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Membrane Solutions to Hořava Gravity
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Abstract—We have investigated purely gravitational membrane solutions to the Hořava nonrelativistic
theory of gravity with detailed balance in 3 + 1 dimensions. We find that for arbitrary values of the running
parameter λ > 1/3 there exist two branches of membrane solutions, and that in the special case λ = 1
one of them is degenerate, the lapse function being undetermined. For negative values of the cosmological
constant, the solution contains a single membrane sitting at the center of space, which extends infinitely in
the transverse direction, approaching a Lifshitz metric. For positive values of the cosmological constant,
the solution represents a space that is bounded in the transverse direction, with two parallel membrane-like
or point-like singularities sitting at each of the boundaries.
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1. INTRODUCTION

The power-counting renormalizable nonrelativis-
tic theory of gravity recently proposed by Hořava [1]
is a theory of gravity in which general covariance is
partly abandoned in favor of renormalizability. A state
of the theory is defined by a four-dimensional manifold
M equipped with a three-dimensional foliation F ,
with a pseudo-Riemannian structure defined by an
Euclidean three-dimensional metric in each slice of
the foliation gij(�x, t), a shift vector N i(�x, t), and a
lapse function N(�x, t). This structure can be encoded
in the ADM-decomposed metric

ds2 = −N2(�x, t)dt2 + gij(�x, t)
(
dxi +N i(�x, t)dt

)

×
(
dxj +N j(�x, t)dt

)
. (1)

The dynamics for the set (M,F , gij , Ni, N) is defined
as being gauge-invariant with respect to foliation-
preserving diffeomorfisms, and having a UV fixed
point at z = 3, where the dynamical critical exponent
z is defined as the scaling dimension of time as com-
pared to that of space directions [�x] = −1, [t] = −z.
This choice leads to power-counting renormalizabil-
ity of the theory in the UV. To the resulting action one
may add relevant deformations given by operators of
lower dimensions, that lead the theory to a IR fixed
point with z = 1, in which the symmetry between
space and time is restored, and thus a generally co-
variant theory may emerge.
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To have control on the number of terms arising
as possible potential terms, one may impose the so-
called detailed balance condition: the potential term
in the action for (3 + 1)-dimensional nonrelativis-
tic gravity is built from the square of the functional
derivative of a suitable action for Euclidean three-
dimensional gravity (here three-dimensional indices
are contracted with the inverse DeWitt metric). Con-
densed matter experience on this kind of construction
tells us that the higher-dimensional theory satisfying
the detailed balance condition inherits the quantum
properties of the lower-dimensional one. It has to
be noted that the theory is still well defined even
when the detailed balance condition is broken softly,
in the sense of adding relevant operators of dimension
lower than that of the operators appearing at the short
distance fixed point z = 3. With such a deformation,
in the UV the theory satisfies the detailed balance,
while in the IR the theory flows to a z = 1 fixed point.

We will not go through the above described steps
in more detail, but state the resulting action that will
be relevant to our purposes. The interested reader
can refer to the original paper [1]. The action for
nonrelativistic gravity satisfying the detailed balance
condition can be written as

S =

∫ √
gN

[
2

κ2
(KijK

ij − λK2)

+
κ2μ2(ΛWR− 3Λ2

W )

8(1 − 3λ)
+

κ2μ2(1− 4λ)

32(1 − 3λ)
R2
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− κ2

2w4

(
Cij −

μw2

2
Rij

)(
Cij − μw2

2
Rij

)]

. (2)

Here ΛW , κ, λ, μ, and w are arbitrary couplings,
R,Rij , Cij , and Kij are the scalar curvature, the
Ricci tensor, the Cotton-York tensor and the extrinsic
curvature, respectively, of the three-dimensional sec-
tions of the foliation. The dynamics in the infrared is
controlled by the first two terms, and then, if λ = 1,
general relativity is recovered. On the other hand, in
the UV the third and fourth terms become dominant,
and the anisotropy between space and time is explicit.

