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Abstract – We present an investigation of the fast decompression of a three-dimensional (3D)
Bose-Einstein condensate (BEC) at finite temperature using an engineered trajectory for the
harmonic trapping potential. Taking advantage of the scaling invariance properties of the time-
dependent Gross-Pitaevskii equation, we exhibit a solution yielding a final state identical to that
obtained through a perfectly adiabatic transformation, in a much shorter time. Experimentally,
we perform a large trap decompression and displacement within a time comparable to the final
radial trapping period. By simultaneously monitoring the BEC and the non-condensed fraction, we
demonstrate that our specific trap trajectory is valid both for a quantum interacting many-body
system and a classical ensemble of non-interacting particles.

editor’s  choice Copyright c© EPLA, 2011

Quantum adiabatic transformations [1,2], in which the
system’s parameters are varied slowly enough such that no
transition between instantaneous eigenstates occur, play
a central role in physics. For instance, schemes based on
adiabatic passage have been proposed to prepare non-
classical states [3,4] or to produce new strongly correlated
states [5]. Quantum adiabatic computation is attract-
ing a lot of attention [6,7]. Adiabatic transformations
using various time-dependent potentials are routinely
performed in experiments on ultracold gases. However
adiabatic transformations are typically slow [8], while
practical applications and experimental constraints such
as finite lifetime or coherence time [9] require faster
processes.
This contradiction motivated the search for rapid

schemes reproducing or approaching ideal adiabatic
transitions. “Exact” methods [10,11], here referred to
as shortcuts to adiabaticity, yield a final state strictly
identical to that obtained via an adiabatic transforma-
tion, while other approaches [12–15] use minimization
techniques to optimize the transition to a target state.
Among the former, some strategies require introducing
additional terms in the Hamiltonian [10,16], others consist

(a)E-mail: guillaume.labeyrie@inln.cnrs.fr

in engineering the time dependence of the parameters
to avoid unwanted transitions [17]. In spite of the large
theoretical literature, few experiments were conducted on
classical systems [18–20], and even fewer in the quantum
regime [21].
In this letter, we perform the rapid shortcut decompres-

sion of a 3D interacting BEC confined in an anisotropic
harmonic trap. The trap frequencies are decreased by a
factor of 9 (radially) and 3 (axially) in a time comparable
to the final radial trapping period, using a trajectory
based on the scaling properties of the time-dependent
Gross-Pitaevskii equation (GPE) in the Thomas-Fermi
(TF) limit [22]. This shortcut trajectory leads to a
final state identical (in theory) to the equilibrium state
obtained via a perfectly adiabatic process. Experimentally,
we demonstrate that the collective excitations [23,24]
associated with the rapid trap decompression are strongly
reduced by our shortcut scheme (fig. 1), the residual
excitation being due to experimental imperfections.
Furthermore, we show that the trajectory is also valid
for a classical ensemble of non-interacting particles, as
demonstrated by monitoring the non-condensed fraction
of the finite-temperature BEC.
We describe our system by a zero-temperature BEC plus

a thermal cloud, assumed to behave independently. The
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Fig. 1: (Color online) Linear vs. shortcut BEC decompression.
We compare the time evolution of the BEC after two different
decompression schemes: (A) a 30-ms-long linear ramp and
(B) the shortcut trajectory (see text). The center-of-mass
motion has been subtracted from these time-of-flight images
for clarity.

BEC component thus obeys the 3D GPE

i�
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∂t
ψ(r, t) =

[
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∇2+U(r, t)+ ŨN |ψ(r, t)|2

]
ψ(r, t),

(1)
where ψ(r, t) is the wave function of the condensate,m the
mass, N the number of particles, and Ũ = 4π�2as/m the
interaction coupling constant (as is the s-wave scattering
length). The time-dependent trapping potential has a
cylindrical symmetry along the horizontal axis (y)

