context of
nanoscopic systems [27–31, 33, 32]. It describes, for example,
quantum dots in carbon nanotubes, [27, 28, 30–32] and silicon
nanowires [33, 32] in the presence of a magnetic field and
interference effects in two-level systems [29, 34].

Before comparing the results of [17] with ours, it is
convenient to discuss briefly the meaning of the Kondo
temperature in systems with CFE.

3.1. The Kondo temperature

We define the Kondo temperature TK as the binding energy
of the ground-state singlet, as done for example in a
perturbative-renormalization-group study of the Kondo model
with CFE [35] or variational (non-perturbative) methods [6,
31]. Alternative definitions, like for example from the width
of the lowest peak in the spectral density [31, 32], temperature
dependence of transport properties [32, 36] or the linear term
in the specific heat [17], give the same result within a factor
of the order of 1, but the leading exponential dependence on
the parameters is the same. In the extreme limits in which
either no CFE are present or they are so large that only
the ground-state multiplet matters, the Kondo temperature is
given by the usual expression for an SU(N) Kondo model:

TSU(N)
K = D exp(−2ρJ/N), (12)

where N is the degeneracy of the ground state, D half the
bandwidth, J the exchange interaction and ρ the conduction
density of states at the Fermi level.

For the case of a quartet split into two doublets (the
SU(4) → SU(2) model mentioned above), using a simple
variational function, it has been found that the Kondo
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Table 1. Parameters 0i, 11 used in the fit of figure 1 in units of
TDR

K /3. The first column corresponds to the Kondo temperature
given by equation (13) and the last to the shift determined by
equation (5).

1 0.6TK 00 01 11 10

0 1/3 1/3 1/3 1/3 1/3
1 0.173 0.237 0.4 0.94 0.1009
2 0.118 0.14 0.47 1.75 0.0376
4 0.0806 0.078 0.55 3.49 0.0123

temperature as a function of the splitting 1 can be written
as [31]

TK(1)

TK(0)
=

√
1+ δ/d + δ2 − δ,

δ =
1

2TK(0)
, d =

D

2TK(0)
,

(13)

where, of course, TK(0) = TSU(4)
K and from the above

equations TK(∞) = TSU(2)
K .

Using the non-crossing approximation, the width of the
peak nearest to the Fermi energy of the spectral density has
been found to be accurately described by equation (13) within
a constant factor near 0.6 [31].

3.2. The specific heat for two doublets

The exact Bethe-ansatz solution of the specific heat of the
Kondo model for a quartet split into two doublets has been
reported by Desgranges and Rasul [17]. In figure 1 we
compare their results with our simplified proposal for the
specific heat, equation (9). The authors define their Kondo
temperature TDR

K by the condition that, in the SU(4) case
1 = 0, the term linear in temperature T in the specific heat
for T → 0 is γ = kBπ/TDR

K . In our case SU(4) symmetry
and equation (5) imply 10 = 11 = 00 = 01. For these
parameters, equation (11) gives γ = kBπ/(301). Comparing
this result with the corresponding one of Desgranges and
Rasul fixes 00 = TDR

K /3. Except for this, there are no
fitting parameters for zero splitting in our approach. Taking
into account this fact, we find that the agreement is very
satisfactory. Our approach underestimates the maximum in
the specific heat by about 10%, but the overall trend and the
low-temperature part are well reproduced. The comparison
is, however, much better when the splitting 1 reaches TK or
higher values. In fact, for large1, the lower peak corresponds
to the ordinary Kondo model with one doublet, for which the
approach works very well [16].

As soon as1 > 0, we use three parameters to fit the exact
results: both 0i and11, with the position of the lower doublet
10 = s determined by the condition (5). As discussed below,
the resulting parameters are consistent with expectations from
known results on the SU(4) → SU(2) symmetry breaking.
The fitting parameters are displayed in table 1, together with
the corresponding shift.