This action is invariant under foliation preserving
diffeomorphisms, namely under changes of the coor-
dinates of the form

xi
′
= xi

′
(xj , t), t′ = t′(t), (3)

under which the spatial metric, shift vector and lapse
function transform as

g′ij(x
i′ , t′) = ∂i′x

k∂j′x
lgkl(x

r, t),

N i′(xi
′
, t′) = ∂kx

i′∂t′tN
k(xj , t),

N ′(xi
′
, t′) = ∂t′tN(xj , t). (4)

Equations (3) and (4) ensure that if the lapse function
is initially chosen to be independent of the space
coordinates in a given coordinate system, it cannot
be turned into a space-dependent form by a change
of coordinates. In other words, the spatial indepen-
dence of the lapse function is a covariant statement.
This implies the existence of two possible versions
of Hořava gravity, a “projectable theory” in which
the lapse function is space-independent, N = N(t),
and a “non-projectable theory” in which the lapse
function is allowed to depend on space, N = N(xi, t).

In the non-projectable case, the equations of mo-
tion obtained by varying the above action are

2

κ2
(KijK

ij − λK2)− κ2μ2(ΛWR− 3Λ2
W )

8(1 − 3λ)

− κ2μ2(1− 4λ)

32(1 − 3λ)
R2 +

κ2

2w4
ZijZ

ij = 0, (5)

∇k(K
k� − λKgk�) = 0, (6)

2

κ2
E

(1)
ij − 2λ

κ2
E

(2)
ij +

κ2μ2ΛW

8(1 − 3λ)
E

(3)
ij

+
κ2μ2(1− 4λ)

32(1 − 3λ)
E

(4)
ij − μκ2

4w2
E

(5)
ij

− κ2

2w4
E

(6)
ij = 0, (7)

where

Zij ≡ Cij −
μw2

2
Rij , (8)

E
(1)
ij = Ni∇kK

k
j +Nj∇kK

k
i −Kk

i∇jNk

−Kk
j∇iNk −Nk∇kKij

− 2NKikKj
k − 1

2
NKk�Kk�gij +NKKij + K̇ij,

E
(2)
ij =

1

2
NK2gij +Ni∂jK +Nj∂iK

−Nk(∂kK)gij + K̇gij ,

E
(3)
ij = N(Rij −

1

2
Rgij +

3

2
ΛW gij)

− (∇i∇j − gij∇k∇k)N,

E
(4)
ij = NR(2Rij −

1

2
Rgij)

− 2
(
∇i∇j − gij∇k∇k

)
(NR),

E
(5)
ij = ∇k

[
∇j(NZk

i) +∇i(NZk
j)

]

−∇k∇k(NZij)−∇k∇�(NZk�)gij ,

E
(6)
ij = −1

2
NZk�Z

k�gij + 2NZikZ
k
j

−N(ZikC
k
j + ZjkC

k
i ) +NZk�C

k�gij

− 1

2
∇k

[
Nεmk�(ZmiRj� + ZmjRi�)

]

+
1

2
Rn

�∇n

[
Nεmk�(Zmigkj + Zmjgki)

]

− 1

2
∇n

[
NZ n

m εmk�(gkiRj� + gkjRi�)
]

− 1

2
∇n∇n∇k

[
Nεmk�(Zmigj� + Zmjgi�)

]

+
1

2
∇n

[
∇i∇k(NZ n

m εmk�)gj�

+∇j∇k(NZ n
m εmk�)gi�

]

+
1

2
∇�

[
∇i∇k(NZmjε

mk�) +∇j∇k(NZmiε
mk�)

]

−∇n∇�∇k(NZ n
m εmk�)gij . (9)

In the projectable case, Eq. (5) is replaced by its
spatial integral.

Since the original proposal of [1], there has been
a growing number of research papers in the area.
Formal developments were presented in [2–9], some
spherically symmetric solutions were presented in
[10–16], rotating solutions were studied in [17],
string-like ansätze were investigated in [18, 19],
toroidal solutions were found in [20], gravitational
waves were studied in [21] and [22], cosmological
implications were investigated in [23–35], and in-
teresting features of field theory in curved space and
black hole physics were presented in [36–42]. In [43–
46], potentially harmful instabilities were pointed out,
originating in the additional scalar graviton mode that
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propagates by virtue of the reduced gauge symme-
try. Moreover, it was shown that the extra mode
becomes strongly coupled in the infrared in nontrivial
backgrounds. To cure these problems, a so-called
“healthy extension” of the non-projectable theory
was proposed, in which additional terms containing
derivatives of the lapse function were included in
the action, which has the effect of eliminating the
instabilities [47]. Alternatively, a covariant theory
whose partly gauge fixed version reproduces the
non-projectable Hořava dynamics, was developed, in
which the extra mode was shown to be harmless [48].
In [49], a reinterpretation of a secondary constraint
that appears when λ �= 1 in the infrared limit of
the non-projectable theory, leads to a new counting
of degrees of freedom in which the extra mode is
not present. Finally, in [50], an additional U(1)
gauge symmetry was introduced, that kills the scalar
graviton, avoiding the aforementioned problems.