U(r, t) =
1

2
mω⊥(t)2(x2+ z2)+

1

2
mω2‖(t)y

2+mgz, (2)

with initial and final angular frequencies ω0{⊥,‖}
and ωf{⊥,‖} = ω0{⊥,‖}/γ2⊥,‖, respectively. It is worth
stressing here that decreasing the trap frequencies
not only decompresses the BEC but also trans-
lates the harmonic-potential minimum vertically by
∆z =−g(1/ω20⊥− 1/ω2f⊥). The objective is to engineer
a trajectory ω⊥,‖(t) connecting the equilibrium states in
the initial and final potentials. We stress that the BEC is
not at equilibrium at any time during the trajectory, but
only at t= 0 and t= tf .
Equation (1) is invariant under the scaling and transla-

tional transformation

ψ(r, t) = (b2⊥b‖)
−1/2χ(ρ, τ(t)) exp[iφ(r, t)] (3)

with ρx = x/b⊥, ρy = y/b‖, ρz = z/b⊥+ ga/ω20⊥ and τ(t) =∫ t
0
dt′/[b2⊥(t

′)b‖(t′)], in the following situations: either
i) in the non-interacting limit [22,25,26]; or ii) for a
suitable driving of the interaction term Ũ via Feshbach
resonances [26]; or iii) in the Thomas-Fermi (TF) limit
(i.e. neglecting the term ∇2χ) [27].
In the latter case, one can derive three coupled differen-

tial equations satisfied by the scaling (b⊥,‖) and shifting

(a) parameters, the condition of initial and final equilib-
rium imposing sixteen independent boundary conditions.
To simplify the process of finding a solution, we imposed
the following constraint: the axial size of the BEC (and
thus b‖) should remain constant during the decompres-
sion. This condition results in trajectories with γ⊥ = γ2‖ ,
and b⊥ and a satisfying

b̈⊥(t)+ b⊥(t)ω2⊥(t) = ω
2
0⊥/b⊥(t)

3, (4)

ω‖(t) = ω0‖/b⊥(t), (5)

b⊥(t)4ä(t)+ 2b⊥(t)3ḃ⊥(t)ȧ(t)+ω20⊥a(t)−ω20⊥b⊥(t)3 = 0,
(6)

for which we can exploit the procedure outlined in [20].
Since eqs. (4) and (6) are identical to those obtained for a
thermal cloud [20], the shortcut trajectory exhibited here
is valid both for the BEC (in all directions) and for the
thermal fraction in the radial directions. Indeed, since
eq. (5) does not yield a fixed axial size for a thermal
cloud, this shortcut trajectory will not work for the axial
direction in the thermal case.
Our ultracold 87Rb atoms are trapped in a quadrupole-

Ioffe-configuration (QUIC) magnetic trap [28]. In its
compressed initial state this trap is anisotropic with
radial and axial frequencies ω0⊥/2π= 235.8 Hz and
ω0‖/2π= 22.2 Hz, respectively. We can tune these inde-
pendently by adjusting the QUIC current (affects both
ω⊥ and ω‖) and the current running through a pair of
Helmoltz coils aligned along y (affects only ω⊥) [29].
In the present paper, we perform a 30-ms-long radial
decompression of the trap by a factor of 9, yielding a
final radial frequency ωf⊥/2π= 26.2 Hz. Because of the
condition γ⊥ = γ2‖ imposed above, the axial frequency is
reduced by a factor of 3 to a final value ωf‖/2π= 7.4 Hz.
If performed adiabatically, this decompression reduces
the chemical potential by a factor of 9. The corresponding
shortcut frequency trajectories are represented in fig. 2.
The insert shows the expected evolution of the vertical
center-of-mass position of the BEC and its radial size
as obtained from 3D GPE numerical simulations. For
the shortcut trajectory (stars), these quantities remain
stationary after the end of the decompression indicating
that an equilibrium final state is reached. For comparison,
we plot (squares) the same quantities for a linear ramp
of same duration, yielding large dipolar and breathing
oscillations [30].
The experimental procedure is as follows. We first

produce a BEC by RF evaporation in the compressed
trap. In the experimental runs presented here, the
condensed fraction (N = 1.3× 105) represents 60% of the
total number of atoms. The initial temperature, inferred
from the size of the non-condensed fraction after time
of flight, is T0 = 130 nK. We then apply a decompression
sequence, hold the ultracold cloud for a certain time th
in the decompressed trap, then release it and monitor
the cloud’s parameters after a 28ms time of flight via
absorption imaging. This time of flight is close to the
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Fig. 2: Shortcut BEC decompression in 30ms. We plot the
shortcut trajectories ω⊥(t)/2π (solid line) and ω‖(t)/2π (×5,
dashed line). The insert compares the subsequent evolution
of the BEC’s center of mass (open symbols) and radial size
(solid symbols) for the shortcut (stars) and linear (squares)
decompressions (GPE simulation).