The first column of table 1 is an estimate of 00
based on the expected dependence of the Kondo temperature

Figure 1. Impurity contribution to the specific heat for a Kondo
model with two doublets. Full lines correspond to exact results
of [17] and dashed lines to our approach. The absolute maximum
displaces to higher temperatures with increasing 1.

with splitting, equation (13). Results using the non-crossing
approximation show that the width of the peak near the
Fermi energy in the spectral density is proportional to TK

for all 1 [31]. The proportionality factor for the charge
transfer energy used was found to be 0.606. We assume 00 =

0.6TK. Using this relation for 1 = 0, the ratio TSU(4)
K /TDR

K
is obtained, and for the other values of 1, equation (13) was
used, with a bandwidth 2D = 10TDR

K . Larger values of D lead
to lower values of TK but have little effect on the values for
1 ≥ 4TDR

K . As seen in table 1, the estimate of the width of the
lowest peak in the spectral density agrees with 00 within 30%,
while the values of 00 for different values of 1 vary by more
than a factor of 4. This is a strong indication that the value
of 00 that results from the fit is proportional to the binding
energy of the ground-state singlet.

Concerning 01, one observes a moderate increase as 1
increases, a fact also shared by the spectral density studied
before [31]. One way to understand this fact is to consider the
spectral density of the simplest SU(2) Anderson model in the
Kondo regime, under an applied magnetic field B (which, for
the peak at higher energies, is a simpler analog of the SU(4)
model under a magnetic or crystal field). Clearly, the width
of the resonance is proportional to TSU(2)

K for B = 0. As B
increases, the Kondo effect is progressively destroyed and for
very large B one expects that the width of the peak in the
spectral density is just the resonant level width, which is larger
than TK. This is consistent with Bethe-ansatz results [24].
These results also show that the position of the peak is
lower than the magnitude of the Zeeman term, but tends to
it for large B, in agreement with the fact that our fit gives
11 < 1 for 1 > 0. Calculations of the spectral density in
the SU(4)→ SU(2) case, show peaks above and below the
Fermi energy (depending on the component), with excitation
energies smaller than 1 [31], a fact also consistent with the
fitting results.
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4. Application to real systems

In this section, we apply our approach to interpret the specific
heat measured on four Ce and two Yb compounds at zero
applied magnetic field. These systems have an oxidation state
of the magnetic atom near Ce3+ or Yb3+ (they are in the
Kondo regime) and seem to display Fermi-liquid single-ion
behavior down to low temperatures. The Ce compounds
(CeCu2Ge2,CePd3Si0.3, CePdAl and CePt with increasing
Kondo temperature TK) order at low temperatures. Above
this ordering temperature, one expects that the system can be
described by a generalized impurity Kondo model, for which
our approach was developed. The Yb compounds that we
considered (Yb2Pd2Sn and YbCo2Zn20) do not order down
to very low temperatures.

As is known, the possibility of ordering depends
on the magnitude of the exchange interaction J between
localized spins and conduction electrons. For small J the
indirect Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange
interaction between localized spins is much larger than TK
and the system orders, while for large J single-ion Kondo
physics dominates down to zero temperature and the system
does not order. This is the basis of the so-called Doniach
phase diagram [37]. For only one doublet, the critical ordering
temperature TN as a function of J has been calculated using
the exact magnetic susceptibility of the impurity system and
treating the RKKY interaction at a mean-field level [38]. TN
first increases quadratically with J, reaches a maximum and
then decreases until it vanishes at a quantum critical point
J = Jc. Near this point obviously TN � TK, whereas for very
small J, TN� TK. In general we expect that our theory is valid
for T > TN, even if TN > TK as for the case of CeCu2Ge2
discussed below.

4.1. CeCu2Ge2

The structure of CeCu2Ge2 is tetragonal. Compounds with
this structure were intensively investigated after the discovery
of superconductivity in CeCu2Si2 [39]. The specific heat of
the Ge compound is reported in figure 1 of [40].