In Einstein gravity, it is easy to prove that no
nontrivial solution with the symmetry of a domain
wall exist in the absence of matter. Indeed, the only
solution of the equations of motion compatible with
a smooth and flat domain wall ansatz is that of an
AdS/Mikowski space-time, depending on the cos-
mological constant. In Hořava gravity, on the other
hand, the terms containing higher spatial derivatives
could in principle play the role of a matter contribu-
tion, allowing for the existence of nontrivial domain
wall solutions in vacuum. This is one of the motiva-
tions of our work.

In Einstein gravity, the knowledge of the cos-
mological solution corresponding to a given kind of
matter can be used to obtain a domain wall solution
through the so-called domain wall/cosmology cor-
respondence [51]. Indeed, given a metric with the
Friedmann-Lemaitre-Robertson-Walker (FLRW)
form, it can be mapped to a domain wall ansatz via
a suitably defined Wick rotations of the coordinates.
Moreover, such a transformation maps the Friedman
equations into the equation of motion corresponding
to the domain wall, ensuring that cosmological
solutions are mapped into domain-wall solutions.
In Hořava gravity, on the other hand, the situation
is very different. The essential anisotropy between
space and time, present in the theory, is an obstacle
for the domain wall/cosmology correspondence to
work. First, a cosmological ansatz has a single
independent function that can be identified with the
scale factor, while, as we will see below in further
detail, a domain wall ansatz has in principle two
independent functions. Moreover, the anisotropy
between space and time implies that the equations
of motion for a domain wall are not mapped under
a Wick rotation into Friedmann-like equations for
a cosmological ansatz. In consequence, a large

amount of research regarding cosmological solutions
of Hořava gravity [23–35] gives no clue to the form
of the domain wall solutions of the theory, making
a study of such solutions a subject of independent
inquiry. This is a second motivation for the present
paper.

In this paper, we start the investigation of domain
wall solutions of Hořava theory. The simplest possi-
ble setup being that of a purely gravitational theory,
we will not include any matter degree of freedom in
our equations. In attention to the the fact that all
solutions to the aforementioned controversy about the
extra scalar mode that were proposed in the literature,
correspond to modifications of the non-projectable
theory, we will restrict our investigation to that case.
Since in the absence of matter there is no possible Z2

symmetry, to be broken differently at each side of the
wall forming “domains,” we will sometimes use the
somewhat more accurate name “membrane” for our
solutions.

2. MEMBRANE SOLUTIONS
This paper deals with the issue of membrane solu-

tions of Hořava theory. In the present nonrelativistic
context, a flat domain wall solution is defined as a
solution having translational and rotational symmetry
in two dimensions, i.e., being invariant with respect
to the ISO(2)× R group of transformations. The
symmetry of the solution is reduced with respect to
that of a relativistic domain wall ISO(2, 1) because
of the non-relativistic nature of Hořava theory. An
ansatz that preserves such symmetry can be easily
written as

ds2 = −eV (z)dt2 + eU(z)(dx2 + dy2) + dz2. (10)

Note that, by virtue of the reduced symmetry of the
theory, there is no set of coordinates in which U(z) =
V (z) as it would happen in Einstein’s theory, and
thus the ansatz has two independent functions to be
determined by the equations of motion. The variables
x, y can be chosen as describing a two-torus T2 of
volume Vxy or a two-plane R2 (that can be considered
as the infinite Vxy limit). In what follows we will call
the“lapse function” to eV (z) and the “spatial volume
function” to eU(z).