critical time (≈ 30ms) where the aspect ratio of the
decompressed BEC inverts, which explains its isotropic
aspect in fig. 1. By varying th, we characterize the magni-
tude of the various modes excited by the decompression
process. To extract quantitative estimates, we fit the 2D
column density profiles by a two-component distribution
allowing for different angles (see discussion below) for the
BEC (TF profile) and thermal fraction (Gaussian profile).
The fit results are averaged over three different images
taken in the same conditions. Throughout this paper we
will compare three different decompression schemes: an
abrupt jump from the initial to final frequencies, a linear
ramp of duration 30ms, and the 30ms shortcut trajectory
depicted in fig. 2. The abrupt decompression is used as
a “worst case” to measure the magnitude of excitations
associated with a strongly non-adiabatic transformation.
Figure 1 illustrates the efficiency of our shortcut

method. The vertical axis on the figure corresponds to
the direction of gravity (z), and the horizontal one to
the axial direction (y). The field of view of each image
is 576µm× 576µm, the indicated value corresponding
to the time th spent in the decompressed trap. The
center-of-mass motion has been subtracted from these
images for clarity (see fig. 3(A)). Figure 1(A) corresponds
to a 30-ms-long linear decompression while fig. 1(B) is
obtained with the shortcut trajectory. Qualitatively, we
observe that in the first case the BEC undergoes large
deformations characterized by an oscillatory behavior
of its aspect ratio. More unexpectedly, the BEC is also
seen to oscillate angularly about the horizontal axis,
reflecting the excitation of a scissors mode [31,32]. This
“parasitic” excitation will be discussed at the end of
the paper. Applying the shortcut scheme results in a
drastic suppression of the BEC deformations (fig. 1(B)).

Fig. 3: (Color online) Decompression-induced excitations.
We report the temporal evolution of (A) the center-of-mass
position and (B) the aspect ratio of the BEC after three differ-
ent decompression schemes: an abrupt decompression (open
circles); a 30ms linear ramp (squares); the 30ms shortcut
trajectory (stars). All measurement are performed after a
28-ms-long time of flight.

Indeed, the BEC remains almost stationary throughout
the whole 170ms range after decompression, very close to
the targeted equilibrium state.
Figure 3(A) shows the oscillation occurring at ωf⊥ of

the cloud’s center-of-mass position along the vertical (after
a 28ms time of flight). This dipole mode is excited by the
large vertical displacement (357µm) of the trap center.
The circles, squares and stars correspond to the abrupt,
linear and shortcut decompressions, respectively. The lines
are sinusoidal fits. While the GPE simulations yield
an equilibrium state within numerical accuracy (insert
in fig. 2), as expected from theory, we experimentally
observe a residual dipole oscillation for the shortcut
decompression. This is due to experimental imperfections,
discussed at the end of the paper, which are not included
in the model. The shortcut decompression reduces the
amplitude of the dipole mode by a factor of 6 and 4.3 when
compared to the abrupt and linear schemes, respectively.
Since for our 28ms time of flight this amplitude mainly
reflects the center-of-mass velocity inside the trap, the
associated reduction of kinetic energy is by a factor 36 and
18.5, respectively. After the shortcut trajectory, the peak
vertical velocity in the decompressed trap is 1.8 recoil,
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Fig. 4: BEC vs. thermal cloud decompression. We plot the sizes
of the BEC (A) and thermal component (B) vs. th for the
shortcut trajectory. The filled and empty symbols correspond
to the radial (vertical) and axial directions, respectively.

corresponding to a kinetic energy of 580 nK. Note that
the center-of-mass oscillation is totally uncoupled from
the internal degrees of freedom of the BEC, even in the
presence of interactions [30].
We report in fig. 3(B) the evolution of the aspect ratio