In figure 2 we fit the magnetic contribution to specific
heat data. The tetragonal symmetry, in particular the point
group symmetry D4h around the Ce3+ ions, implies that the
j = 5/2 ground-state multiplet splits into three doublets. Thus,
we can apply equations (8)–(10). In principle, our expression
for the specific heat has four fitting parameters (00, 01, 11
and 12). The shift 10 = s calculated with equation (5) is
very small and does not provide any significant change in the
fit. We have neglected it for all the Ce compounds studied.
In practice, however, we have used only the 0i as fitting
parameters, taking the same values of 1i as in the Schottky
expression with three doublets, equation (10), provided in [40]
to compare with the experimental results. This expression
overestimates the peak near 70 K by about 20% (see figure 1
of [40]) and underestimates the specific heat between 12 and
25 K. Instead, as is apparent in figure 2 above 12 K (where
the experimental curve has a kink), our fit is excellent and the
difference between experiment and the figure is less than the

Figure 2. Magnetic contribution to the specific heat as a function of
temperature of CeCu2Ge2. Squares: experimental results [40]. Full
line: our approach.

experimental error. Thus, the introduction of the widths 00
and 01 by our approach leads to a significant improvement
of the fitting expression with almost the same computational
cost.

The system orders antiferromagnetically at TN = 4.15 K.
Below 12 K, our fit deviates from experiment. This is probably
due to the onset of antiferromagnetic correlations between
Ce3+ ions which cannot be captured in an approach based on
a single impurity like ours. We have a similar limitation in the
fits described below. Since the data at very low temperatures
deviates from experiment, the reader might ask, how sensitive
the fit is to changes in 00 which, as discussed in section 3, is
proportional to the Kondo temperature TK. If 00 is increased
from 0.5 to 1 K, the specific heat C increases by about 15%
in the region between 12 and 25 K. If 00 = 2 K, C nearly
doubles for T = 12 K and lies above the experimental data for
T < 30 K.

4.2. CePd3Si0.3

CePd3 has a cubic structure and behaves as an intermediate
valence system. Doping with B or Si expands the lattice and
drives the system to the Kondo regime [41]. To fit the specific
heat, we have chosen CePd3Si0.3, because the subtraction
of the phonon contribution has been done by measuring the
specific heat of a La compound with a similar Si content,
LaPd3Si0.2. The specific heat of both compounds has been
measured by one of us [42]. The low-temperature behavior
for LaPd3Si0.2 has been fitted with an aT + bT3 dependence
to obtain the Debye temperature of a simple Debye model
for the phonon contribution to the specific heat [43]. Then,
the Debye expression for this contribution is subtracted from
the corresponding data for CePd3Si0.3 to obtain the magnetic
contribution Cm to the specific heat of this compound. The
result is represented in figure 3 together with our fit.

Since the point group around a Ce ion is Oh, we have
used a ground-state doublet and an excited quadruplet for the

5
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Figure 3. Magnetic contribution to the specific heat as a function of
temperature for CePd3Si0.3. Squares: experimental results [42]. Full
line: our approach.

fit, as described in section 2. Since we are not able to introduce
a width to the excited quadruplet within our approach, we
have only two fitting parameters, the width of the ground-state
doublet 00 and the position of the quadruplet 11. The fit is
very good for temperatures between 5 and 18 K. For T < 5 K,
as for the other compounds, the disagreement with experiment
is due to the effects of magnetic correlations. Above 30 K, the
dispersion of the experimental data is too large to allow us
to extract firm conclusions, but the agreement is reasonable.
Instead in the intermediate regime 18 K < T < 27 K the fit
lies above the experimental data. This is likely due to the lack
of broadening of the quadruplet in our approach. Some effects
of disorder due to random distribution of Si atoms at the center
of the cubic cage built by eight Ce3+ ions might also play a
role.

4.3. CePdAl

CePdAl is a heavy fermion system which crystallizes in the
hexagonal ZrNiAl structure and orders antiferromagnetically
at TN = 2.7 K [44]. The specific heat is reported in figure 4
of [44] together with a fit using a Schottky expression with
three doublets, equation (10). This fit falls clearly below the
experimental data for T < 50 K.