Notice that the ansatz (10) has a conformally flat
spatial metric. This implies that the terms of the
action (2) containing the Cotton-York tensor does not
contribute to the equations of motion. By inspecting
Eqs. (5)–(9) we can anticipate that the resulting
equations of motion will be lower than sixth order.
Indeed, by replacing the ansatz in the above equa-
tions (5)–(7) we get the following two independent
equations of motion:

(4ΛW + U ′2)[3(4ΛW + U ′2) + 8U ′′]
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− 8(λ− 1)U ′′2 = 0, (11)

48Λ2
W +

[
(4V ′ − U ′)U ′2 + 8ΛW (U ′ + 2V ′)

]
U ′

+ 8(λ− 1)
[
(U ′′ − 2U ′2 − U ′V ′)U ′′

− 2U ′U (3)
]
= 0. (12)

Note that in the above equations the constants μ, κ,
and w do not appear. This can be traced back to
the action (2) or to the equations of motion (5)–(7)
in which, when the extrinsic curvature Kij and the
Cotton-York tensor Cij vanish, as it happens for our
ansatz, the constant w cancels, and the product κ2μ2

can be factored out. As can be seen in the second
equation, the case λ = 1 is special in the sense that
the total differential order of the system is reduced.
As we will see, this property manifests itself in a
non-analyticity of the solutions as functions of the
parameter λ.

2.1. Solutions with ΛW < 0

2.1.1. Solutions with λ = 1. We first fix our
attention on the case λ = 1. Solving Eq. (11) for U(z)
and inserting the solution into Eq. (12) to get V (z),
we obtain the corresponding solution. It reads

eUo(z) = cosh

(
3
√
−ΛW

4
(z − zo)

)8/3

,

eVo(z) = cosh

(
3
√
−ΛW

4
(z − zo)

)2/3

× sinh

(
3
√
−ΛW

4
(z − zo)

)2

, (13)

where zo is an integration constant, other two inte-
gration constants have been reabsorbed in the defini-
tions of t and of x, y. We see that the solution is Z2-
symmetric, and that its asymptotic form as z → ±∞
is that of AdS space-time:

eUo(z) ∝ e2
√
−ΛW |z−zo|,

eVo(z) ∝ e2
√
−ΛW |z−zo|. (14)

To have a physical interpretation of this solution,
we evaluate some of the observable scalars of the
theory. We start with the space-time curvature that
reads

R(4) =
3ΛW

4

[
11 + 5 tanh

(
3

4

√
−ΛW (z − zo)

)2]

−→
z→±∞

12ΛW . (15)

We see that it approaches a constant value as z →
±∞, as may have been expected from is AdS asymp-
totic form. More interestingly, it shows a peak at

R(3) (z)R(4) (z)

z − zo

(a) (b)

(c) (d)

z − zo

z − zo

z − zo

e− eVo(z) Uo(z)

Fig. 1. Plots of the lapse function g00 = −eVo(z) (a),
the spatial volume function gxx = gyy = eUo(z) (b), the
space-time curvature R(4)(z) (c), and the space curva-
ture R(3)(z) (d), for ΛW < 0 and λ = 1.

z = zo. A low-energy observer, armed only with the
tools of Einstein gravity, would conclude that some
kind of matter with positive energy density must be
sitting there, to partly cancel the contribution of the
cosmological constant. By observing that the total
spatial volume of the z = zo slice is proportional to
Vxy , he/she would identify the matter distribution as
a “membrane” located at z = zo. Nevertheless, from
our privileged high-energy point of view, we know
that what we have is a purely gravitational soliton
since no additional matter has been added to Hořava
theory. With this at hand, we will refer to our solution
as a purely gravitational membrane located at z = zo.

Since the Hořava theory explicitly distinguishes
time from space, a separate invariant of interest is the
space curvature which in our case is given by

R(3) = 3ΛW

[
1 + tanh

(
3

4

√
−ΛW (z − zo)

)2]

−→
z→±∞

6ΛW . (16)

Again it presents a peak at z = zo, which reinforces
the identification of that point as the location of a
membrane. Plots of the space and space-time cur-
vatures are included in Fig. 1.