of the BEC (again after a 28ms time of flight). For
the abrupt and linear schemes, it presents strong oscil-
lations at a frequency of 47Hz which is consistent with a
radial breathing mode of frequency ≈ 2ωf⊥/2π [24,30,33].
A Fourier transform analysis of the BEC size oscillations
also reveals the presence of an axial breathing oscillation
at 12.5Hz (≈√5/2 ωf‖/2π [30]). The specific shape of
the aspect ratio fluctuations in fig. 3(B) results from the
interplay between the various modes and depends on the
decompression trajectory as confirmed by GPE simula-
tions. However, a direct comparison with the simulation
is not possible due to the presence of experimental imper-
fections. Using the shortcut trajectory (stars in fig. 3(B))
strongly inhibits these breathing-like excitations: the stan-
dard deviation of the aspect ratio variations vs. th is
reduced by a factor of 12 and 10 when compared to the
abrupt and linear decompressions, respectively. After the
shortcut decompression and the 28-ms-long expansion, the
BEC has an average TF radius of 46.8µm (close to the
GPE prediction of 43 µm) with a standard deviation below
12% (see fig. 4(A)).

Figure 4 illustrates the impact of the shortcut decom-
pression on the thermal fraction. Here, as mentioned
before, the shortcut trajectory is expected to work only
for the radial directions. Indeed, we observe in fig. 4(B)
a breathing oscillation at 2×ωf‖/2π of the thermal cloud
along the axial direction (open circles on lower panel),
while its size along the vertical (filled circles) remains
stationary, corresponding to a temperature Tf = 22nK
(a factor of 5.9 below the initial temperature). In the case
of the linear ramp, we observe breathing oscillations along
both axial and radial dimensions. For comparison, we show
in fig. 4(A) the sizes of the BEC along both axis, which are
stationary since the shortcut trajectory is valid both radi-
ally and axially. These behaviors are qualitatively consis-
tent with the hypothesis of independent BEC and thermal
fractions made at the beginning of the paper. To detect
the impact of the interaction between the two components
would require a finer quantitative analysis (for instance by
varying the condensed fraction), once the other limitations
discussed below are removed.
We now discuss the various imperfections of the experi-

ment, which limit the performances of our shortcut decom-
pression and result in a final state different from the
targeted equilibrium one. A first problem is the mismatch
between the theoretical and experimental trap frequency
trajectories. For instance, we measure from the dipole
oscillation ωf⊥/2π= 23.6Hz which is 10% below the
targeted value of 26.2Hz. Since the cloud’s dynamics is
quite sensitive to the final stage of the decompression, this
can account for the residual dipole oscillation of fig. 3(A).
This sensitivity is related to the large vertical acceleration
of the trap minimum, whose position is ∝ 1/ω2⊥, at the
end of the trajectory. Another possible issue is the trap
anharmonicity, which is enhanced in the decompressed
trap due to gravity. The impact of the anharmonicity could
be reduced by using a smoother trajectory [18,20]. The
trap’s non-ideal geometry is also responsible for the exci-
tation of the scissors mode observed in fig. 1. In ref. [32],
an angular velocity was imparted to the BEC by suddenly
tilting the trap, and the subsequent monochromatic angu-

lar oscillation at
√
ω2⊥+ω

2
‖ was used as an evidence for

superfluidity. Here, the angular momentum is communi-
cated to the cloud during the trap decompression because
the trap eigenaxes tilt slightly as the trap center moves
downwards due to gravity. This results in an angle of 3◦

between the axial directions of the initial and final traps
in the vertical plane. Note that the large amplitude of
the scissors oscillation in fig. 1 is due to the magnification
effect of the time of flight [34,35]. In situ measurement
show an amplitude of the scissors oscillation compatible
with the trap tilt angle of 3◦.
In conclusion, we presented in this paper a method

to perform shortcut-to-adiabaticity transformations on
a 3D interacting BEC, using a specifically designed
parameter trajectory for the harmonic trapping potential.
The performances could be further improved using
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better-controlled potentials such as in optical traps or
lattices, where time-dependent manipulations are also
easier and faster. Very short transition times could in
principle be achieved by transiently applying negative
(i.e. expelling) curvatures [11]. Further work may include
the direct comparison with other methods such as “bang-
bang” [36] or optimal control techniques. More general
shortcut solutions will also be searched for, and applied
to other dimensionalities or non-harmonic potentials [37].
These fast-transition methods are not restricted to
cold-atom manipulation, and can be readily adapted
to topics as diverse as, e.g., macroscopic resonator
cooling [38], temporal [16] and spatial [39] coherent
population transfer, or quantum computation [7].

∗ ∗ ∗

This work was supported by CNRS and Université
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