Our fit using equations (8)–(10) is displayed in figure 4
together with the experimental data. At T > 130 K, where the
experimental data seem to have more dispersion, our fit falls
slightly below the experimental data, which nevertheless show
more dispersion at high temperatures. The fit fails, of course,
near TN because it is based on a single-ion approach, which
cannot describe magnetic order. At intermediate temperatures
TN < T < 130 K, our fit is excellent.

Considering the whole range of temperatures, our fit
is again superior to the Schottky expression with a similar
computational effort.

Figure 4. Magnetic contribution to the specific heat as a function of
temperature for CePdAl. Squares: experimental results [44]. Full
line: our approach.

4.4. CePt

The crystal symmetry of CePt is orthorhombic. Thus, it
is another material in which the Ce3+ ions lie in low
symmetry sites and the j = 5/2 multiplet is split into three
doublets. The magnetic contribution to the specific heat C
has been measured in [45]. The data together with a Schottky
calculation (equation (10)) are presented in figure 2 of this
reference. As for CeCu2Ge2, this expression overestimates
C near the peak at about 75 K and underestimates it below
30 K. There is also a funny structure between 250 and
300 K in which the experimental data lie above the Schottky
expression.

The data are represented in figure 5 together with our
fit using equations (8)–(10). As before, the values of 11
and 12 were chosen the same as those proposed in [45]
from the fit using the Schottky expression and only two 0i
were varied. The fit is excellent except near or below the
ordering temperature (6.2 K) and near the above-mentioned
high-temperature structure.

We also display the contributions proportional to 00, 01
and the remaining term, which can be interpreted loosely3

as the contribution of each doublet to C. Specifically, the
dashed (dot-dashed) line corresponds to the terms containing
00 (01) in the expression of C2d (equation (9)), while the
dot-dot-dashed curve is the correction due to the third doublet
and corresponds to the two remaining terms of equation (8).

4.5. Yb2Pd2Sn

No magnetic transition is found above T = 0.5 K in
this compound [46] and therefore it is believed to be
a non-magnetic compound with J > Jc in the Doniach

3 The partition function and not the free energy is additive in terms of
the contributions of different states which mutually exclude each other.
Therefore, the contribution of each doublet to the specific heat is not well
defined.
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Figure 5. Magnetic contribution to the specific heat as a function of
temperature for CePt. Squares: experimental results [45]. Full line:
our approach. Dashed, dot-dashed and dot-dot-dashed curves
correspond to the contribution of the different doublets (see text and
footnote 3).

phase diagram [38]. It crystallizes in a tetragonal structure.
Therefore, the j = 7/2 ground state of Yb is split into
four doublets. Then, we can describe its specific heat with
equations (8) and (9), with equation (10) generalized to
contain an additional doublet at energy 13.

In contrast to the above Ce compounds, in both Yb
compounds that we considered, the splitting of the first excited
doublet is not small compared to the widths of the two lowest
lying levels, and therefore the shift s (which coincides with
10 in the absence of magnetic field) cannot be neglected. In
fact, using 10 given by equation (5) leads to a substantial
improvement of the fits as compared to 10 = 0.

The magnetic contribution to the specific heat (after
subtracting the specific heat of Lu2Pd2Sn) has been reported
by Kikuchi et al [46]. The authors also show in their figure
2 an interpretation of the data based on the sum of a Kondo
1/2 contribution plus a crystal-electric-field contribution with
three doublets, which clearly fall much below the data near
30 K. They suggest that taking the Kondo effect of excited
states into account would improve the description of the data.
This is indeed what we have done for the first excited state.

The comparison between these experiments and our
theory is shown in figure 6. The values of the different
1i are consistent with inelastic neutron scattering data of
a similar compound Yb2Pd2In with In instead of Sn [47].
The agreement is very good except above 100 K, where
some entropy is lacking in our approach. Presumably this is
due to the broadening of the two higher levels, particularly
the highest one, which are absent in our approach. These
broadenings would contribute to the entropy at smaller
temperatures than the position of the respective peaks at
12 and 13. In spite of this shortcoming, our fit is much
better to the curve presented in figure 2 of [46] in the whole
temperature range.