2.1.2. Solutions with λ �= 1. Let us next assume
λ �= 1. Then, solving Eq. (11) for U(z) and inserting
the solution into Eq. (12) to get V (z), we have

eU±(z) = cosh

(√
−ΛW

p±(λ)
(z − zo)

)2p±(λ)

,
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eV±(z) =

[
cosh

(√
−ΛW

p±(λ)
(z − zo)

)5p±(λ)−4λ−2
3p±(λ)−2

,

sinh

(√
−ΛW

p±(λ)
(z − zo)

)]2
= N2, (17)

with

p±(λ) =
2(λ− 1)

−2±
√
6λ− 2

, (18)

where again zo is an integration constant and other
two constants have been absorbed in the definition
of t and of x, y. Here the subindex ± indicates that
we have two different branches of solutions according
to the choice of the sign in p±(λ). Note that for
λ < 1/3 no real solution exists, so in the remainder of
this subsection we will focus on the parameter range
1 �= λ ≥ 1/3.

Both ± solutions are Z2 symmetric and centered
at zo. To explore the asymptotic behavior we take
z → ±∞ to have

eU±(z) ∝ exp
[
2
√

−ΛW sgn(p±(λ))|z − zo|
]
,

eV±(z) ∝ exp
[
2z±(λ)

√
−ΛW

× sgn(p±(λ))|z − zo|
]
, (19)

where

z±(λ) =
4(2p±(λ)− λ− 1)

p±(λ)(3p±(λ)− 2)
. (20)

Here we see that our metric corresponds to an asymp-
totically Lifshitz space-time, similar to those studied
in [52], whose scaling exponent is given by z±(λ). At
this point, it is convenient to stress that such a scaling
exponent is not in principle related to the dynamical
critical exponent z = 3 of Hořava theory.

In the solution with the + sign, p+(λ) is always
positive, and thus the spatial volume function is ex-
ponentially growing as z → ±∞ independently of the
value of the parameter λ. The lapse function instead
grows exponentially whenever z+(λ) > 0 (λ < 3) and
decreases exponentially for z+(λ) < 0 (λ > 3). In the
limiting case z+(λ) = 0 (λ = 3), the function asymp-
totes a constant value. Plots of the corresponding
solutions for different values of λ can be seen in Fig. 2.

On the other hand, in the solution with the minus
sign, the spatial volume function is exponentially de-
creasing as z → ±∞ when p−(λ) < 0 (λ > 1), and
exponentially growing if p−(λ) > 0 (λ < 1). Addi-
tionally, z−(λ) is always positive, which implies that
the lapse function grows exponentially as z → ±∞
for any value of λ. Plots of the corresponding solu-
tions for different values of λ can be seen in Fig. 3.

R(3)(z)R(4)(z)

z − zo

(a) (b)

(c) (d)

z − zo

z − zo

z − zo

e− V+(z) V+(z)e

Fig. 2. Plots of the lapse function g00 = −eV+(z) (a)
and the spatial volume function gxx = gyy = eU+(z) (b),
space-time curvature R(4)(z) (c) and space curvature
R(3)(z) (d) for ΛW < 0 and different values of λ. Notice
the change in the asymptotic behavior of eV+(z) at λ = 3
in plot (a).

R(3)(z)R(4)(z)

z − zo

(a) (b)

(c) (d)

z − zo

z − zo

z − zo

−e V–(z)V–(z) e

Fig. 3. Plots of the lapse function g00 = −eV−(z) (a)
and the spatial volume function gxx = gyy = eU−(z) (b),
space-time curvature R(4)(z) (c) and space curvature
R(3)(z) (d) for ΛW < 0 and different values of λ. Notice
the change in the asymptotic behavior of eU−(z) at λ = 1
in plot (b).

Again, to have a physical interpretation, we evalu-
ate the space-time curvature scalar for this solution.
It reads

R(4) = R(4)
∞ (λ) + (R(4)

zo (λ)

−R(4)
∞ (λ))sech

(√
−ΛW (z − zo)

p±(λ)

)2

. (21)
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354 ARGÜELLES, GRANDI

Its asymptotic value is consistent with Lifshitz space-
time and it is given by

R(4)
∞ (λ) =

−2ΛW

(2− 3p±(λ))2p±(λ)2

×
[
p±(λ)(48(1 + λ)− p±(λ)(20 − 24λ+ 3p±(λ)

× (4 + 9p±(λ)))) − 16(1 + λ)2
]
. (22)

As before, a peak at z = zo appears, with its value
given by

R(4)
zo (λ) = R(4)

∞ (λ)− 2ΛW

(2− 3p±(λ))2p±(λ)2

×
[
8λ(1 + 2λ) + p±(λ)(−4(1 + 3λ) + p±(λ)(14

− 24λ+ 3p±(λ)(−8 + 9p±(λ))))
]
. (23)

Such a peak, together with the observation that the
spatial volume of the z = zo slice is proportional to
Vxy , allows us to make the same interpretation as be-
fore, referring to our solution as a purely gravitational
membrane sitting at z = zo. This interpretation is
reinforced by evaluating the space curvature scalar,
which reads

R(3) = 2ΛW

[
3 +

2−3p±(λ)

p±(λ)

× sech
(√

−ΛW (z−zo)

p±(λ)

)2]

−→
z→∞

6ΛW , (24)

and also shows a peak at z = zo. As can be easily seen
in the above equation, the space curvature at infinity
is independent of λ. On the other hand, its sign at
zo depends on λ, for the solution with the + sign it is
always positive, while for the solution with the − sign
it is positive for λ > 1 and negative otherwise.

Plots of both space-time and space curvatures for
each kind of the ± solutions are shown in Figs. 2
and 3.

Notice that these solutions are analytic in the pa-
rameter λ in its whole range except λ = 1. There, the
solution with the + sign is analytic and approaches
the solution for λ = 1 given in (13). On the other
hand, the solution with the − sign is non-analytic at
that point, since p−(λ) vanishes there.

2.1.3. Degenerate solutions. In the present
ΛW < 0 case, Eqs. (11), (12) allow for an additional
(degenerate) branch of solutions for any value of λ. It
is given by

eUd(z) = e2
√
−ΛW (z−zo),

eVd(z) = arbitrary function. (25)

The existence of such an infinite branch of solutions
for which the lapse function is not determined was
already pointed out in the spherically symmetric case
in [10] and in the warped BTZ string context in [18].
As shown in [10], this degeneracy is closely related to
the detailed balance condition and is lifted by its small
violation.

2.2. Solutions with ΛW > 0

2.2.1. Solutions with λ = 1. Proceeding as in
the previous sections, we first assume that λ = 1. The
corresponding solution reads

eUo(z) = cos

(
3
√
ΛW

4
(z − zo)

)8/3

,

eVo(z) = cos

(
3
√
ΛW

4
(z − zo)

)2/3

× sin

(
3
√
ΛW

4
(z − zo)

)2

, (26)

where, as before, zo is an integration constant, the so-
lution being Z2-symmetric around z = zo. The lapse
function is real in the region |z − zo| ≤ 2π/3

√
ΛW

and imaginary otherwise. Thus the surfaces z = zo ±
2π/3

√
ΛW define the boundaries of space-time. At

those boundaries, the lapse function and the function
eUo(z) vanish.

To have a physical interpretation of the solution,
we evaluate the curvature scalar which takes the form

R(4) =
3

4
ΛW

[
(11 − 5 tan

(
3

4

√
ΛW (z − zo)

)2]

−→
z→zo±2π/(3

√
ΛW )

−∞. (27)

It takes a finite positive value proportional to ΛW

at z = zo, and it blows up to negative values at the
boundaries. From the point of view of a low-energy
observer who interprets the solution in the light of
Einstein’s theory, some kind of negative energy den-
sity must be localized close to each boundary in order
to cancel the contribution of the positive cosmological
constant, resulting in a negative space-time curva-
ture. From our high-energy point of view, on the
other hand, we know that we are in the presence
of a purely gravitational soliton. Since eUo(z) van-
ishes at the boundaries, the spatial volume of the
slices z = zo ± 2π/(3

√
ΛW ) is zero, implying that

the singularities are pointlike. On the other hand,
all the remaining slices z �= zo ± 2π/(3

√
ΛW ) have a

finite nonzero volume proportional to Vxy. Thus the
interpretation of this solution is that of two pointlike
singularities sitting at the poles of the geometry z =
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(a) (b)

(c) (d)

R(3)(z)R(4)(z)

z − zo

z − zo
z − zo

z − zo

eVo(z) Uo(z)–e

Fig. 4. Plots of the lapse function g00 = −eVo(z) (a)
and the spatial volume function gxx = gyy = eUo(z) (b),
space-time curvature R(4)(z) (c) and space curvature
R(3)(z) (d) for ΛW > 0 and λ = 1.

zo ± 2π/(3
√
ΛW ) and separated by a finite physical

distance 4π/(3
√
ΛW ). The space curvature confirm

such a view:

R(3) = −3ΛW

[
−1 + tan

(
3

4

√
ΛW (z − zo)

)2]

−→
z→zo±2π/(3

√
ΛW )

−∞, (28)

being again singular at the boundaries, while at the
center it is positive and finite, proportional to ΛW .