Figure 6. Magnetic contribution to the specific heat as a function of
temperature for Yb2Pd2Sn. Squares: experimental results [46]. Full
line: our approach.

Figure 7. Magnetic contribution to the specific heat divided by
temperature as a function of temperature for YbCo2Zn20. Squares:
experimental results [48]. Dashed line: our approach. Full line:
modification to simulate a width of the quadruplet (see text).

4.6. YbCo2Zn20

This heavy fermion compound is characterized by an
extremely large value of C/T at low temperatures. The
magnetic contribution to the specific heat has been measured
by Takeuchi et al [48] and the results are reproduced by
square symbols in figure 7. The compound is cubic and
therefore the J = 7/2 states of Yb are split into two doublets
(06 and 07) and a 08 quadruplet. Our fit indicates that the
latter lies at higher energy. Following our approach we used
then equations (8) and (9), but with CS replaced by the
corresponding term obtained by differentiating the free energy
FS for all 0i = 0, which in this case is

FS = −kBT ln(2+ 2e−
11
kBT + 4e−

12
kBT ). (14)

The resulting fit is shown by the dashed line of figure 7.
Clearly, the fit is very good at temperatures below 1 K, but

7
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fails between 1 and 10 K, slightly above the energy of the
quadruplet. We believe that the cause of this discrepancy is
the lack of broadening of this quadruplet in our theory. To
test this, we have replaced the last term of equation (14) by
a sum of four terms with equidistant energies Ek = 12 −

02(k − 3/2), k = 0–3, which simulates the effect of the
broadening (although naturally the queues of the distribution
are lost). This improves the experimental curve, except at
small temperatures as described above.

In contrast, the agreement at low temperatures, in which
the experimental C/T is rather flat, is a success of our
approach. The shift 10 given by equation (5) is essential to
reproduce this behavior. Using 10 = 0 leads to a too fast
decay of C/T with increasing temperature.

Concerning the extremely high value of the linear term
of the specific heat γ = 7.8 J (mol K2)−1, our result using
equation (11) and the parameters of the fit (given in the figure)
indicate that 5.3% of the observed γ is due to the first excited
doublet.

5. Summary and discussion

We have presented a simple approach to describe the
thermodynamics of Kondo impurities with several levels,
extending a previous proposal of Schotte and Schotte [23]. In
the absence of an applied magnetic field, a comparison with
available exact results indicates that the approach describes
properly the specific heat of systems with two doublets,
and accurately as long as the splitting is equal to or larger
than the Kondo temperature. The parameters of the fit are
related to fundamental quantities which describe the spectral
density of the system. In particular 00 is related to the Kondo
temperature.

Application to specific heat measurements of several
compounds with low symmetry around the Ce3+ ions
(CeCu2Ge2, CePdAl and CePt) provides an excellent fit at
temperatures above those at which magnetic correlations
between different Ce3+ ions become important. For the cubic
system CePd3Si0.3, our fit deviates above the experimental
results in a narrow range of intermediate temperatures. This
might be due to the limitations of our approach, which does
not include a broadening of excited quadruplets, or to effects
of disorder. In the case of the Yb compound YbCo2Zn20,
in which the position of the excited quadruplet is of the
order of its broadening, the effect of the lack of the latter
becomes evident in the fit. An artificial splitting of this
quadruplet improves the fit, but this does not represent the
actual physics of the hybridization of excited states with
conduction electrons. In contrast, the low-temperature part,
which shows an unusually flat C/T , is very well reproduced
by our approach. Finally for Yb2Pd2Sn, which has the largest
TK and a crystal field splitting of four doublets, our fit is very
good except at high energies, where it is likely that the effect
of broadening of excited states also plays a role.

For all the above systems our fit was superior
to alternative theoretical curves if available, and the
computational cost is very modest.

We conclude that the present approach provides a
flexible tool to properly interpret experimental results at
temperatures larger than those corresponding to the onset of
either coherence effects of the lattice or magnetic correlations.
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