Plots of the solutions together with their spatial
and space-time curvatures can be seen in Fig. 4.

2.2.2. Solutions with λ �= 1. Next, we move to
the case λ �= 1. Then, solving Eq. (11) for U(z) and
inserting the solution into Eq. (12) to get V (z), we
have

eU±(z) = cos

(√
ΛW

p±(λ)
(z − zo)

)2p±(λ)

,

eV±(z) =

[
cos

(√
ΛW

p±(λ)
(z − zo)

)5p±(λ)−4λ−2
3p±(λ)−2

× sin

(√
ΛW

p±(λ)
(z − zo)

)]2
, (29)

where, as before, zo is an integration constant, and
p±(λ) is given by the expression (18). Again the
solution does not exists for λ < 1/3, while for λ > 1/3
we get two branches of solutions identified with the
± subindices according to the choice of the sign in
p±(λ).

In both branches, the lapse function is real in the
region |z − zo| < πp±(λ)/(2

√
ΛW ) and imaginary

otherwise. Thus the surfaces z = zo ±
πp±(λ)/(2

√
ΛW ) determine the boundaries of space.

At the boundary, the behavior of the solution depends
on the value of λ. In the solution with the + sign, the
exponent of the cosine in the lapse function changes
its sign at λ = 3, implying that at λ < 3 the lapse
function vanishes at the boundary, while at λ > 3 it
diverges. On the other hand, in the solution with the
minus sign, the exponent of the cosine in the spatial
volume function changes its sign at λ = 1, resulting
in a solution whose spatial volume vanishes at the
boundary at λ < 1 and diverges at λ > 1.

The space-time curvature in the above solutions
reads

R(4) = R̃(4)(λ) +
(
R(4)

zo (λ)− R̃(4)(λ)
)

× sec

(√
ΛW (z − zo)

p±(λ)

)2

, (30)

where

R̃(4)(λ) =
−2ΛW

(2− 3p±(λ))2p±(λ)2

×
[
− 16(1 + λ)2 + p±(λ)(48(1 + λ)− p±(λ)(20

− 24λ+ 3p±(λ)(4 + 9p±(λ))))
]
, (31)

and

R(4)
zo (λ) = R̃(4)(λ)− 2ΛW

(2− 3p±(λ))2p±(λ)2

×
[
8λ(1 + 2λ) + p±(λ)(−4(1 + 3λ) + p±(λ)(14

− 24λ+ 3p±(λ)(−8 + 9p±(λ))))
]
. (32)

Again it is clear that the solution is singular at the
boundaries, where the function

sec
(√

−ΛW (z − zo)/p±(λ)
)

diverges. These singularities are separated by a finite
distance πp±(λ)/

√
ΛW .

Since the spatial volume function vanishes at the
boundaries whenever p±(λ) is positive, in such a
case the singularities are pointlike. This happens for
any λ in the + branch of solutions, and for λ < 1
in the − branch. In the rest of the − branch, that
is, at λ > 1, the volume of the boundaries diverges,
implying that the singularities can be interpreted as
two parallel purely gravitational membranes, sitting
at the boundaries of space-time. In this last case, an
alternative interpretation arises from compactifying
the variable z into a cylindrical topology, resulting in
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R(3)(z)R(4)(z)

z − zo

(a) (b)

(c) (d)

z − zo

z − zo

z − zo

−eV+(z) U+(z)e

Fig. 5. Plots of the lapse function g00 = −eV+(z) (a) and
the spatial volume gxx = gyy = eU+(z) (b), space-time
curvature R(4)(z) (c) and space curvature R(3)(z) (d) for
ΛW > 0 and different values of λ. Notice the changed
behavior of the lapse function at λ = 3, in figure (a).

R(3)(z)R(4)(z)

z − zo

(a) (b)

(c) (d)

z − zo

z − zo

z − zo

–e eV–(z) U–(z)

Fig. 6. Plots of the lapse function g00 = −eV−(z) (a)
and the spatial volume function gxx = gyy = eU−(z) (b),
space-time curvature R(4)(z) (c) and space curvature
R(3)(z) (d) for ΛW > 0 and different values of λ. Notice
the change in the behavior of the lapse function at λ = 1
in figure (b).

identification of the two membrane-like singularities
as a single membrane at the center of space.

In conclusion, the solutions of the + branch con-
sist in two point-like singularities separated by a finite
distance. On the other hand, the solutions of the −
branch consist at λ < 1 in two pointlike singularities,
and at λ > 1 in two parallel membranes or a single
membrane in a compact topology.

Plots of the solutions with the + sign with the
corresponding space-time and space curvatures for
different values of λ can be seen in Fig. 5. Similar
plots for the solutions with the − sign can be seen in
Fig. 6.

3. DISCUSSION

We have explored membrane solutions in the
Hořava nonrelativistic theory of gravity when the
detailed balance condition is satisfied. We have found
that at arbitrary values of the parameter λ > 1/3 there
exist branches of membrane solutions.

In the particular case λ = 1 there is a single
branch that corresponds to a Z2-symmetric space-
time. In the case of a negative cosmological con-
stant, the space-time and spatial curvatures have
a peak at z = zo, which allows us to identify the
solution as a membrane sitting at the center of space.
The curvatures become proportional to ΛW at large
distances, where the metric corresponds to an AdS
space-time. On the other hand, in the case of positive
cosmological constant, the space has boundaries
at |z − zo| = 2π/(3

√
ΛW ) beyond which the metric

becomes complex. The space-time and space curva-
tures diverge at the boundaries. The spatial volume of
the slices containing the singularities vanishes, which
implies that the singularities are pointlike. On the
other hand, both curvatures are finite and positive in
the intermediate space.

At generic values of λ in the range 1/3 < λ �=
1, two branches appear that correspond to Z2-
symmetric solutions. In the case of a negative
cosmological constant, the space is unbounded, and
the space curvature asymptotes a constant value
proportional to ΛW . The same is true for the space-
time curvature, but with a proportionality factor that
is a function of λ. The asymptotic metric corresponds
to a Lifshitz space-time. Again, the curvatures being
finitely peaked at the center of space, we interpret the
solution as representing a membrane sitting there.
The curvatures at the center depend on the value
of λ. On the other hand, in the case of a positive
cosmological constant, the space is bounded, and
the curvatures are singular at the boundaries. The
spatial volume of those boundaries vanishes for λ < 1
in the − branch and for all values of λ in the +
branch, implying that the singularities are pointlike.
Conversely, at λ > 1 in the − branch the area of the
slices containing the singularities diverges, allowing
their interpretation as membranes.

It should be kept in mind that our solutions are
purely gravitational solitons since no additional mat-
ter terms have been added to the Hořava action.
Nevertheless, our nomenclature was inspired from the
point of view of a low-energy observer, according to
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which the dynamics of gravity is totally covariant and
given by Einstein’s theory. He/she would necessarily
interpret our gravitational domain wall as originated
from some kind of membrane-like matter sources.

At any value of λ, there exists an additional
branch. It is degenerate, in the sense that the lapse
function is completely undetermined by the equations
of motion. This behavior has been reported before
in the case of spherically symmetric [10] and warped
BTZ string [18] solutions and was related to the
detailed balance condition [10].

It is interesting to note that the solutions behave
analytically in the parameter λ at all values of λ �= 1.
The solutions with the + sign approach the regular
λ = 1 branch in the limit λ → 1, while the solution
with the − sign is not analytic in that limit.

As possible continuations of this work, it may be
of interest to study solutions where the detailed bal-
ance condition is softly broken, or where the action is
extended to the so called “healthy version” of Hořava
gravity. Moreover, a study of stability under pertur-
bations may be interesting, as well as the inclusion
of a Lifshitz scalar field with a symmetry breaking
potential that could provide a topologically conserved
charge.
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